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Summary: Z data can benchmark models of emission from
2 photoionized accretion-powered plasmas

• Understanding X-ray Binaries and AGN accretion disks requires complex models
that interpret observed spectra
4 These models are largely untested in the laboratory
4 Need benchmark quality data

• A photoionized silicon plasma with a measured drive radiation spectrum, density
and temperature was created on Z
4 the column density is adjustable, testing radiation transport

• Spectral absorption and emission are measured to high reproducibility enabling
benchmark code comparison

• Presently, models do not reproduce neither relative or absolute emission

• First terrestrial RRC from a photoionized plasma was obtained on Z enabling test of
astrophysical temperature diagnostics

The difficulty to model emission raises questions about the suitability
of models used to interpret astrophysical observations
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Active Galactic Nuclei and X-ray Binaries are revealed
3 through the emission from their accretion disk
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Challenges:
- Line identification
- Blended spectra from multiple elements
- Spatial and temporal integration
- Limited spectral resolution
- Limited signal-to-noise
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X-ray spectra are used to access a wide variety of the
4 astrophysical object parameters
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4 composition
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Yet, largely untested physics models are used to interpret the observations
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effects
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4 General relativity
effects
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Benchmark experiments do exist for collisional plasmas

W. Wiese et al., Phys. Rev. A, 6, (1972)
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Few photoionized plasma experiments exist
6 Absorption Emission 
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• Absorption measurements revealed first photoionized
plasma spectra and allowed test of ionization models.
• Emission spectra was first observed in a laser experiment,
although short timescale and important radiation dilution.



7
Benchmark requirements to emission experiment

Experimental requirements for model benchmarking:
• large volumes for uniformity
• long duration x-ray drive for steady state
• demonstrated reproducibility
• independent diagnosis of plasma conditions and x-ray driving radiation
• demonstrated photoionization regime (CSD vs Te, > 1 erg.cm/s)

Specifically for emission:
• Large column density for high S/N
Since column = density x length , density < 1019e-/cc 4 large —1cm plasma size

Experiments on the Z Facility can meet these criteria.

G. Loisel, J. Bailey, D. Liedahl et al., PRL 119 (2017)



Goal: build a laboratory analog for accretion disk X-ray emission
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Goal: build a laboratory analog for accretion disk X-ray emission

X-ray illumination

Photon ionization and atomic kinetics

Plasma emission

Adva ntages
• study individual process
• single element
• known drive
• controlled uniform plasma size
• higher spectral resolution
• higher signal to noise

Challenges
• dynamic evolution
• ensure higher density doesn't impact results
• measurements accuracy
• residual non-uniformities
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All required inputs are obtained on a single Z shot, confirm
the plasma is photoionized and at relevant regime
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Ion density is measured from the sample areal mass and sample
14 expansion
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The temperature has been obtained from Li-like absorption from
15 low-lying state assuming partial LTE
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The ratio of lines from ground
state and low lying states is a
temperature diagnostic
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4 Te= 33 + 7 eV

Z = 10.3 with radiation I
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The plasma is over-ionized compared to collisional plasma at the same temperature



All required inputs are obtained on a single Z shot, confirm
the plasma is photoionized and at relevant regime

X-ray drive, flux and shape
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The emission data shows contributions from different charge states
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The emission is not reproduced by any model even with conditions
18 adjusted to match absorption spectra
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Comparison with a Monte Carlo radiation transport code exhibits
19 i m p roved agreement
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Emission spectra are also measured at very high spectral resolution
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High-n, ri I 4, He-like transitions with merging into the continuum
2 1 r first obtained in a laboratory photoionized plasma

Silicon closer to the x-ray source
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The high-n lines are not systematically decreasing with principal
2 2 l quantum number
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The radiative recombination continuum (RRC) is considered the most
23 reliable temperature diagnostics for accretion-powered objects
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3. High sensitivity instrument (overcome

x-ray drive radiation)
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other continuous emission

4 RRC visibility with highly charged ions supports the photoionized nature of the accreted matter
4 Untested in the laboratory in a well-characterized photoionized plasma.

[1] Liedahl, Paerels et al. (1996), 12] Schulz et al., Ap. J. Letters 564 (2002). [3] Watanabe et al., Ap. J. 651 (2006)



First RRC (~10-8 Z-pinch energy) in a photoionized plasma in a
24 terrestrial laboratory was recorded
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Preliminary: temperature inferred from line absorption agreed with
25 the RRC slope
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I not anymore?
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The complete He-like series up to n-I4 can be obtained for a
27 single target thanks to the new XRS3 extended range design

z3287

Photoionized Silicon plasma emission on Z

z3364 (April 4th)

Extended range XRS3 spectrometer data

The complete He-like series will facilitate the comparison
between data and model for photoionized plasma emission.



How much of the predictive difficulty is unique to our experiments
28 and how does it impact astrophysical objects?

Possible needed improvements in understanding the experiment
• Could electron density be higher than the value measured with radiography?
• Transient kinetics appear relatively unimportant, but further evaluation is needed
• The bulk of x-ray drive in 0.1 - 1 keV is measured to ±20%, but accuracy in >1.7keV photon spectrum needs
more evaluation.

• Accounting for geometrical dilution of drive requires attention
• Velocity impact on line optical depths appears small

Scrutiny is required for the models
• Accuracy of the recombination rates? dielectronic recombination rates?
• Is the atomic data complete?
• Are approximations in the radiation transport valid?

e.g. escape factors, escape geometry, self-consistency...
• XSTAR revisions have been carried: angular distribution of the drive, updated oscillator strengths. Future:

treatment of radiation transport will be scrutinized.



Summary: Z data can benchmark models of emission from
29 photoionized accretion-powered plasmas

• Understanding X-ray Binaries and AGN accretion disks requires complex models
that interpret observed spectra
4 These models are largely untested in the laboratory
4 Need benchmark quality data

• A photoionized silicon plasma with a measured drive radiation spectrum, density
and temperature was created on Z
4 the column density is adjustable, testing radiation transport

• Spectral absorption and emission are measured to high reproducibility enabling
benchmark code comparison

• Presently, models do not reproduce neither relative or absolute emission

• First terrestrial RRC for a photoionized plasma was obtained on Z enabling test of
astrophysical temperature diagnostics

These results raise questions about the suitability of models used to
interpret astrophysical observations
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Measured relative absorption from different ion stages tests model
31 ionization predictions
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Agreement can be obtained by adjusting parameters that increase
32 recombination

Tr
an

sm
is

si
on

 
1.0

0.8

0.6

0.4

0.2

si+12

I He-like

1 1

o

Si
+11

Li-like

Si+9

B-like

16x higher dielectronic -
recombination rates -

si+10

— Be-like
T i l l l I i i i i i ilii
6.65 6.70 6.75 6.80 6.85 6.90

). [Å]

1
i

4x higher nel



Results and puzzles are documented
33
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Benchmark Experiment for Photoionized Plasma Emission
from Accretion-Powered X-Ray Sources

G. P. Loise1,3 J. E. Bailey,1 D. A. LiedahL2 C. J. Fontes,3 T. R. lUllinan,4 T. Nagayarna,1
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The interpretation of x-ray spectra emerging from x-ray binarics and activc galaciic nucici aecraed plasmas
relies on complex physical models for radiation generation and transport in photoionizcd plasmas. These
modcls have not been sufficiently experimentally validatml. Wc have developed a highly reproducibk
benthmark expaiment to study spectrum formation from a photoioniaxl silicon plasma in a regime
comparablc to asuophysical plasmas. Ionization pmiktions are higher than infernxi from measunxi absorption
spectra. Sclf-emission meatsunx.1 at adjustablc column densities tests radiation transpon eflikts, demonstrating
that the monant Auger destmelion assumption used to interpret black hok amTetion spectra is inaccuratc.

1. Transmission was measured with 4.7% reproducibility
enabling test of ionization predictions

2. Models over-predict ionization at measured conditions

3. Emission is measured down to 5.2% reproducibility and
at three column densities thus enabling test of radiation
transport

4. Resonant Auger Destruction is not 100% effective at
quenching L-shell ion K emission

5. Emission predictions don't match measurements even
at conditions that favor transmission agreement.

G. Loisel, J. Bailey, D. Liedahl et al., PRL 119 (2017)
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