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The Unit Commitment Problem

The Unit Commitment Problem (UC) 1s a large-scale mixed-integer nonlinear
program for finding a low-cost operating schedule for power generators.

These problems typically have quadratic objective functions and non-linear, non-
convex transmission constraints.

° Typically both of these are linearized

Starting in 2005 with PJM, market operators in the United States have transitioned

from using Lagrangian relaxation to solve UC to using mixed-integer programming
(MIP) and a commercial solver such as CPLEX, Gurobi, or Xpress.

> MIPs typically have many equivalent formulations, and UC is no exception.

The day-ahead problem has an houtly time horizon which is solved for 36 to 48
hours ahead to prevent end effects, and has hundreds to thousands of generators
and up to tens of thousands of buses.

In practice, it is desirable to have a UC solution in 10 to 15 minutes.
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The Unit Commitment Problem
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UC 1s that of minimizing system operating costs subject to
the system constraints and the technical constraints of the
generators.

Generator technical constraints
> Convex (piecewise linear) production costs
° Minimum and maximum output levels
° Ramping constraints
° Minimum up/down time

> Downtime dependent startup costs
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1-binary variable model (1-bin)
> We can write the feasible region of a generator using two variables per time period.
° p(t) is the continuous variable representing the power output at time t.
> u(t) is the binary variable representing if the generator is on/off.

° There is a known convex hull description for this polyhedron with simple bounds on
output, but it is vary large (exponential).

° But, a polynomial time cutting-plane method exists (Lee et al. 2004).

3-binary variable model (3-bin)
> Add to the 1-bin model two additional variables:
> v(t) is the binary vatiable representing a #urn on at time t,
> w(t) is the binary variable representing a ##r off at time t.

° The two additional variables are redundant. But, they allow us to write tight descriptions of
the generator polytope with minimum up/down times (Rajan and Takriti 2005), statt-up and
shutdown power constraints (Gentile et al. 2017), and convex piecewise production costs
(K. et al. 2018) (with additional variables for each piecewise segment) with a linear number
of constraints and variables.
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Polyhedral Results for Generator Scheduling

Shortest path formulation

° Add additional variables y(t1, ;) to tepresent at start-up at time t; and shutdown at time t,, on
continuously in between, and additional vatiables z(t, t;) to represent at shutdown at time t;
and start-up at time ¢, off continuously in between.

° These start-up/shutdown sequences can be linked using a full shortest-path formulation (Pochet
and Wolsey, 20006), where the path is from “turn on” nodes to “turn off” and from “turn off”
nodes to “turn on” nodes.

> This formulation has O (T?) edges (variables), but provides a convex hull description for
downtime dependent start-up costs. There is a clear link to the u, v, w variables, so the prior
results on start-up/shutdown power and piecewise production costs cattry through (note the
edges themselves can enforce minimum up/down time).

o If we are okay with integer optimal, we can use the “matching” formulation from K. et al. (2018),
which keeps the 3-bin variables and only those z’s which represent a hot/warm start-up. The
benefit is far fewer variables (on order (TC — DT) - T).

Extended formulation

° To the shortest path formulation, add additional vatiables p(t, t1, t;) for the output of the
generator at time t given a start-up and time t; and a shutdown at time t,, on continuously in
between.

> Requires on order T3 variables and constraints, but gives a convex hull representation for
ramping constraints, and every other technical constraint mentioned (Frangioni and Gentile

(2015), K. et al. (2018), Guan et al. (2018).
° Very large but still polynomial. K. et al. (2018) uses it for cut-generation.
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Choosing a Formulation

To summarize:
° 1-bin formulation (smallest): Not a convex hull for any interesting phenomenon

° 3-bin formulation (small): Convex hull for minimum up/down times, convex piecewise
production, and start-up/shutdown power

> Shortest path (large): Convex hull for above plus downtime-dependent start-up costs,
smaller if integer optimal is sufficient

> Extended formulation (very large): Convex hull description for everything above plus
ramping constraints, and more!

Computational experience to date indicates
° 1-bin: too weak
> EF: too large
° 3-bin: just right

Since the convex hull representation for a single generator 1s too large, it 1s

important to consider which classes of (perhaps imperfect) constraints we are going

to include in a practical formulation.

In this case, engineering is more important than math.




Paper

On Mixed Integer Programming Formulations for the
Unit Commitment Problem

Bernard Knueven
Discrete Math & Optimization, Sandia National Laboratories, Albuquerque, NM 87185, bknueve@sandia.gov

James Ostrowski
Industrial and Systems Engincering, University of Tennessce, Knoxville, TN 37996, jostrows@utk.cdu

Jean-Paul Watson

Data Science & Cyber Analytics, Sandia National Laboratories, Livermore, CA 94551, jwatson@sandia.gov

We provide a comprehensive overview of mixed integer programming formulations for the unit commitment
problem (UC). UC formulations have been an especially active area of research over the past twelve years,
due to their practical importance in power grid operations, and this paper serves as a capstone for this line
of work. We additionally provide publicly available reference implementations of all formulations examined.
We computationally test existing and novel UC formulations on a suite of instances drawn from both aca-
demic and real-world data sources. Driven by our computational experience from this and previous work,
we contribute some additional formulations for both production upper bound and piccewise lincar produc-
tion costs. By composing new UC formulations using existing components found in the literature and new
components introduced in this paper, we demonstrate that performance can be significantly improved — and

in the process, we identify a new state-of-the-art UC formulation.

Key words: Unit commitment, mixed integer programming, mathematical programming formulations

Available on Optimization Online:
http:/ /www.optimization-online.org/ DB_HTML/2018/11/6930.html




8

"

Contributions

We catalog existing formulations for the UC problem as described by Carrion and
Arroyo (2000).

> Improvements to this formulation have been the subject of several subsequent papers,
including Ostrowski et al. (2012), Morales-Espana et al. (2013), Damci-Kurt et al. (2016), Pan et
al. (20106), K. et al. (2018), K. et al. (2018), Atakan et al. (2018).

We preform computational experiments on 41 different UC formulations, some novel,
and some from the literature, on 68 UC instances.

° This took approximately two weeks of wall-clock time!

We will make publically available on GitHub reference implementations for all the
formulations examined in the Pyomo modeling language. We will also make publically
available the UC 1nstances considered.

We contribute some additional results on both valid variable upper bound inequalities
and piecewise linear formulations for production costs, driven in part by our prior
computational experience.

We introduce two novel UC formulations, one of which is a new combination of
existing components, and the other draws on on new components as well as existing
formulations. The later formulation significantly improves on the performance of any
previously reported UC formulation, establishing a new state-of-the-art.
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Over 100,0¢

A modular framework for UC formulations using Pyomo

carrion arroyo.py: Implements Carrion and Arroyo (2000)
from ucformulations.model_generator import UCFormulation, get_model

## get the formulation

formulation = UCFormulation(status_vars = 'CA_1lbin_vars',
power_vars = 'basic_power_vars',

serve_vars

90 Formulations

pro-uctlon costs = 'CA_production_costs'
uptime_downtime = 'CA_UT_DT',
startup_costs = 'CA_startup_costs',

)

model = get_model(formulation)

This instantiates a Pyomo AbstractModel (model) which can be used either
with the pyomo command or as part of a script.

The eights components of UCFormulation can be changed as easily as modifying
a string 1n this file. Runtime checks to ensure incompatible components are not
combined.

Number of implemented formulations per component:
° status vars:5 ° generation limits:9 °cuptime downtime:5
° power vars:3 °ramping limits:8 ° startup costs:9

°creserve vars:4 °production costs:12
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RU __ | P=SU RD __ | P=SU . : :
Let T = R and T = “R®D | S0 TRU is the number of time periods

the generator needs to ramp up from off to maximum power and T®P is the
number of periods the generator needs to ramp down from maximum power to off.

If UT = TRY + TRP 4 2, then the following is a generalized upper bound
inequality:
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This limits the ramping trajectory when the %enerator 1s starting-up or shutting-
down. Notice the condition UT = TRY + TRP 4+ 2 ensures that one and only one

of the start-up and shutdown indicators v and w are 1 and that if a v or w are 1
then u(t) is 1.
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A few similar inequalities can be dertved in the case of reserve-up, and
modifications can accommodate a weaker assumption on UT.




11 1 Tightening Piecewise Production Costs

Easy observation: in the 3-bin formulation, piecewise production costs can be
tightened using the start-up and shutdown ramps just like the production variable.

PO <P =P Huw) - c*(Dv(t) — CU(Dw(t +1) leL,

where

( (

0 P <su 0 P <spD
C'=4P-sv Pl<su<P, c"O)=sP-sp P'<spP,
o > SU L S > §D

\ \

If UT > 1, then this along with the minimum up/down time formulation from
Rajan and Takrit1 (2005) 1s a perfect formulation for a generator with piecewise
production costs, minimum up/down times, and start-up and shutdown ramping

rates. Just like the result from Gentile et al. (2017), this can be appropriately
modified for UT = 1.

If there are irredundant ramping constraints, then we can tighten the bounds on
each bin as we did the production variable.




12 I Test Instances

One academic test set and and two test sets based on real-world data. All are an

houtly 48-hour day-ahead UC.

o RTS-GMLC: 73 thermal generators, 81 renewable generators, 73 buses, 120 transmission
lines. Houtly day-ahead data for load and renewable generation for a year. We selected
twelve representative days, considered both with and without transmission for a total of 24
test instances.

> CAISO: 410 schedulable thermal generators, 200 must-run thermal generators. We
considered five demand/renewables scenarios under four reserve policies: 0%, 1%, 3%, and
5% of demand, for a total of 20 test instances.

> FERC/PJM: Generation set publically available from FERC, approximately 900 thermal
units, with demand, reserve, and wind data publically available from PJM for 2015. We
selected twelve representative days, and considered the wind data as-is (low-wind) and also
scaled it to achieve 30% wind penetration for the year, for 24 test instances total.

The above makes for a total of 68 UC instances across three set of generators.
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Some Formulations Considered
CA: Carrion and Arroyo (2000)

OAV-0O: Ostrowski et al. (2012) “Original,” similar to Arroyo and Conejo (2000)
OAV-UD: Ostrowski et al. (2012) “Up/Downtime”

OAYV: Ostrowski et al. (2012) with 2-period consecutive ramping inequalities from
this paper

OAV-T: Ostrowski et al. (2012) with all ramping and generalized upper bound
inequalities from this paper

MLR: Morales-Espana et al. (2013)
ALS: Atakan et al. (2018)
KOW: K. et al. (2018)

T: “Tight” New formulation using some ideas from the literature and the
generalized upper bounds and production costs introduced in this paper

Co: “Compact” New formulation using ideas from the literature that emphasize
compactness

R1: “Random 1” New formulation based on sampling formulations and testing
against the RTS-GMLC instances

R2: “Random 2” Another new formulation based on sampling and testing against
the RTS-GMLC instances




14 I Computational Platform

Dell PowerEdge T620 (circa 2013)
° Two Intel Xeon E5-2670 processors (16 cores/32 threads)
> 256GB RAM
> Ubuntu 16.04
> Gurobi 8.0.1

No other major jobs were running at the time of the computational experiments,
and Gurobi settings were preserved at default except a time limit.

> Hence all UC MIPs we attempt to solve to 0.01% optimality gap.

The time limit was set at 300 seconds for the RTS-GMLC and CAISO instances,
and a time limit of 600 seconds was imposed for the larger FERC instances.




15 I Computational Results: RTS-GMLC Instances

Formulation Time (s) Opt gap (%) Time outs Times best Times 2nd
CA 300.0 13.806% 24 0 0
OAV-0O 172.8 0.3335% 13 0 0
OAV-UD 163.2 0.2541% 13 0 0
OAV 169.7 0.2352% 12 0 0
OAV-T 178.0 0.2498% 12 0 0
MLR 86.19 0.0165% 5 0 0
ALS 58.29 0.0122% 2 1 1
KOW 94.81 0.0165% 4 0 1
T 50.65 0.0121% 2 4 4
Co 43.11 0.0121% 1 1 4
R1 32.37 0.0114% 1 14 6
R2 36.94 0.0114% 1 4 8

The randomly generated formulations do well on this test set.

> Not too surprising since they were selected based on their performance on this test set.




16 I Computational Results: CAISO Instances

Formulation Time (s) Opt gap (%) Time outs Times best Times 2nd
CA 300.0 1.0987% 20 0 0
OAV-0O 300.0 6.7647% 20 0 0
OAV-UD 300.0 6.2269% 20 0 0
OAV 300.0 3.6319% 20 0 0
OAV-T 300.0 6.1679% 20 0 0
MLR 117.1 0.0119% 2 0 1
ALS 260.4 0.0577% 12 0 0
KOW 79.02 0.0102% 2 4 7
T 56.90 0.0100% 0 15 3
Co 100.6 0.0100% 0 0 5
R1 147.4 0.0102% 1 0 1
R2 104.1 0.0100% 1 1 3

Here the tight, compact, random 2, and K. et al. (2018) formulations perform well.




17 1 Computational Results: FERC Instances

Formulation Time (s) Opt gap (%) Time outs Times best Times 2nd
CA 600.0 43.333% 24 0 0
OAV-0O 599.7 11.716% 23 0 0
OAV-UD 088.2 1.4575% 20 0 0
OAV 588.4 1.3104% 21 0 0
OAV-T 582.4 1.4389% 22 0 0
MLR 340.5 0.0555% 3 4 1
ALS 394.7 0.0933% 7 2 2
KOW 390.2 0.0117% 2 3 5
T 268.6 0.0104% 1 8 4
Co 309.5 0.0596% 3 1 5
R1 308.9 0.0480% 3 3 6
R2 373.1 0.0665% 1 0 1

Tight is clearly the superior performer on this set of instances.
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Summary

Formulation T performs well across the test set.

> Weaker performance on the RTS-GMLC is mainly due to the network-constrained
instances, which require quite a bit of enumeration. We used a B-8 representation for the
network, for which Gurobi has a difficult time generating valid cuts.

° Typically operators use a PTDF formation for the network, which will have different
behavior.

> Even in the worst case across the 68 instances, with formulation T Gurobi terminates at the
time limit with only a 0.05% gap, which is the best worst-case performance.

Formulations R1 and R2 both performed well on RTS-GMLC, suggesting it may be
possible to specialize the formulation used against typical instances.

> Since the generation fleet often does not change, it may be possible to “fit” a formulation
for typical or difficult day-ahead instances.




19 I Epilogue: Analysis of formulation T

We attempted to improve on formulation T by swapping one of its eight components
for another from the literature.

> Also in part to see which components are important to a good formulation.

The swaps that were improving are below.

RTS-GMLC CAISO FERC
Time (s) Opt gap (%) Time (s) Opt gap (%) Time (s) Opt gap (%)
T 50.65 0.0121% 56.90 0.0100% 268.6 0.0103%

uptime/downtime
RT 2bin: (4)(7) 4829  0.0120%  51.30  0.0100% 2351  0.0100%

generation limits
MLR: (21)(22) 51.29 0.0122% 52.44 0.0100% 254.8 0.0100%
GMR: (21)(24) 51.37 0.0122% 52.42 0.0100% 254.1 0.0100%

ramping limits

MLR: (33)(34) 49.28 0.0119% 48.53 0.0100% 242.6 0.0100%

piecewise production

CA: (45)(46)(47)  48.93 0.0119% 57.87  0.0100% 230.2 0.0100%

Hence there is room for improvement on T.

° The most surprising result is the improvement from using the 2-bin formulation for downtime.

Further refinement could be done, though at the risk of over-fitting for these instances.



20 I Conclusions

With a2 modern formulation and commercial MIP solver, deterministic UC instances
on a copper plate network with 48 time periods and up to a thousand generators are
easily solvable on commodity hardware.

Additional challenges remain

> Tightening the interaction between the unit commitment and the transmission system (Van

den Bergh et al. 2014, Wu 2016)

° Virtual transactions, which may weaken our ability to tighten system constraints (Chen et al.

2016)

> More realistic modeling of the transmission system, including the need for reactive power

support (Castillo et al. 2016)

> Better modeling of ancillary service products, which are relatively neglected by the literature
and tend to vary by market




