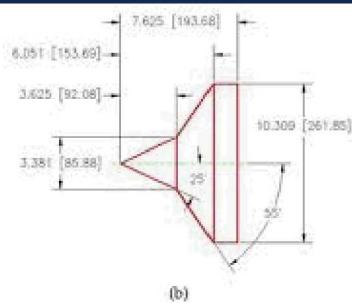


(a)



(b)

Estimation of inflow uncertainties in laminar hypersonic double-cone experiments

J. Ray, S. Kieweg, B. Carnes, V. G. Weirs, B. Freno, M. Howard, T. Smith, I. Nompelis & G. V. Candler

Contact: jairay@sandia.gov

What is this talk about?

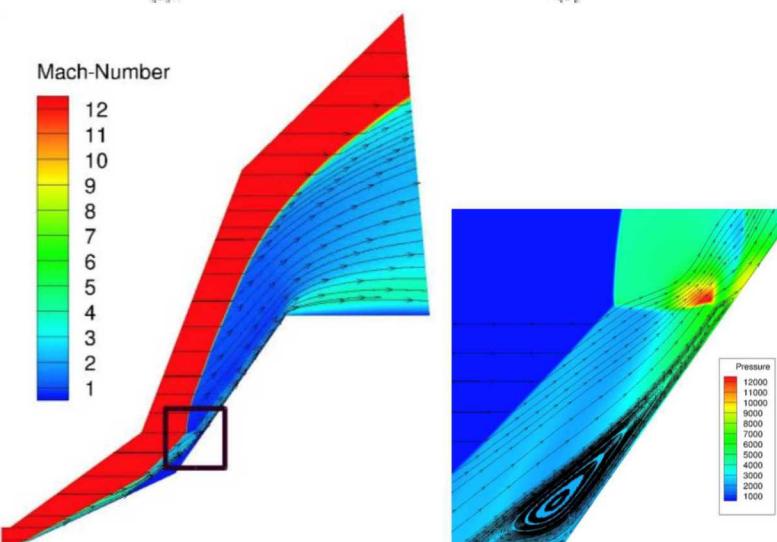
- When we validate codes with experimental data, we assume that the data is trustworthy and the model is not
 - What happens if you suspect that the situation is flipped? Prove it?
- In the previous talk, you saw some of our difficulties in reproducing LENS-XX experiments with SPARC
- We'll discuss a statistical framework that can be used check whether an experimental dataset is consistent
 - hypothesize causes behind the mismatch of predictions & experimental data; gather evidence for/against in a quantifiable manner
- We'll demonstrate this framework with the double-cone problem

Introduction

- **Problem:** Our model (SPARC) and others cannot reproduce LENS-XX double cone experiments
 - Even when stated experimental errors are accommodated in model predictions
- **Aim:** Could it be that stated experimental settings are inconsistent with measurements? Can you prove it?
- **Process:**
 - Propose experimental settings that may be in error, and ones that are not
 - Infer the true values of the experimental variables deemed wrong
 - Compare inferred (“true”) and stated (“wrong”) values. Are they outside their respective uncertainty bounds?

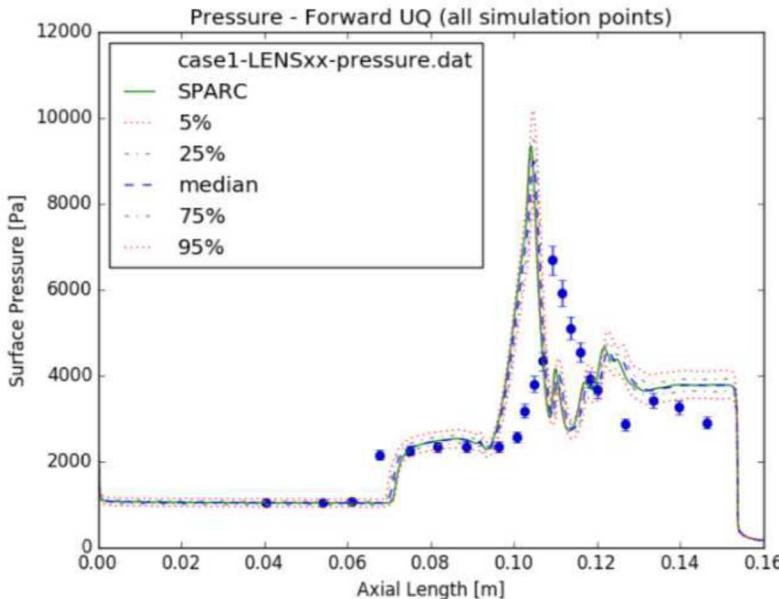
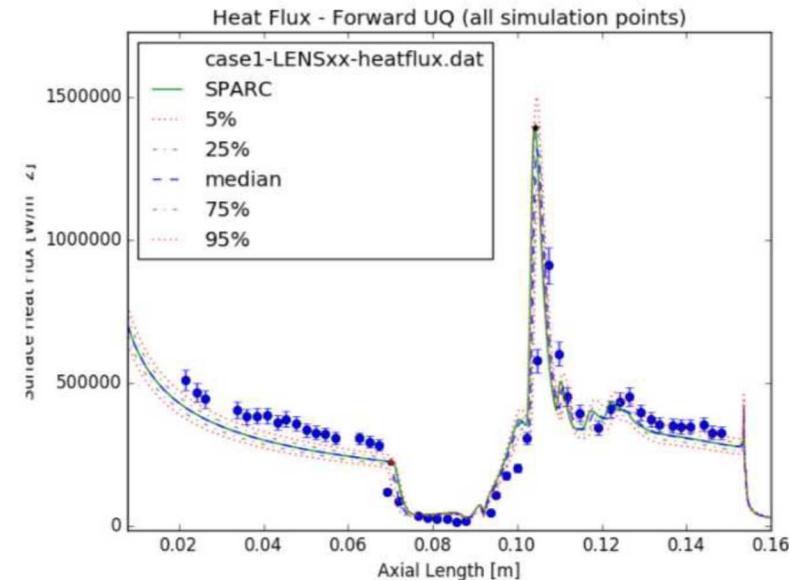
Recap – The experiments

- We have a double-cone in hypersonic flow
 - Expansion tunnel, low temperatures, thermochemical equilibrium freestream
 - Freestream errors: 3 % (U , T); 7% (ρ)
 - 6 experiments, $H_0 = [5.4, 21.8] \text{ MJ/kg}$
 - Mild vibrational non-equilibrium to widespread dissociation
 - 4 ms steady flow; pressure & heat flux sensors
- Laminar, attached flow on the fore-cone simple physics
 - Shock interactions, separation bubble



Thanks: Youssefi & Knight, Aerospace, 2018

Recap – Our troubles



- Case I – lowest H_0 . Pressure ($p(x)$) prediction fine but under-predict heat flux ($q(x)$) on the forecone. After separation, agreement is bad
- Adding in uncertainty due to freestream conditions don't help (no overlap)

A bit about experimental datasets ...

- Most experimental datasets have two parts:
 - The data that specifies the experimental environment (IC & BC for models)
 - The data that describes the physical processes that occur in the experiment
- Not all data in an experimental dataset are measurements
 - Some are inferred using models, and have assumptions built into them
- Uncertainties in actual measurements are usually known
 - Uncertainties in inferred quantities are harder to quantify
- In LENS-XX / double-cone datasets:
 - **Flow processes** on the double-cone are actually measured (*direct* quantities)
 - **Experimental settings** e.g. axisymmetry, freestream etc. are often inferred from more fundamental measurements (*derived* quantities)

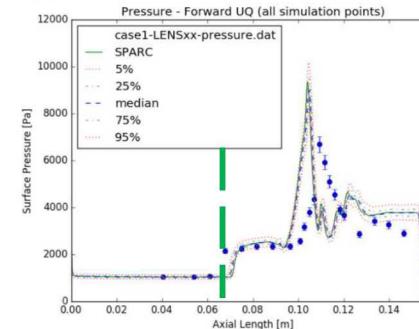
Hypotheses

- The causes of the model – experiment mismatch could be:
 - **Cause I** – the experimental environmental, specifically **freestream conditions**, could be **inconsistent** with measurements of flow processes
 - **Test:** Infer “true” freestream from direct measurements and compare with stated conditions
 - **Cause II** – The **thermochemical models** e.g., reactions, models of viscosity etc. are **not suitable for high enthalpy flows**
 - **Test:** Prediction errors using “true” freestream for low enthalpy flows should be smaller than for higher enthalpy flows
 - **Cause III** – the incoming freestream is **not axisymmetric**
 - **Test:** Do the flow processes satisfy self-similar collapses?

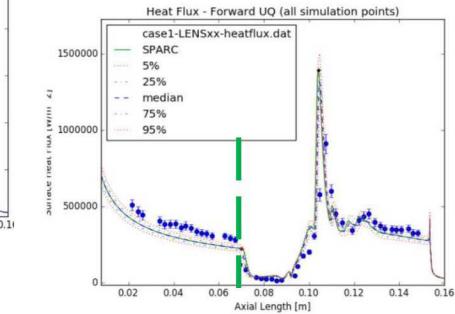
Investigating Cause I

- **Claim:** The true freestream conditions $(\rho_\infty, U_\infty, T_{rot,\infty}, T_{vib,\infty})$ lie outside the stated uncertainty bounds
- **Test:** Estimate $\theta = (\rho_\infty, U_\infty, T_{rot,\infty}, T_{vib,\infty})$ consistent with measurements $Y = (p(x), q(x), H_0, P_o)$
 - Use data from before separation. 3 $p(x)$ and 17 $q(x)$ sensors
- **Checks:**
 - Can a $\pm 15\%$ uncertainty bound about the nominal freestream bracket experimental data? **Yes**
 - Does variation of θ affect Y ? Global Sensitivity Analysis!
 - Compute the Sobol indices of $p(x)$ and $q(x)$ as X is varied over the $\pm 15\%$ uncertainty bounds
 - **Only ρ and U have any impact on pressure and heat flux**

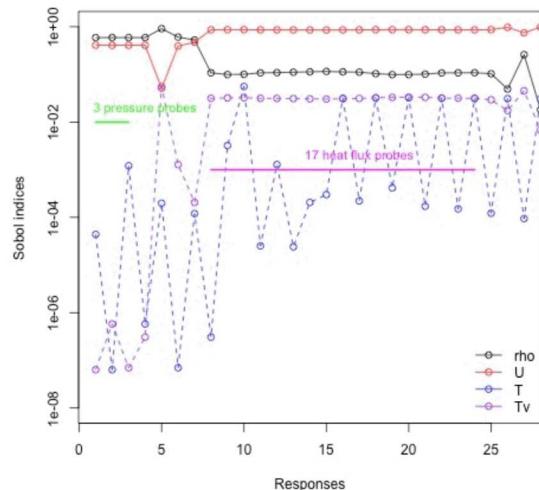
Pressure



Heat-flux

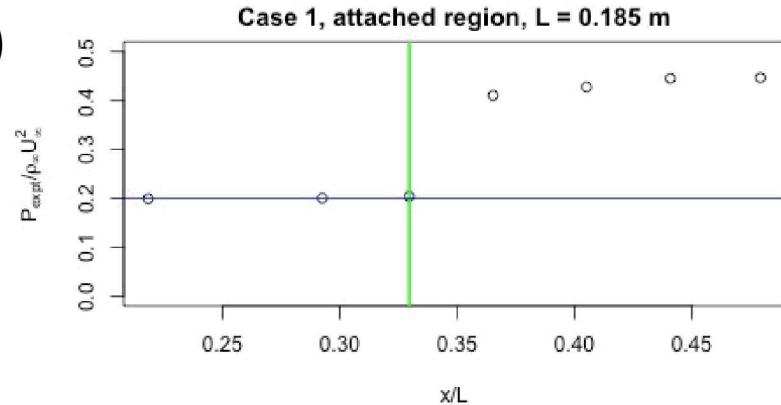
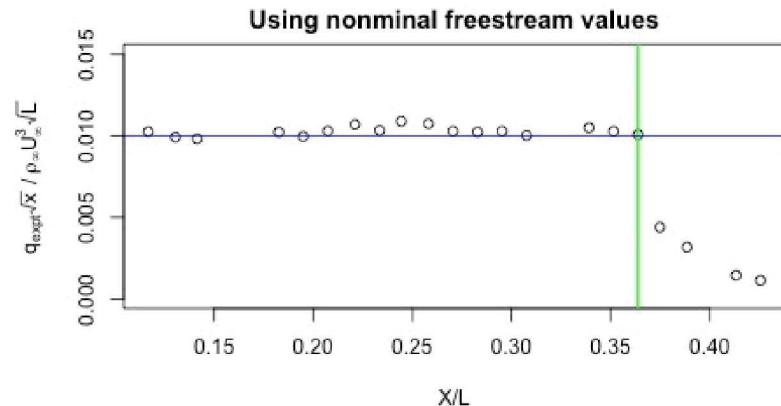


Sobol indices for (p, q) probes



A self-similarity collapse

- While we have 3 $p(x)$ probes and 17 $q(x)$ probes, the information content in the measurements is meagre
 - Pressure: $K_1 = P / \rho U_\infty^2$
 - Heat-flux self-similar. $K_2 = q(x)\sqrt{x} / \rho U_\infty^3$
- Implications:**
 - Estimating X not possible with much certainty – use Bayesian inference
 - 3D effects should be small, but *not* nonexistent!
 - See scatter in heat-flux plot



Inverse problem for freestream conditions

- We have to infer 4 quantities $\theta = (\rho_\infty, U_\infty, T_{rot,\infty}, T_{vib,\infty})$ from 4 measurements $Y = (K_1, K_2, H_0, P_0)$ – very uncertain
 - So estimate $\theta = (\rho_\infty, U_\infty, T_{rot,\infty}, T_{vib,\infty})$ as a 4-dimensional joint probability density function (JPDF) and capture the uncertainty in the estimate
 - Done using Bayesian calibration
- Bayesian calibration
 - Formulation: $\mathbf{y}^{(obs)} = \mathcal{M}(\theta) + \boldsymbol{\epsilon}, \boldsymbol{\epsilon} = \{\epsilon_i\}, \epsilon_i \sim \mathcal{N}(0, \sigma^2)$
 - Likelihood: $\mathcal{L}(\mathbf{y}^{(obs)} | \theta) \propto \prod_{i \in S} \exp\left(-\frac{(y_i^{(obs)} - y_i^{(pred)}(\theta))^2}{2\sigma^2}\right), S = \text{sensors}$

Bayesian calibration

- Suppose we have a prior belief (a PDF) on $\theta, \pi_1(\theta)$ and one on $\sigma, \pi_2(\sigma)$
- Then by Bayes law, the posterior PDF of θ

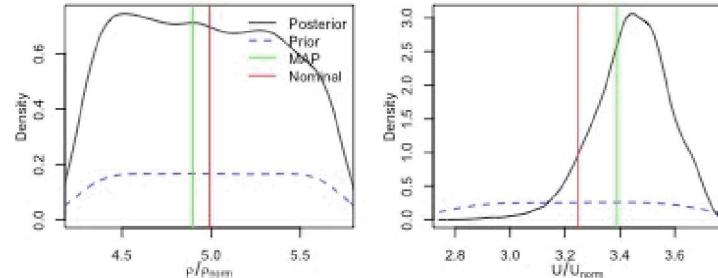
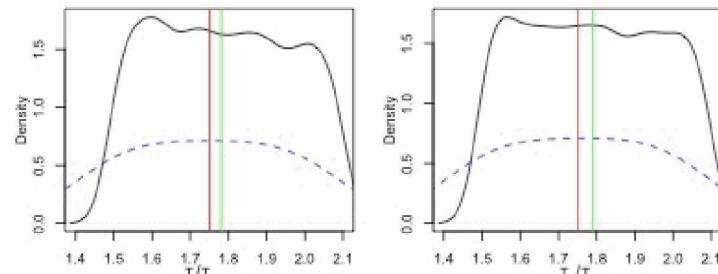
- $$P(\theta, \sigma^2 | \mathbf{y}^{(obs)}) \propto \prod_{i \in S} \exp\left(-\frac{(y_i^{(obs)} - y_i^{(pred)}(\theta))^2}{2\sigma^2}\right) \pi_1(\theta) \pi_2(\sigma)$$
- Provides the PDF of (θ, σ^2) conditioned on $\mathbf{y}^{(obs)}$
- PDF constructed by sampling from $P(\theta, \sigma^2 | \mathbf{y}^{(obs)})$ using MCMC
- Each sample consists of making a SPARC run ~ 150 CPU-hours; sampling is sequential
- Too expensive – replace SPARC with a statistical emulator

Statistical emulators

- A “curve-fit” that maps freestream θ to the SPARC prediction
 $y_i^{(pred)} = M_i(\theta)$ at a pressure or heat-flux sensor $i, i \in S$
- Take N_s samples of $\theta_j, j = 1 \cdots N_s$, from a +/- 15% region around the nominal freestream θ
- Run SPARC with them. Database the results $y_i^{(pred)}(\theta_j), y_i^{(pred)} = \{K_1, K_2, H_0, P_0\}$
- Try to fit a 3rd order polynomials separately to $K_1(\theta), K_2(\theta), H_0(\theta), P_0(\theta)$
 - Use AIC to cut down on terms (prevent over-fitting)
 - Accept the polynomial curve-fit as a proxy for SPARC if its prediction error < 5% and use it in MCMC
- **Result:** Most of our surrogates are weak, linear functions of $(T_{rot,\infty}, T_{vib,\infty})$

Case 1

- $H_0 = 5.4 \text{ MJ/kg}$, vibrational non-equilibrium, no dissociation
- 50,000 MCMC steps
- As expected, can't estimate $T_{rot,\infty}$ and $T_{vib,\infty}$; the PDFs are flat
- Can estimate freestream ρ and U and their most probable values
 - Discrepancies similar to meas. errors
- **Implication:** Stated and measured freestreams look consistent

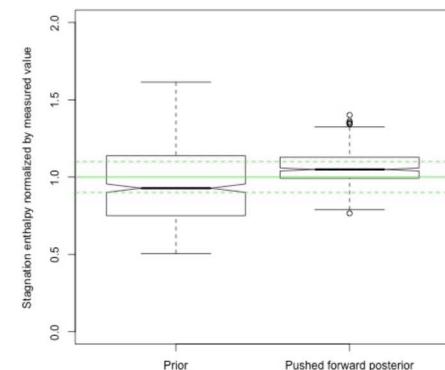


	Disagreement	Meas. error
Density	~2%	7%
Velocity	~4%	3%

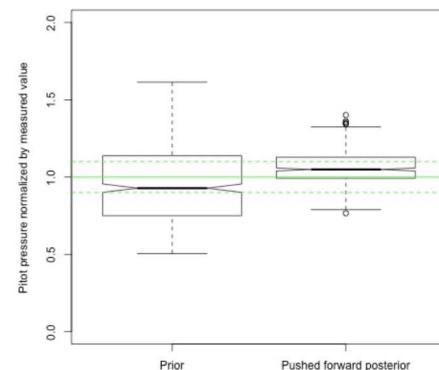
How good is the inferred freestream PDF?

- Take 100 θ samples from JPDF
- Run SPARC and get 100 predictions @ sensors; compare with measurements
- Definite improvement, but how to quantify?

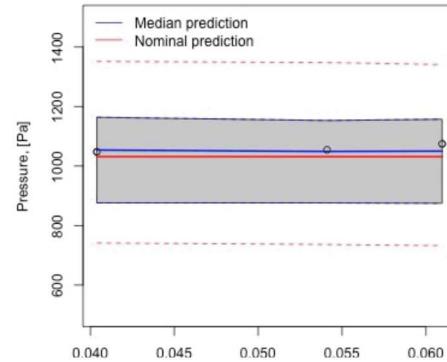
Pre- and post-calibration stagnation enthalpy



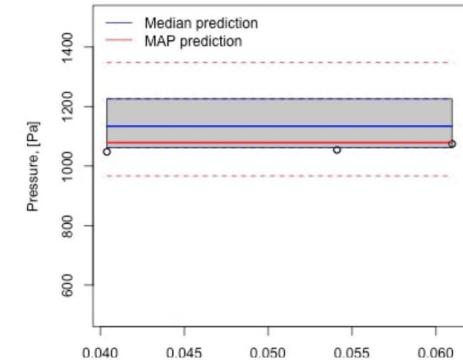
Pre- and post-calibration Pitot pressure



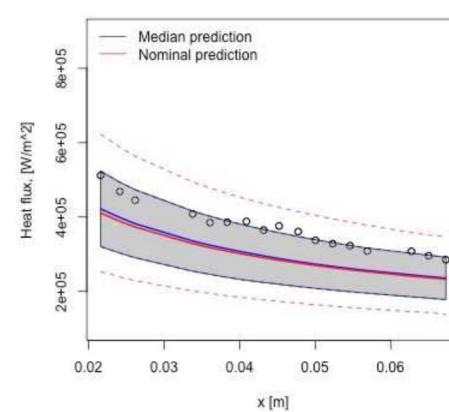
Case 1, prior pressure



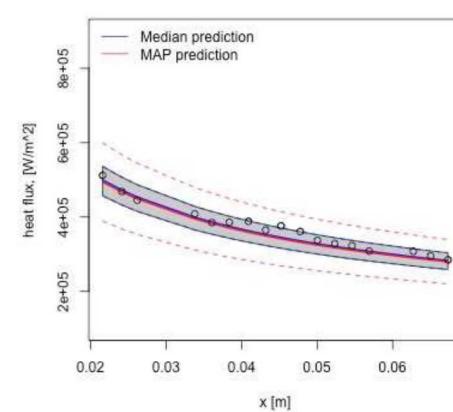
Case 1, pushed forward posterior pressure



Case 1, prior heat flux

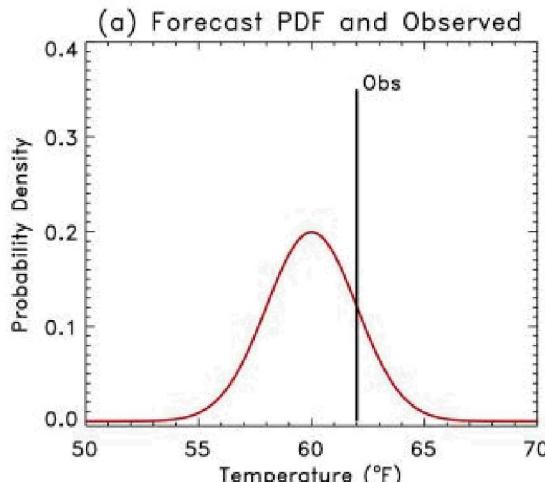
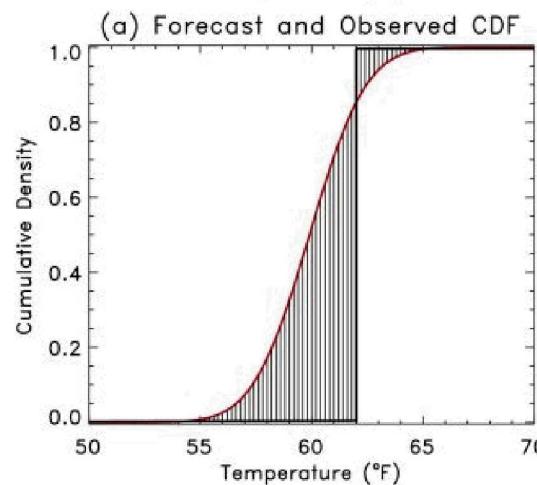


Case 1, pushed forward posterior heat flux



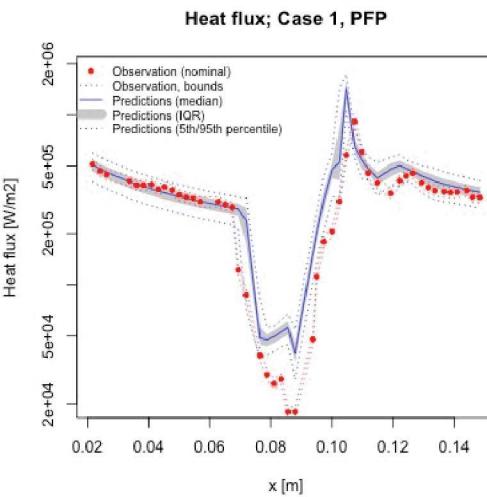
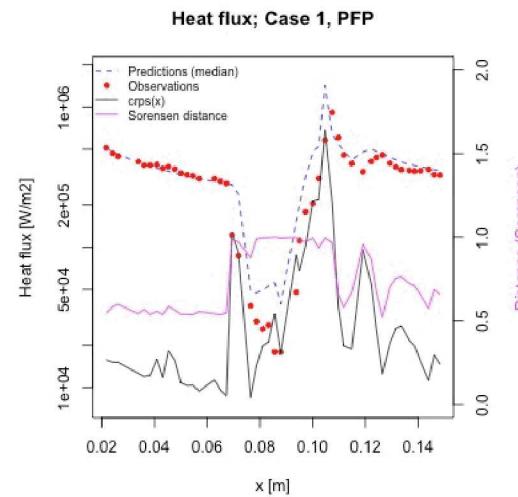
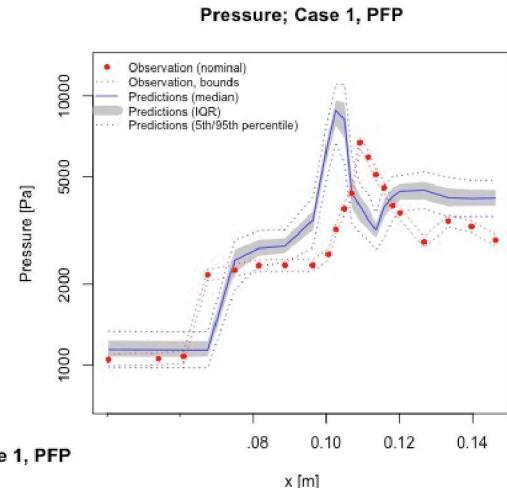
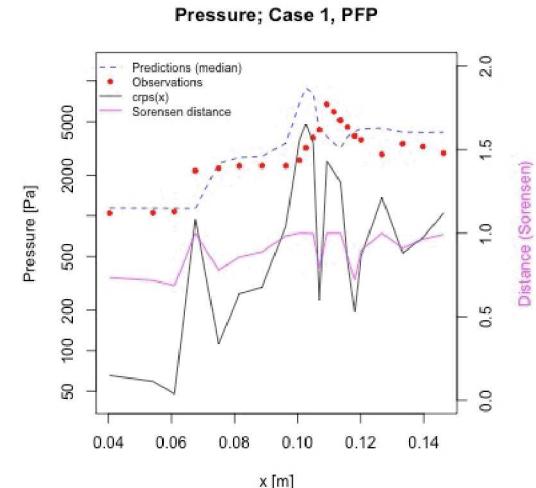
Quality of a probabilistic forecast

- Our predictions are samples i.e., they describe a PDF, $P(y_i)$ at sensor i
- Our experimental data is either a number $y_i^{(obs)}$ or a uniform distribution $Q(y_i^{(obs)})$
- Comparison
 - CRPS : Continuous rank probability score
 - Sorenson distance, $d_S = \frac{\sum_k |P_k(y) - Q_k(y)|}{\sum_k |P_k(y) + Q_k(y)|}$
 - $d_S = 1$ (no overlap); $d_S = 0$ (complete overlap)



Predictive skill

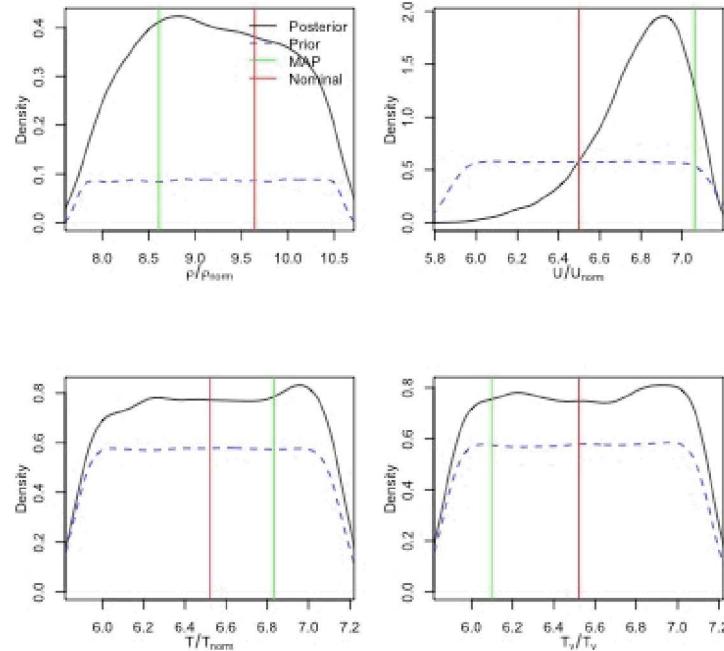
- Over the entire double cone, pressure predictions are bad after separation
- Large CRPS & $d_S \sim 1$



- Over the entire double cone, heat flux predictions are bad in separation bubble

Case 4

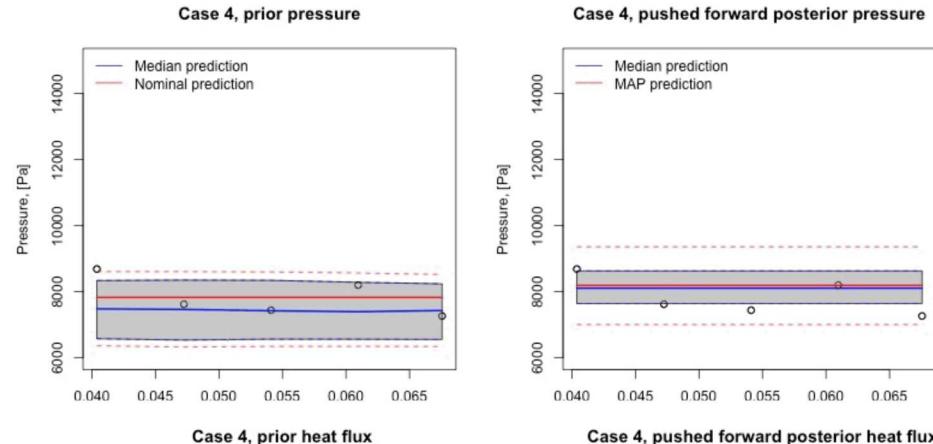
- $H_0 = 21.7 \text{ MJ/kg}$, extensive dissociation
- 50,000 MCMC steps
- As expected, can't estimate $T_{rot,\infty}$ and $T_{vib,\infty}$; the PDFs are flat
- Can estimate freestream ρ and U and their most probable values
 - Discrepancies *greater* than meas. errors
- **Implication:** Stated and measured freestreams are inconsistent



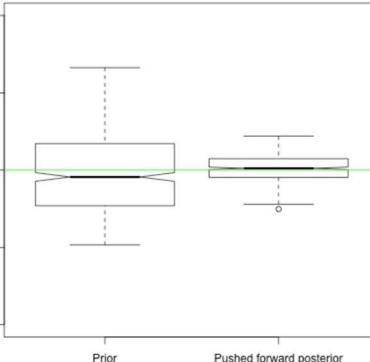
	Disagreement	Meas. error
Density	10.4%	7%
Velocity	8.45%	3%

How good is the inferred freestream PDF?

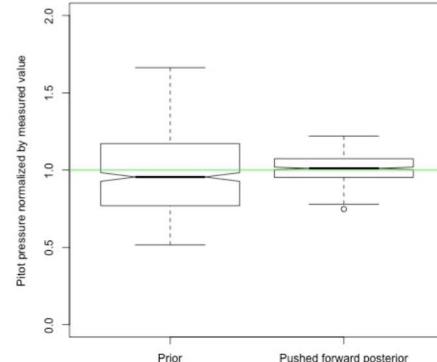
- Take 100 θ samples from PDF
- Run SPARC and get 100 predictions @ sensors; compare w/ measurements
- Still, a net bias (model under-predicts)



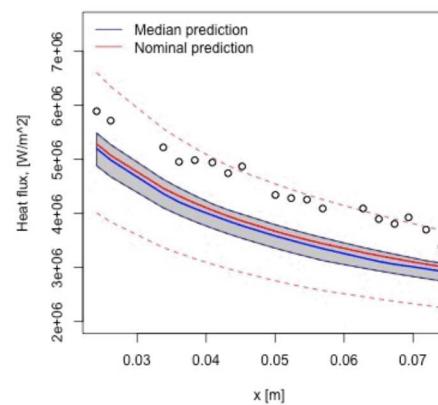
Case 4; Pre- and post-calibration stagnation enthalpy



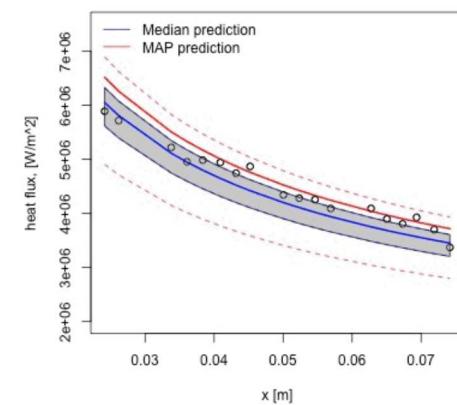
Case 4; Pre- and post-calibration Pitot pressure



Case 4, prior heat flux

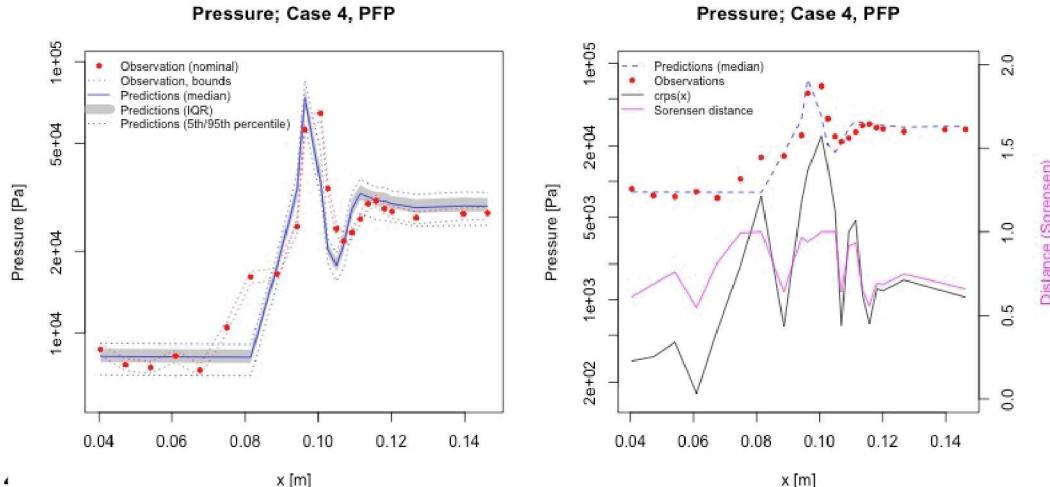
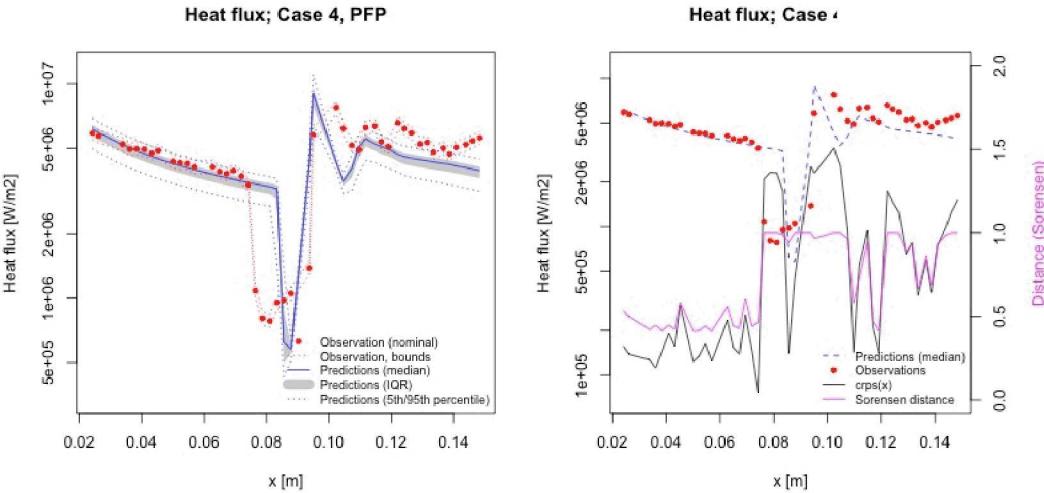


Case 4, pushed forward posterior heat flux



Predictive skill

- Over the entire double cone, pressure predictions are bad in separation bubble
- Large CRPS & $d_s \sim 1$



- Over the entire double cone, heat flux predictions after separation

Summarizing

Test Case	Pressure (d_s)		Heat Flux (d_s)	
	Pre-calib	Post-calib	Pre-calib	Post-calib
Case 1 ($H_0 \sim 5 \text{ MJ/kg}$)	0.77	0.899	0.87	0.734
Case 4 ($H_0 \sim 21 \text{ MJ/kg}$)	0.6756	0.7882	0.955	0.7248

- Post-calib, Case 1 & 4 pressure predictions degrades and heat-flux improved
 - Freestream mis-specification a cause (?), but probably not the main one. [Cause # 1]
- Post-calibration d_s smaller for high-enthalpy flows.
 - Thermo-chemical models not the culprit for bad predictions [Answers Cause # 2]
- The incoming flow is may be mildly axisymmetric
 - Would explain the behavior of Case 1 and 4
 - Self-similar collapse shows non-axisymmetry is small [Kind of answers Cause #3]

Conclusions

- Demonstrated a way of checking consistency of an experimental dataset
 - Consists of carefully demarcating between trustworthy and non-trustworthy data (e.g., derived data, which could be experimental settings)
 - Using trustworthy data and a validated model, infer the “untrustworthy” data
 - Compare the two. Requires estimation & comparison under uncertainty
- Used it to check the LENs-XX/double cone experimental dataset
 - The low-enthalpy experimental datasets seem OK (high confidence)
 - The high-enthalpy dataset has problems (medium confidence)
 - The thermo-chemical models in SPARC are not the culprit (high confidence)
 - Our model – data mismatch could be because of mild 3D effects (low confidence)