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2 Supercritical CO2 power cycles have application in advanced nuclear

• sCO2 power cycles are being investigated for advanced nuclear
(sodium fast reactor initially), fossil (natural gas and coal), renewable
(concentrated solar power), and waste heat recovery heat sources

• For the Sodium Fast Reactor (SFR), the use of sCO2 as a substitute
for steam eliminates the potential for water-sodium reaction,
increases cycle efficiency, and can reduce capital cost and LCOE

• For the SFR, the high temperature is 500-550°C in a closed heat
source, so a recompression closed Brayton cycle (RCBC) is a
favorable configuration for efficiency
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https://www.energy.gov/ne/articles/3-advanced-reactor-systems-watch-2030



Sandia National Labs' sCO2 research covers many areas
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4 Heat exchangers for sCO2 cycles must handle high pressure

•sCO2 power cycles typically have pressures of 300 bar and temperatures 550-750°C

•There are only a handful of heat exchanger designs that can handle the pressure

Shell Et Tube
SPX, 2016-08-03, Shell Et Tube Heat
Exchangers,
http: / /spxheattransfer.com/ produc
ts/detai l/shell-tube-heat-
exchangers

Small hydraulic diameters, densely-packed
fins, and thin walls enhance heat transfer

Fully-welded pressure
boundary ensures sealing

Individually
tested for
quality control

Brazed or diffusion (TLP1 bonded fins react
high internal pressure, acting as tension support
members while enhancing heat transfer.

'Transientliquidphase(TLP)

Thin structures reduce
thermal stresses, enabling
long fatigue lives

Plate-fin
EERE. (2016, 2016/08/01).
EERE Success Story—Solar
Receiver Redesign Enables
CSP to Beam Ahead.
Available:
http://energy.gov/eere/su
ccess-stories/articles/eere-
success-story-solar-
receiver-redesign-enables-
csp-beam-ahead
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•The traditional shell and tube design is 3-5x more expensive at high pressure

Micro Shell and Tube
Chordia, Lalit and Portnoff, Marc, "Development of
Modular, Low-Cost, High-Temperature Recuperators
for the sCO2 Power Cycles - Project Update", 2017
University Turbine Systems Research Project Review
Meeting, November 2, 2017, Pittsburgh, PA.

Printed Circuit Heat
Exchanger (PCHE)



Heat exchangers in sCO2 power cycles are a sizeable portion of
5 component costs

•The heat duties of the recuperators is larger than the
net power output
• 10.2 MWe net power

• 21.8 MWth Primary Heater

• 44.9 MWth High Temperature Recuperator

• 14.6 MWth Low Temperature Recuperator

• 11.6 MWth Cooler
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Weiland, Nathan T., Lance, Blake W., and Pidaparti, Sandeep R., "sCO2 Power
Cycle Component Cost Correlations from DOE Data Spanning Multiple Scales and
Applications", 2019 ASME Turbo Expo, June 17-21, 2019, Phoenix, AZ.



6 Our group has discussed heat exchanger R&D needs by application
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7 High temperature heat exchangers still need development

•Heat exchangers made from 300 series stainless

steels typically work up to 550-600°C

• Limit primarily due to corrosion and secondarily

allowable stress

*Nickel-based alloys can handle higher
temperatures, but diffusion bonding still needs

to be developed for PCHEs

•Ongoing research:

• NEUP IRP: ASME BPV code materials for

nuclear service (800H, 316H SS)

• SuNLaMP: Development of Inconel 625 bonds

a® 12 la  -°1 ;4111k_. NTT ;
-ICI.-

•
3110_00 - 

250.00 -
T.
2

• 700 00

cr)•
150.00

iTt

5 100.00  
E

50.00

Heat Exchanger Materials Selection
(Application boxes based on P/S -f 0.22)

11%

40.

MM.

RS

•• • 40.0 .R.==• .•••••.
1 ,N••••

• ...••• 
"r%

• 

•

Moo..

SCO2 rHx

740

— — 230

— —617

- • 625

800H

- — 347

- — 316L

- • 3U4L

SCO2 RECUPERATORS •

SCO2 Turbine

SCO2 PRE

0.00  

AlrlelL (.7.R

-30 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

Design Metal Temperature [DC]

AiR/13/15

RECUPERATOR AIRCBC 4EATERS •

12 3 4 50709 175404710 12345478$ 12545478iio

100 MS 1 "DE '7, ILIA 2 PRODUCTS 3 ENGINEERING 4
1 3 4 5 • 7 11 A 1AI 1, 2 3 • 3 a 7 a 0

Vacuum Process
Engineering Bonding
Process Certification



8 Thermal transient and fatigue limits are unknown in PCHEs

•Heat exchanger vendors typically certify steady-state use without cycling

•In the modern grid with increasing renewable penetration, sCO2 power cycles will nee
to be flexible

•We are simulating thermal transients for an understanding of limits Hpc MRTERIRLS
 _ape for seve-e Environments

•We are seeking funding for complementary experiments
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F. Pra, P. Tochon, C. Mauget, J. Fokkens, and S. Willemsen, "Promising designs of compact heat exchangers for
modular HTRs using the Brayton cycle," Nuclear Engineering and Design, vol. 238, no. 11, pp. 3160-3173, Nov. 2008.


