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What is this talk about?
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Laboratories

■ When we validate codes with experimental data, we assume that the data

is trustworthy and the model is not

■ What happens if you suspect that the situation is flipped? Prove it?

■ In the previous talk, you saw some of our difficulties in reproducing LENS-

XX experiments with SPARC

■ We'll discuss a statistical framework that can be used check whether an

experimental dataset is consistent

■ hypothesize causes behind the mismatch of predictions & experimental data;

gather evidence for/against in a quantifiable manner

■ We'll demonstrate this framework with the double-cone problem
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Introduction
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■ Problem: Our model (SPARC) and others cannot reproduce LENS-XX double

cone experiments

■ Even when stated experimental errors are accommodated in model predictions

■ Aim: Could it be that stated experimental settings are inconsistent with

measurements? Can you prove it?

■ Process:

■ Propose experimental settings that may be in error, and ones that are not

■ Infer the true values of the experimental variables deemed wrong

■ Compare inferred ("true") and stated ("wrong") values. Are they outside their

respective uncertainty bounds?
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Recap The experiments

• We have a double-cone in hypersonic

flow

• Expansion tunnel, low temperatures,
thermochemical equilibrium freestream

• Freestream errors: 3 % (U, T); 7% (p)

• 6 experiments, Ho = [5.4, 21.8] MJ/kg

• Mild vibrational non-equilibrium to
widespread dissociation

• 4 ms steady flow; pressure & heat flux
sensors

• Laminar, attached flow on the fore-cone

simple physics

• Shock interactions, separation bubble Thanks:
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Recap Our troubles
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• Case l — lowest Ho. Pressure (p(x)) prediction fine but under-predict heat flux

(q(x)) on the forecone. After separation, agreement is bad

• Adding in uncertainty due to freestream conditions don't help (no overlap)
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A bit about experimental datasets ...
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■ Most experimental datasets have two parts:

■ The data that specifies the experimental environment (IC & BC for models)

■ The data that describes the physical processes that occur in the experiment

■ Not all data in an experimental dataset are measurements

■ Some are inferred using models, and have assumptions built into them

■ Uncertainties in actual measurements are usually known

■ Uncertainties in inferred quantities are harder to quantify

■ In LENS-XX / double-cone datasets:

■ Flow processes on the double-cone are actually measured (direct quantities)

■ Experimental settings e.g. axisymmetry, freestream etc. are often inferred from

more fundamental measurements (derived quantities)

6



Hypotheses

• The causes of the model — experiment mismatch could be:

• Cause 1 — the experimental environmental, specifically freestream conditions,

could be inconsistent with measurements of flow processes

• Test: Infer "true" freestream from direct measurements and compare with stated

conditions

• Cause 11 — The thermochemical models e.g., reactions, models of viscosity etc.

are not suitable for high enthalpy flows

• Test: Prediction errors using "true" freestream for low enthalpy flows should be

smaller than for higher enthalpy flows

• Cause 111 — the incoming freestream is not axisymmetric

I Test: Do the flow processes satisfy self-similar collapses?

Sandia
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Investigating Cause I
• Claim: The true freestream conditions

(p00, U00, Trot,00,Tvib,00) lie outside the

stated uncertainty bounds
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• Test: Estimate 0 = CO, U 00, T rot,00,Tvib,00) consistent

with measurements Y = (p(x), q(x), Ho, P0)

• Use data from before separation. 3 p(x) and 17 q(x) sensors

• Checks:

• Can a +15% uncertainty bound about the nominal

freestream bracket experimental data?

• Does variation of 0 affect Y? Global Sensitivity Analysis!

Compute the Sobol indices of p(x) and q(x) as X is varied over the

+/- 15% uncertainty bounds

• Only p and U have any impact on pressure and heat flux
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A self-similarity collapse

• While we have 3 p(x) probes and 17 q(x)

probes, the information content in the

measurements in meagre

• Pressure: K1 = Pip c2o

• Heat-flux self-similar. K2 = q(x)'5/
I pUgo

• Implications:

• Estimating X not possible with much

certainty — use Bayesian inference

• 3D effects should be small, but not non-

existent!

See scatter in heat-flux plot
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Inverse problem for freestream conditions

• We have to infer 4 quantities 0 = nG-- 00)U 00 ) Trot,00) Tvib,00) from 4

measurements Y = (K1, K2, Ho, P0) — very uncertain

• So estimate 0 = n(I- oo, - U00 yTrot,00,Tvib,00) as a 4-dimensional joint probability

density function (JPDF) and capture the uncertainty in the estimate

• Done using Bayesian calibration

• Bayesian calibration

• Formulation: y(obs) = m(19) + c y c = toy cc_ 3\f- 0 y 62)

(
Yi - Yi 

20-2 

(obs) (pred) )
2)

(60
• Likelihood: I (y(obs)1 0\)1 oc Res exp , .5 = sensors
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Bayesian calibration

• Suppose we have a prior belief (a PDF) on 19 ,n-1(9) and one on a ,n-2(a)

• Then by Bayes law, the posterior PDF of 0

Sandia
National
Laboratories

37 19b.$) y pred) ( ))
2

0

• p(19) 0_2 1 y(obs)) 
OC Hies exp j ) 20-2 Tri (9) n-2(a)

• Provides the PDF of (0, 62) conditioned on Vobs)

• PDF constructed by sampling from P(e, 62 1 y(obs)) using MCMC

• Each sample consists of making a SPARC run es-. 150 CPU-hours; sampling is

sequential

• Too expensive — replace SPARC with a statistical emulator
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Statistical emulators

• A "curve-fit" that maps freestream 0 to the SPARC prediction
(Pred)

Yi = Mi Mat a pressure or heat-flux sensor i, i E S

• Take Nssamples of 0j,j = 1 ••• Ns, from a +/- 15% region around the
nominal freestream 0

Sandia
National
Laboratories

• Run SPARC with them. Database the results 
yi(pred) 

(9j), yi(
pred) =

fK1, K2, Ho, PO

• Try to fit a 3rd order polynomials separately to K1(9), K2(9) , H0(9) , P0(9)

• Use AIC to cut down on terms (prevent over-fitting)

• Accept the polynomial curve-fit as a proxy for SPARC if its prediction error < 5%

and use it in MCMC

• Result: Most of our surrogates are weak, linear functions of (Trot,0„,Tvib,0„)
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Case 1

• Ho = 5.4 MJ/kg, vibrational non-

equilibrium, no dissociation

• 50,000 MCMC steps

• As expected, can't estimate Trot,00 and

Tvib,00; the PDFs are flat

• Can estimate freestream p and U and their

most probable values

• Discrepancies similar to meas. errors

• Implication: Stated and measured

freestreams look consistent
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How good is the inferred freestream PDF?

• Take 100 0 samples from JPDF

• Run SPARC and get 100 predictions

sensors; compare with measurements

• Definite improvement, but how to

quantify?
Pre- and post-calrbration starinatron enthalpy Pre- and post-calibraturin Pitot pressure
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Case 1, prior pressure Case 1, pushed forward posterior pressure
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Quality of a probabilistic forecast

• Our predictions are samples i.e., they describe a

PDF, P (yi) at sensor i

• Our experimental data is either a number i
s)
or

a uniform distribution Q (yi(
Gobs)
)

• Comparison

• CRPS : Continuous rank probability score

• Sorensen distance, ds _ EklPic(y)-(2k(y)1 
EklPk(y)+ (2k(y)1

ds = 1 (no overlap); ds = 0 (complete overlap)
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Predictive skill

• Over the entire double cone,
pressure predictions are bad
after separation

• Large CRPS & ds - 1
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Case 4

• Ho = 21.7 MJ/kg, extensive dissociation

• 50,000 MCMC steps

• As expected, can't estimate Trot,00 and

Tvib,00; the PDFs are flat

• Can estimate freestream p and U and their

most probable values

• Discrepancies greatei than meas. errors

• Implication: Stated and measured

freestreams are inconsistent
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How good is the inferred freestream PDF?

• Take 100 0 samples from PDF

• Run SPARC and get 100 predictions

sensors; compare w/ measurements

• Still, a net bias (model under-predicts)
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Predictive skill

• Over the entire double cone,
pressure predictions are bad
in separation bubble

• Large CRPS & ds N 1

Heat flux, Case 4, PFP

• Observation (asinine!)
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Summarizing
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Test Case Pressure (ds) Heat Flux (ds)

Pre-calib Post-calib Pre-calib Post-calib

Case 1 (Ho — 5 MJ/kg) 0.77 0.899 0.87 0.734

Case 4 (Ho — 21 MJ/kg) 0.6756 0.7882 0.955 0.7248

• Post-calib, Case 1 & 4 pressure predictions degrades and heat-flux improved

Freestream mis-specification a cause (?), but probably not the main one. [Cause # 1]

• Post-calibration ds smaller for high-enthalpy flows.

Thermo-chemical models not the culprit for bad predictions [Answers Cause # 2]

• The incoming flow is may be mildly axisymmetric

Would explain the behavior of Case 1 and 4

Self-similar collapse shows non-axisymmetry is small [Kind of answers Cause #3 ]
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Conclusions

■ Demonstrated a way of checking consistency of an experimental dataset

■ Consists of carefully demarcating between trustworthy and non-trustworthy

data (e.g., derived data, which could be experimental settings)

■ Using trustworthy data and a validated model, infer the "untrustworthy" data

■ Compare the two. Requires estimation & comparison under uncertainty

■ Used it to check the LENS-XX/double cone experimental dataset

■ The low-enthalpy experimental datasets seem OK (high confidence)

■ The high-enthalpy dataset has problems (medium confidence)

■ The thermo-chemical models in SPARC are not the culprit (high confidence)

■ Our model — data mismatch could be because of mild 3D effects (low

confidence)
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