

Analysis of an E-shaped Patch Using CMA and CMT

John Borchardt
 Sandia National Laboratories
 Albuquerque, NM, USA
 jjborch@sandia.gov

Abstract—The impedance bandwidth of a microstrip patch antenna may be increased by additional resonances in the antenna structure. This work uses Characteristic Mode Analysis to show that the E-shaped patch operates in this manner and that Coupled Mode Theory governs its operation.

Keywords—E-shaped patch antenna, characteristic mode analysis, coupled mode theory

I. INTRODUCTION

The impedance bandwidth (BW) of a microstrip patch antenna may be increased by additional resonances in the antenna structure. As shown in this paper, the well-known E-shaped patch [1] operates in this manner and is governed by Coupled Mode Theory (CMT). Characteristic Mode Analysis (CMA) was employed in [2] to show CMT governs a distinct but closely related structure, the U-slot patch antenna [3].

CMA [4] is a modal decomposition based on the method of moments (MoM) wherein a set of basis currents J_n result from $[X]J_n = \lambda_n[R]J_n$ where $[Z] = [R] + j[X]$ is the MoM impedance matrix and λ_n is the eigenvalue. Currents on a structure driven by a source E_{tan}^i may be represented as a linear combination of modes: $J_{\text{total}} = \sum_n \alpha_n J_n$ where α_n are the modal weighting coefficients (MWCs). Thus, the driven admittance of a structure is the sum of all modal admittances. CMT describes the dynamics of a system of two coupled resonators as the superposition of two coupled modes, an in-phase and anti-phase mode, with respective lower- and higher-frequencies. The coupled mode frequencies ω_{\pm} are related to the uncoupled mode frequencies $\omega_{1,2}$ by [5]:

$$\omega_{\pm} = \omega_0 \pm \sqrt{\left(\frac{\omega_2 - \omega_1}{2}\right)^2 + |K|^2} \quad (1)$$

where $\omega_0 = (\omega_2 + \omega_1)/2$ and K is an un-normalized coupling coefficient.

Because the E-shaped patch is a special case of the U-slot patch (see Fig. 1), much of what is known about the U-slot patch [2] applies to the E-shaped patch. This paper shows that like the U-slot patch, CMT governs the E-shaped patch, however, the coupling in the latter is substantially *asynchronous* (i.e., $\omega_1 \neq \omega_2$). This knowledge can be used to develop a design

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

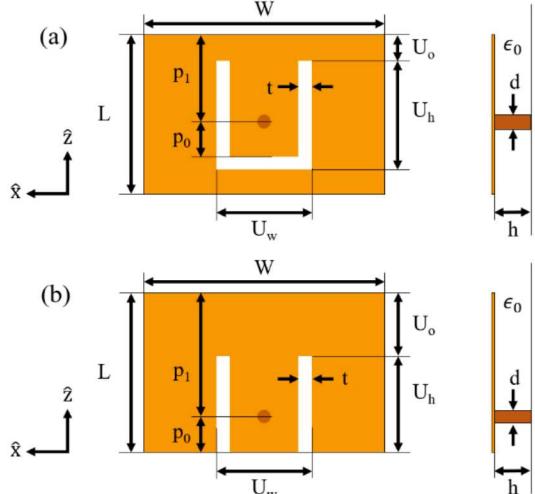


Figure 1. The E-shaped patch (b) is a special case of the U-slot patch antenna (a) wherein $U_0 = L - (U_h - t)$. As such, much of what is known about U-slot patches [2] applies to the E-shaped patch. The dimensions for (b) from [1] are: $(W, L, h, U_h, U_w, p_0, d) = (70, 45, 10, 35, 30, 10, 3)$ mm.

methodology for E-shaped patches similar to that of [2].

II. CHARACTERISTIC MODE ANALYSIS

The geometry of Fig. 1(b) is solved in FEKO [6], a MoM code with CMA. The systematic analysis process described in [7] is used in what follows. A 1V gap source, which is used for the driven solution as well as calculating MWCs, is located at the base of the probe. CMA results show only two modes (modes 1 and 2) are strongly excited near the full-wave driven impedance bandwidth (10 dB BW 2.26 – 3.19 GHz); they are resonant ($\lambda_n = 0$) at $f_- = \omega_-/(2\pi) = 2.21$ GHz and $f_+ = \omega_+/(2\pi) = 2.97$ GHz. Modal charge distributions are shown in Fig. 2; we designate the in-phase mode as that with the lower resonant frequency. The parallel combination of the modal admittances of these two modes closely replicates the full-wave driven impedance locus as seen in Fig. 3.

CMA is performed on the patch *with no slot* and the slot *with no patch* (the latter is referred to as the “uncoupled slot resonator” [2]). These geometries are shown in Fig. 4. Together they represent the full E-slot patch geometry of Fig. 1(b) when they are superposed using their common probe geometry to “register” each with respect to the other. Note the U-shaped slot of Fig. 4(b) approximates a half-infinite ground plane (i.e., PEC for $z > 0$ only)—for which no Green’s function is available. The resulting resonances are $f_{\text{slot}} = 2.42$ GHz $\equiv f_1$ and

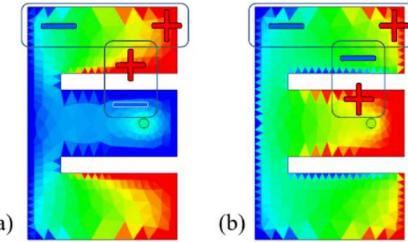


Figure 2. CMA charge distributions for (a) the in-phase, lower frequency mode 1 and (b) the anti-phase, higher frequency mode 2.

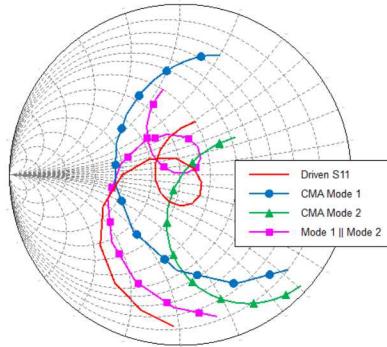


Figure 3. When added in parallel, the admittances of CMA modes 1 and 2 closely replicate that of the full-wave driven structure [1].

$f_{\text{patch}} = 2.79 \text{ GHz} \equiv f_2$. These frequencies differ significantly, any coupling between the two is *asynchronous*.

Resonant modal nearfields for the uncoupled patch, E_1 and H_1 , and uncoupled slot, E_2 and H_2 , are calculated in a $140 \times 90 \times 20 \text{ mm}$ volume encompassing the patch and slot. Hong [8] gives the coupling between two resonators as:

$$\kappa = \kappa_E + \kappa_H = \frac{\int \epsilon E_1 \circ E_2 dV}{\sqrt{\int \epsilon |E_1|^2 dV \times \int \epsilon |E_2|^2 dV}} + \frac{\int \mu H_1 \circ H_2 dV}{\sqrt{\int \mu |H_1|^2 dV \times \int \mu |H_2|^2 dV}} \quad (2)$$

where dV is the infinitesimal volume element and ϵ and μ represent the spatial distribution of permittivity and permeability, respectively. Given full-wave (as opposed to static) near-field data, κ_E and κ_H are complex; we use $|\kappa|$ in what follows.

In [2], it was shown that for the synchronous case:

$$K \sim \kappa \omega_0 / 2; \quad (3)$$

we use it here judiciously. We may use nearfield data of the uncoupled slot and uncoupled patch resonator with (2) and (3) to estimate the *coupled* frequencies ω_{\pm} of the full E-shaped patch structure via (1). For the uncoupled geometries of Fig. 4, this procedure yields $|\kappa| \sim 0.216$ and $f_- = 2.27 \text{ GHz}$ and $f_+ = 2.94 \text{ GHz}$ —within a few percent of the CMA-calculated values of the full structure of Fig. 1(b). Next, the parameter U_w was varied $\pm 10\%$ and the above process repeated; we find $|\kappa|$ is a weak function of U_w , in contrast to the U-slot patch [2]. Results are shown in Fig. 5; we find good agreement between the CMA-calculated coupled resonances of the full structure

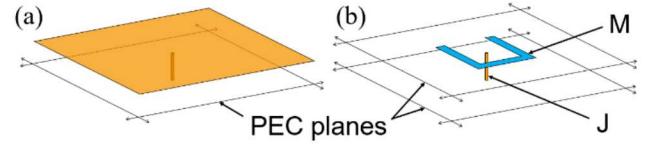


Figure 4. Uncoupled (a) patch and (b) slot resonators; when superposed the two geometries represent Fig. 1(b) [1]. CMA near-fields of each structure are calculated and used in (2) to estimate the coupling coefficient κ .

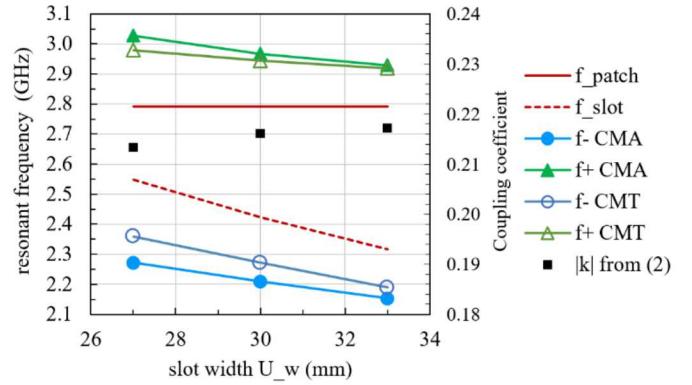


Figure 5. CMA resonant frequencies of the uncoupled patch and uncoupled slot as U_w is varied (all other dimensions held constant), along with the CMA-calculated mode 1 & 2 (coupled) resonances of the full E-shaped patch. CMT-based estimates of the coupled frequencies are within a few percent of the CMA-calculated values.

and those predicted by CMT; this is strong evidence that CMT governs E-shaped patch operation. Because the coupling coefficient is substantially constant, changes in the coupled resonances f_{\pm} in Fig. 5 are due primarily to changes in the uncoupled slot resonance.

REFERENCES

- [1] F. Yang, Xue-Xia Zhang, Xiaoning Ye and Y. Rahmat-Samii, "Wideband E-shaped patch antennas for wireless communications," in IEEE Transactions on Antennas and Propagation, vol. 49, no. 7, pp. 1094-1100, July 2001.
- [2] J. J. Borchardt and T. C. Lapointe, "U-Slot Patch Antenna Principle and Design Methodology Using Characteristic Mode Analysis and Coupled Mode Theory," in IEEE Access, vol. 7, pp. 109375-109385, 2019.
- [3] T. Huynh and K. F. Lee, "Single-layer single-patch wideband microstrip antenna," in Electronics Letters, vol. 31, no. 16, pp. 1310-1312, 3 Aug. 1995.
- [4] R. Harrington and J. Mautz, "Theory of characteristic modes for conducting bodies," in IEEE Transactions on Antennas and Propagation, vol. 19, no. 5, pp. 622-628, September 1971.
- [5] S. L. Chuang, "Waveguide couplers and coupled mode theory" in Physics of optoelectronic devices, 1st ed., New York, NY, USA: Wiley, 1995, ch. 8, sec. 2.2, p. 291.
- [6] Altair Engineering, Inc. FEKO ver. 2019.2-358841 (x64) [Online] Available: <https://altairhyperworks.com/product/FEKO>
- [7] J. Borchardt, "Systematic CMA of the U-slot Patch with FEKO," 2020 International Applied Computational Electromagnetics Society (ACES) Symposium, March 22-26, 2020 Monterey, CA. To be published.
- [8] J. Hong, "Couplings of asynchronously tuned coupled microwave resonators," in IEE Proceedings - Microwaves, Antennas and Propagation, vol. 147, no. 5, pp. 354-358, Oct. 2000.