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3 1 Phoenix objectives

• High optical access platform
• Through-substrate slot for optical access
• Linear trap

Improvements:
• Reduction of rf dissipation in device
• Additional electrode segmentation to

control long ion chains
• Enable shuttling while maintaining trap

characteristics
• Improve slot sidewall to enable continuous

metal film

Features:
• Integrated trench capacitors on device
• Packaging with solder die attach on

custom SiN ceramic package (eliminates
organics)



Phoenix trap fabrication
4 Design and features

High optical access

topology: bow-tie
with 1.2 mm isthmus

Thru-chip slotted

quantumFregion

-FT FITTEFT1-1-1-

On-board RF

shunt capacitors

11111111 1111

Surface trap ion

loading region

Trap RF electrode

capacitance (length)

minimized

Capacitive pick-up

for RF voltage

measurement

Temperature sensor and

resistive heater wires

Wirebond I/0

blocks at ends



Phoenix trap fabrication
5  Trap regions

1--II--II--1 1--11--11--11--11--11-

, 'V V

Transition 

• 9 degrees of

freedom

• Low spatial

frequencies

Quantum region 

• Segmentation of 22 inner

electrode pairs and 11

outer pairs for better

control of ion chains and

spatial re-ordering of ions

• 22x70µm = 1540iim long

• lon height 70µm

 A 

1
1

Loading region 

• 5 electrode pairs

• Loading slot 150um x 13um



6 Phoenix design

Objective is to refabricate Phoenix with low
risk improvements to trap design

Phoenix changes:
• Use latest processes and design rules
• Modify design to reduce fabrication risk
• and resilient to fabrication errors

Trap changes:
• All inner control electrodes on lower

metal layer
• Smaller modulations on transition
• Smaller potential barrier
• Smaller variations on trace of

curvature tensor



7 I Design Improvements
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9 Phoenix trap fabrication

• Rendered with 6 metal layers
• Integrated trench capacitors
• RF electrode in M6
• inner control electrodes in M3
• 450 steps

S3400 3 00kV 13 6mm x30 SE 1/8/2020 AC 1 1100nim

1401 39.3mm x6 SE 1/8/2020



10 I Phoenix trap

All inner control electrodes are on a lower metal layer

Loading slot Transition between above-surface and slotted parts of trap

1
1



Device engineering the Phoenix trap

• Rendering of the 6-metal level Phoenix surface ion trap
• RF electrode in M6
• Control electrodes in M3
• Device singulation was very well behaved

•

♦••
M6 - RF

M 3 ontrol
4

S4800 3.0kV 8.0mm x110 SE(M) 12/4/2019 ' 50dum

Clean removal of dielectric between
electrodes

S4800 3 OkV 11 6mm x3.00k SE(M) 11/21/2019

Loading hole

Imprint etch into control electrodes cosmetic;
due to oxide over-etch
Will be fixed in next wafer and in delivered traps
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13 Prompt-onset electric fields

• Exposed Silicon in the slot of the trap

• If light reaches this area, electric fields can
change on timescales of oscillation periods

• This can result in prompt response and heating

• Covering the sidewall with continuous metal
film should solve this problem

• Evaporating gold on this surface reduced effect
by several orders of magnitude

M2

handle silicon



14 lon heating in HOA-2 traps

• HOA-2 room temperature (Sandia)
• 80q/s @ 2.6MHz, Ytterbium

• HOA-2.1 Cryogenic (Duke)
• 70q/s @ 2.6MHz, Ytterbium

• HOA-2.1 Cryogenic (Innsbruck/Zürich)
• 1,000 — 60,000q/s ? @ 2 — 3 MHz, Calcium

Conjectures:
• Heating rates in HOA-2.1 trap do not drop as trap is cooled to cryogenic temperatures
• Beams through slots might lead to heating due to prompt-onset charging

Heating rates at cryogenic temperature might be due to martial properties
Currently being investigated.

Metallization of slot sidewalls might be crucial for achieving low heating rates



HOA-2 trap characterization
15

•

• Increased evaporated gold layer thickness on backside ten times
• Adjusted evaporation angle to optimize for sidewall coverage
• SEM shows gold layer on sidewall >100nm
• Fast-onset charging is strongly suppressed, still to be improved
• However, Innsbruck team, cryogenic operation, still observe charging



16 Second look at sidewall coverage

Deep reactive-ion etching (DRIE) leads to undulated sidewalls

S3400 15.0kV 8.8mm x2.30k SE 2/15/2019 1 S3400 15.0kV 8.9mm x5.50k SE 2/15/2019' 1

There might be exposed silicon that is susceptible to charging



17 HOA-2. !trap characterization

Slot sidewall analysis of Bosch etched slot
feature in HOA 2.1 — Innsbruck

• Ti/Pt/Au coverage: 15°

• SEM images imply incomplete Au coverage

HV
5.00 kV

curr mag o HFW WD tilt det frame  20 i.tm
0.10 nA 6 500 x 63.8 pm 4.1 mm 52.0 • TLD 31.6 s Sandia National Labs-G4

HV
5.00 kV

WIT

0.10 nA
mag o
1 500 x

HFW
276 pm

WD
4.1 mm

tilt
52.0 •

det
TLD

frame l 
31.6 s

100 pm
Sandia National Labs-G4

'n18811111111

HV curr mag ❑ HFW WD tilt det frame 30 pm
5.00 kV 0.80 nA 4 000 x 104 um 4.1 mm 52.0 ° TLD 1.60 s Sandia National Labs-G4



18 Re-engineered sidewall on Phoenix traps

• Using etch used for trench capacitors for definition of slot
• Smooth sidewalls
• Slightly angled (<1°)
• Expect continuous sidewall coverage from evaporation
• Will use short-loop to verify before devices are complete

158101A-64 CENTER

V 1 • 1-7321

2•81.50

Wafer 04 landed bu
notched at 600".

EHT ZOO kV Meg - loam K X Stage T - 0.0 Vo7) = 3.3 nwn

rr 158101A-09 CENTER

WO3
(540")

I nearly
Landed.



19 Re-engineering the slot sidewall for Phoenix traps

• Define slot using the mixed-gas etch employed for trench capacitors
➢ Replaces Bosch dep-etch process
➢ Mixed-gas etch process gives smoother, but not perfect, sidewalls
➢ Slight positive angle (< 1 °)
➢ Goal: continuous metal sidewall coverage upon metal evaporation

Surface roughness in top-Si sidewall of
slot

Service Mode
12/9/2019 HV can- mag ❑ HFW WD tilt det
7:09:59 AM 2.00 kV 50 pA 15 000 x 27.6 pm 4.0 mm 52.0 ° TLD

Surface roughness occurs
after definition of the slot eklict, 12/9/2019 HV curr mag ❑ HFW WD tilt d t

vcr 7:14:21 AM 2.00 kV 50 pA 65 000 x 6.38 pm 4.0 RI 111 52.0 TLD Helios G4



20  Re-engineering the slot sidewall for Phoenix traps

Au coating of electrodes and slot sidewall
• Device backside/sidewall coating • Frontside electrode coating

• 200/200/500 (nm) Ti/Pt/Au • 20/20/50 (nm) Ti/Pt/Au
• 15° (fixed) angle evaporation • Normal incidence (0°) evaporation

• Imperfect coverage —> Si probably still exposed

• Front and backside variable angle deposition experiments in progress

11111111111

S4800 3.0kV 17.1mm x1 80k SE(M) 12/4/2019 30.0urn S4800 3.0kV 17.0mm x11.0k SE(M) 12/4/2019 5.00um

Ti/Pt Au Si (likely)
8/\ 1

.....
S4800 3.0kV 17.0mm x50.0k SE(M) 12/4/20191 1.00urn

• Suggests Stranski-Krastanow (SK) growth = layer-by-layer + island growth
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22 Custom trap package

CPGA  1--1111k61 A

Legacy 4 Level CPGA Packaging Assembly Simplified 2 part assembly

Ion Trap Die
Interposer \
Spacer

Objectives:
• Improved rf- and ground performance, reduced rf dissipation
• Compatible with bowtie chip without interposer
• Simplified assembly
• Backwards compatibility with MQCO package

Properties:
• AIN for improved thermal conductivity and

reduced thermal expansion vs A1203
• Two rf connections with minimized

capacitance (3pF) and resistivity (50mOhm)
• Backwards compatible with prior HOA devices
• Metal coverage of top surface
• All metal is signal or ground (no floating metals)



23 Package signals

• Accommodations to be able to route rf on outside of package
• 2 ground pins in PGA
• Up to 18 ground connections in LGA

O000000000000
O000000000000
O00 000
O0 00
O0 00
O00 000

000
O00 000
O0 00
O0 00
O00 O.O 000
O000000000000
O000000000000

O 94 DC control signals

O 4 connections for resistive wires

rf feed

O rf monitor

O ground



24 Trap packaging

• Packaging enables parametric testing
• Packaging enables transport and mounting of traps in

vacuum chambers

Objectives of new custom package:
• Improved rf- and ground performance
• Compatible with bowtie chip without interposer
• Simplified assembly
• Backwards compatibility with MQCO package
• Organics-free solder die attach process

Properties:
• Custom AIN for excellent thermal conductivity and

reduced thermal expansion vs A1203
• Two rf connections with minimized

capacitance (3pF) and resistivity (50mOhm)
• Backwards compatible with prior HOA devices
• Metal coverage of top surface
• All metal is signal or ground (no floating metals)



Phoenix Packaging

Solder Die Attach

• Removes all packaging organics from chamber
• Solder spheres laser solder "jetted" onto package

surface
• Smaller solder spheres are an option
• Spheres auto-center on pads after reflow process
• To be done: shear testing, LN2 dunk and shear

tests
• Smaller solder spheres and populate every pad

Pre Reflow
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Custom trap package
27 Is available

S3400 10.0kV 37.9mm x13 SE 11/1/2018

•
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29 Phoenix trap design, Reduced rf dissipation

RF dissipation was identified as a challenge in HOA-2 traps

Resistive losses in device P,

Ps —
1 
RsU2 2C?,
2

Approach to reduce rf dissipation in Phoenix traps

• Reduce rf capacitance
• Reduce length of trap
• Separate rf and ground as far as possible

• Reduction of resistance, systems approach
• Dimension of rf routing between bondpad and

electrodes
• Dedicated rf and ground signals on custom package

• Rf routed on outside
• Parallel vias for rf and ground



Rf-dissipation in traps
electrical characterization of fabricated Phoenix devices

For 100 V r I I plitude at 100 MHz:

Trap Temp Cp RP Pp

Peregrine 1 e  surement)
(estimate)

300 K 5.4 pF 0.36 Q
4 K 0 5 Q

20 rnW
3 mW

Phoenix (measurement)
(estimate)

300 K 7.1 pF 0.4 Q
4 K 0 II5

35 rnW
51IW

HOA-2.1 300 K 7.6 pF 0.9 C2 1.6 MQ 100 rriW

77 K 0.7 C2 80 mW
4 K 0.5 C2 60 mW

Au/FS 300 K 1.93 pF 2.0 SZ 1.4 MQ 15 mW 3.7 mW
77 K 1.3 Ci 10 mW
4 K 0.8 C2 5.9 mW

Thunderbird 300 K 2.4 pF 0.6 Ci 1.5 MCi 6.7 mW 3.3 mW

0—
Phoenix traps: 3x lower dissipation than HOA-2 traps
Peregrine traps: 5x lower dissipation then HOA-2 traps

1
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32 Peregrine trap



33 I QSCOUT Peregrine surface trap

DOE Quantum testbed for Science project QSCOUT
Surface trap fabrication

• Co-fabricated with LogiQ Phoenix trap
• Pure surface trap

all electrodes on top metal layer
• Identical loading hole
• Identical electrode wiring

• Can be available to researchers interested in
testing the trap and providing feedback i

1
1



34 Timeline for Phoenix and Peregrine trap deliveries

• January 2020
• Delivery of traps to Sandia experimental

team for testing

• March 2020
• Delivery of tested traps to LogiQ

performers

• Traps will be available in
• Pin grid array packages
• Land grid array packages
Custom packages backwards compatible with
HOA-traps

S3400 10.0kV 37.9mm x13 SE 11/1/2018
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36 QSCOUT DOE Quantum Testbed Laboratory

a a • r N. w • .11. w .21 W d i W d W * alp s .a Nib

Testbed systems designed for open access to support scientific applications
• High-fidelity operations #gates qubit s)2
• Gate-level access
• Open system with fully specified operations and hardware
• Low-level access for optimal control down to gate pulses
• Open for comparison and characterization of gate pulses
• Open for vertical integration by users

https://qscout.us 
https://qscout.sandia.gov

QSCOUT

Duke
U N I V E R S I T Y

Ken Brown et al.

Tufts
UNIVERSITY

Peter Love et al.



37 I QSCOUT Systems engineering

44- 
Reducing background collisions

Vacuum technology

Individual addressing

Optical and mechanical engineering

Coherent Pulse control

' Electrical engineering



38 QSCOUT:Vacuum system engineering

Bare copper wires with A1203 spacers 3 Yb ovens (loading slot, Peregrine
loading hole, HOA loading hole)

Trap installed for final bake

Features (hydrogen and organic mitigation):

• 316L stainless steel subjected to high-temp bake process for UHV performance

• Organics free: Ceramics replacements

• MACOR fuzz button spacer Et Micro-D connector shell

• AIN and A1203 circuit board

• Bare copper wires for RF and DC voltages

CISCOUT

Trap platform in chamber, both re-
entrants visible



39 Individual addressing imaging system

Custom design to

• Accommodate needed degrees of
freedom in very cramped space

• Resilient to temperature changes

• Provide the needed stability

QSCOUT



Individual Addressing Relay Subassembly QSCOUT

4 4

s •
44•

,

4 4;



I Flexture mounts for active alignment C1SCOUT
•



42 I Qubit Laser — Apparatus Test

• Adjacent beams are clearly separated, and about
5 p.m apart.

• The beam waists are nearly the designed values.
• The apparent optical crosstalk is small, but we

need to measure using an ion.

0.1

0.0

Horizontal Waist% 0.9 p.m

• • •-• • •

112 114 116 118 120

Position (pm)

▪ 0.8
.

0.6

1E' 0.4

a) 0.2

Beam 4 13 16 17 20

5 10 15 20

Position (pm)

25 30

2.5

E
z- 2.0

Beam propagation = nearly Gaussian

0 0  
80 85 90 95 100 105

Position (pm)

1

1
1



43 Qubit Laser — lon Test

• Co-propagating Raman transitions
• Three central beams are illuminated
• A single ion is moved through the beam
• For each position the probability to flip the spin in measured

0.30

0.25

0.05

• Focal size

—4 —2 0

Ion Position (pnn)

2 4

QSCOUT
•



44 RFSoC for coherent pulse generation

• Two tones per channel
• Coherent output synchronized between all channels
• Pulse envelopes and frequency- phase- modulation defined

by splines
• Compact representation of gates for efficient streaming of

circuits
• AOM Cross-talk compensation

Radio-Frequency System on a Chip
Processing System

Application Processing Unit

ARM®
CortexTN-A53 1 11 
32KB  32KB
I-Cache D-Cache
w/Parity wIECC

NEON'.

Floating Point Unit

Mernory
Management

Una

Entbedded
Tcrazma ell 1 2 3 :

Real-Time Processing Unit

ARM

Cortex'"-R5

128 KB
TCM 'MEM

32 KB
I-Cache w/ECC

Vector Floating
Point Unit

32 KB
n-c  he w/ECC

Programmable Logic

DDR Controller

DDR4/313L, LPDDR4I3
ECC Support

256 KB OCM
with ECC

Security

Config, AES Decryptlon
Authentication,
Secure Boot

TrustZone

Vottage/Temp
Monitor

System

Control

DMA, Timers, WDT,
Resets, Clocking,

Debug

Platform
Management Unit

Power

System
Management

High-Speed
Connectivity

DisplayPort

USB 3.0

SATA 3.0

PCIe Gen2

PS-GTR

General Connectivity

GigE

CAN
UART

SP! I

Quad SPI NOR I

NAND I

SD/eMMC I

SysMon

RF Signal Chain General-purpose I/0 Storage & Signal Processing High-Speed Connectivity

4GSPS RF-ADCs High-Performance HPIO Block RAM & UltraRAM GTY 100G EMAC

6 4GSPS RF-DACs High Density HDIO DSP Interlaken PCIe Gen4

(Dmod

(DO

fmod

fo

fo
fmod

(Do
<Dmod



45 Microwave Coherence Time Measurement

• Completed FPGA logic design and server software
• 8 channels, 818 MHz data rate, up-sampled to 6.5GHz
• Integrated beat-note lock for pulsed laser

First test:

• Coherence time comparison
between RFSoC system and legacy
DDS based system

• Measured on legacy ion system

• Measured coherence time of 1.19s
slightly better than legacy system

• Limited by experimental setup

0.8

0.2

Prepare
(phase = 0)

@SCOUT

Ramsey Sequence

Echo
(phase = 0)

Analyze
(phase 0 and 180 degrees)

T2=13.7s -FI- 1.1s
T2=17.3s +I- 0.9s

2 4

Ramsey wait time [s]

10 12



46 I QSCOUT system

• Trapped ions

• Vacuum pressure seems very promising
(will measure background collisions using W-
potential)

• State preparation and detection established

• Coherence time (single echo pulse) >8s

1.0

0.5

o

0 1000 2000 3000

Total Wait Time (ms)

4000 5000



47 Conclusion

Phoenix trap

• Finally completed fabrication

• Currently being tested

• Available to Performers
in March 2020
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51 Heating rate dependency on radial trap frequency
He
at
in
g 
ra

te
 [
gi

s]
 

Radial trap frequency [MHz]

Changes between 2/19 and 3/19
• Heating to 80K
• Reduced (room-temperature)

pressure from 7x10-10 to 7x10-11

Purple (before heating) shown with
approximated power law

11ñ cx

Green (after heating) shown with
approximated power law

ft-/, cx r7



52

LO

0.5

1
1
1

0 1000 2000 3000

Total Wait Time (ms)

4000 5000

•



53 Second look at sidewall coverage

Deep reactive-ion etching (DRIE) leads to undulated sidewalls

S3400 15.0kV 8.8mm x2.30k SE 2/15/2019 1 S3400 15.0kV 8.9mm x5.50k SE 2/15/2019' 1

There might be exposed silicon that is susceptible to charging



54 HOA-2.1 trap characterization

Slot sidewall analysis:

• FIB cross-section profile imaging of Bosch
etched slot feature in HOA 2.1 — Innsbruck

• Undulated sidewalls cause shadowing of Au
evaporation resulting in voids in Au sidewall
coverage

HV curr mag o HFW

5.00 kV 0.10 nA 6 500 x 63.8 m

WD tilt det

4.0 mm 52.0 ° TLD

HV curr mag ❑ HFW WD tilt det f ame

5.00 kV 0.10 nA 150 000 x 2.76 pm 4.1 mm 52.0 ° TLD 31.7 s

• HV curr mag o HFW WD
:•:► tilt det frame

1-500 nm-I

Sandia National Labs-G4

400 nm



55
Some interesting materials properties

• Continuous passivation of the Si slot sidewall using a metal silicide is suggested, e.g.WSi2

Metal Work function
(eV)

Be 4.98/5.0

Mg 3.66/3.68

Ca 2.51/2.87

Sr 2.59

Ba 2.52

Yb 2.6

Cd 4.07

Au 5.1

Al 4.06

W 4.55

Cu 4.48-5.1

Si 4.55 — 4.70

Stainless Steel 4.4

Metal Silicide Work function
(eV)

TiSi2 4.53

CoSi2 4.77

NiSi2

MoSi2 4.82

Pd2Si 5

TaSi2 5.471

Pt2Si 5.17

ReSi2

WSi2 4.62/4.88

Wavelength Energy (eV)

355 nm 3.5

370 nm 3.36



56 Observed heating rates in cryogenic HOA-2.1 traps

In contrast to observations is other traps, reduction of heating rates at
cryogenic temperatures for HOA traps has not been observed.

Institution Trap Ion Temp

Sandia HOA-2.0 Yb

Yb

Yb

Yb

Yb

Ca

300K

300KUMD HOA-2.1

Sandia HOA-2.1 40K

HOA-2.1 40KSandia

Sandia HOA-2.1 40K

HOA-2.1 cryo?Innsbruck

Duke HOA-2.1 Yb cryo

Innsbruck Translu Ca cryo
me

Mode q n_bar /s S_E
(VA2*s/m"2)

w S_E
(V"2/m"2)

d"4 w S_E
(VA2*m"2)

Ion metal
distance

Comments

30 2.3e-12 3.8e-5 1.5e-21 80um Above slot

87

5000 4.4e-10 8.3e-3 3.4e-19 80um Above slot higher
background pressure

500 4.4e-11 8.3e-4 3.4e-20 80um Above slot lower
background pressure

255 1.6e-11 2.1e-4 8.5e-21 80um Above surface

1000 6.9e-12 4.3e-5 1.8e-21 80um

120 9.2e-12 1.5e-4 6.2e-21 80um

20 1.4e-13 8.7e-7 2.9e-22 135um

rad 2.6MHz

rad 2.6MHz

rad 3MHz

0.14

0.17

rad 3MHz 0.17

rad 2.1MHz 0.12

ax 1MHz 0.31

rad 2.6MHz 0.15

ax 1MHz
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58 Phoenix trap

•

3.00kV 29.3mm x9 SE 1/8/2020 I

•
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