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What is this talk about? i) B

= When we validate codes with experimental data, we assume that the data
is trustworthy and the model is not

= What happens if you suspect that the situation is flipped? Prove it?

= |n the previous talk, you saw some of our difficulties in reproducing LENS-
XX experiments with SPARC

= We'll discuss a statistical framework that can be used check whether an
experimental dataset is consistent

= hypothesize causes behind the mismatch of predictions & experimental data;
gather evidence for/against in a quantifiable manner

= We'll demonstrate this framework with the double-cone problem




Introduction ) =

= Problem: Our model (SPARC) and others cannot reproduce LENS-XX double
cone experiments

= Even when stated experimental errors are accommodated in model predictions
= Aim: Could it be that stated experimental settings are inconsistent with
measurements? Can you prove it?
= Process:
= Propose experimental settings that may be in error, and ones that are not
= Infer the true values of the experimental variables deemed wrong

= Compare inferred (“true”) and stated (“wrong”) values. Are they outside their
respective uncertainty bounds?




Recap — The experiments

= We have a double-cone in hypersonic
flow

= Expansion tunnel, low temperatures,
thermochemical equilibrium freestream fa )

Freestream errors: 3 % (U, T); 7% (p)
6 experiments, H, = [5.4, 21.8] MJ/kg

Mild vibrational non-equilibrium to
widespread dissociation

4 ms steady flow; pressure & heat flux
sensors

- NWHLrOOON®®O©

= Laminar, attached flow on the fore-cone
simple physics

- ShOCk interactions, seearation bubble Thanks: Youssefi & Knight, Aerospace, 2018




Recap — Our troubles () i,
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= Case | —lowest H,. Pressure (p(x)) prediction fine but under-predict heat flux
(q(x)) on the forecone. After separation, agreement is bad

= Adding in uncertainty due to freestream conditions don’t help (no overlap)




A bit about experimental datasets ... ) =

Most experimental datasets have two parts:
= The data that specifies the experimental environment (IC & BC for models)

= The data that describes the physical processes that occur in the experiment

Not all data in an experimental dataset are measurements

= Some are inferred using models, and have assumptions built into them

Uncertainties in actual measurements are usually known

= Uncertainties in inferred quantities are harder to quantify

In LENS-XX / double-cone datasets:

= Flow processes on the double-cone are actually measured (direct quantities)

= Experimental settings e.g. axisymmetry, freestream etc. are often inferred from
more fundamental measurements (derived quantities)




Hypotheses ) .

= The causes of the model — experiment mismatch could be:

= Cause | — the experimental environmental, specifically freestream conditions,
could be inconsistent with measurements of flow processes

= Test: Infer “true” freestream from direct measurements and compare with stated
conditions
= Cause Il = The thermochemical models e.g., reactions, models of viscosity etc.
are not suitable for high enthalpy flows

= Test: Prediction errors using “true” freestream for low enthalpy flows should be
smaller than for higher enthalpy flows

= Cause lll —the incoming freestream is not axisymmetric

= Test: Do the flow processes satisfy self-similar collapses?
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A self-similarity collapse ) i,

Case 1, attached region, L=0.185m

= While we have 3 p(x) probes and 17 qg(x)

probes, the information contentinthe = =7 SR
measurements in meagre E; ) |
= Pressure: K; = P/pUEO ;: | e | |
= Heat-flux self-similar. K, = qEx pUS, e T D
. Implications: o Using nonminal freestream values
= Estimating X not possible with much 2 g TR Y P, |
certainty — use Bayesian inference ;* :
= 3D effects should be small, but not non- P2 ‘o
existent! g - | . . | . -
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= See scatter in heat-flux plot XL




Inverse problem for freestream conditions ) .

= We have to infer 4 quantities 0 = (poo, Usos Trot,000 Tm-b,oo) from 4
measurements Y = (K,, K,, H,, Py) — very uncertain

= So estimate O = (poo, Usos Trot,c0r Tvib,oo) as a 4-dimensional joint probability
density function (JPDF) and capture the uncertainty in the estimate

= Done using Bayesian calibration
= Bayesian calibration
= Formulation: y(°?$) = M(0) + € € = {€;},e;~N(0,5?)

yi(obs) _ yi(pred) 8)

2
= Likelihood: £(y(°bs)|9)  [[;eqexp <—( ) ),S = sensors

202




Bayesian calibration i)

Suppose we have a prior belief (a PDF) on 6,7, (6) and one on g, m,(0)

= Then by Bayes law, the posterior PDF of 6

(yi(obs) _ yi(pred) )

» P(6,02 | y©P9) o [T;es exp (— — )>n1<9) 1,(0)

= Provides the PDF of (0, o2) conditioned on y{°°s)

= PDF constructed by sampling from P(B, a? | y("bs)) using MCMC

= Each sample consists of making a SPARC run ~ 150 CPU-hours; sampling is
sequential

= Too expensive —replace SPARC with a statistical emulator




Statistical emulators i) B

= A “curve-fit” that maps freestream 6 to the SPARC prediction

yi(p’"ed) = M;(0)at a pressure or heat-flux sensor i,i € S

= Take Ngsamples of 6;,j = 1--- Ng, from a +/- 15% region around the
nominal freestream 6

* Run SPARC with them. Database the results y*"*% 6)), yPre? =
{Kl' KZ) HO; PO}

= Try to fit a 3" order polynomials separately to K; (8), K,(6), Hy(8), Py(6)
= Use AIC to cut down on terms (prevent over-fitting)

= Accept the polynomial curve-fit as a proxy for SPARC if its prediction error < 5%
and use it in MCMC

= Result: Most of our surrogates are weak, linear functions of (T 00, Tyib o)




Casel -
J7 = : N
= H,=5.4 MJ/kg, vibrational non- 1/ V_\% /-" \
equilibrium, no dissociation 0 \| 2 /' \
= 50,000 MCMC steps P __J TR

= As expected, can’t estimate T}.,; o and

, e il F—
Tyib «; the PDFs are flat ;x’ "_\f\ / xj\
= Can estimate freestream p and U and their ¢ | | .- \.] 5 / \
most probable values / /|l
= Discrepancies similar to meas. errors —
Disagreement Meas. error
= |Implication: Stated and measured Density -2% 7%
freestreams look consistent velocity 4% 3%
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How good is the inferred freestream PDF?

= Take 100 O samples from JPDF

= Run SPARC and get 100 predictions @
sensors; compare with measurements

= Definite improvement, but how to
guantify?

Pre- and post-calibration stagnation enthalpy Pre- and post-calibration Pitot pressure
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Quality of a probabilistic forecast

= Qur predictions are samples i.e., they describe a
PDF, P(y;) at sensor i

= Qur experimental data is either a number yi(ObS)or

a uniform distribution Q(yi(Obs))

= Comparison

= CRPS : Continuous rank probability score

= Sorensen distance, dg = g"ll;kg));gk((?)ll
klPr k

= ds =1 (no overlap); d; = 0 (complete overlap)
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Predictive skill

Pressure; Case 1, PFP

Pressure; Case 1, PFP
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Case 4 ) i,

= H,=21.7 MJ/kg, extensive dissociation
= 50,000 MCMC steps
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How good is the inferred freestream PDF? ) ..

Case 4, prior pressure Case 4, pushed forward posterior pressure
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Summarizing ) .
Pre-calib Post-calib Pre-calib Post-calib
Case 1 (H, ~ 5 MJ/kg) 0.77 0.899 0.87 0.734
Case 4 (H, ~ 21 MJ/kg) 0.6756 0.7882 0.955 0.7248

= Post-calib, Case 1 & 4 pressure predictions degrades and heat-flux improved

= Freestream mis-specification a cause (?), but probably not the main one. [Cause # 1]
= Post-calibration d¢ smaller for high-enthalpy flows.

= Thermo-chemical models not the culprit for bad predictions [Answers Cause # 2]
= The incoming flow is may be mildly axisymmetric

= Would explain the behavior of Case 1 and 4

= Self-similar collapse shows non-axisymmetry is small [Kind of answers Cause #3 ]




Conclusions ) .

= Demonstrated a way of checking consistency of an experimental dataset

= Consists of carefully demarcating between trustworthy and non-trustworthy
data (e.g., derived data, which could be experimental settings)

= Using trustworthy data and a validated model, infer the “untrustworthy” data

= Compare the two. Requires estimation & comparison under uncertainty

» Used it to check the LENS-XX/double cone experimental dataset
= The low-enthalpy experimental datasets seem OK (high confidence)
= The high-enthalpy dataset has problems (medium confidence)
= The thermo-chemical models in SPARC are not the culprit (high confidence)

= QOur model — data mismatch could be because of mild 3D effects (low
confidence)




