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2 | Supercritical CO, power cycles have application in advanced nuclear

*sCO, power cycles are being investigated for advanced nuclear
(sodium fast reactor initially), fossil (natural gas and coal), renewable
(concentrated solar power), and waste heat recovery heat sources
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*For the Sodium Fast Reactor (SFR), the use of sCO, as a substitute
for steam eliminates the potential for water-sodium reaction,
increases cycle efficiency, and can reduce capital cost and LCOE

*For the SFR, the high temperature is 500-550°C in a closed heat
source, so a recompression closed Brayton cycle (RCBC) is a
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Sandia National Labs’ sCO, research covers many areas
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4 | Heat exchangers for sCO, cycles must handle high pressure L I

*sCO, power cycles typically have pressures of 300 bar and temperatures 550-750°C I

*There are only a handful of heat exchanger designs that can handle the pressure
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*The traditional shell and tube design is 3-5x more expensive at high pressure



Heat exchangers in sCO, power cycles are a sizeable portion of

5 component costs

*The heat duties of the recuperators is larger than the
net power output

* 10.2 MWe net power
21.8 MWth Primary Heater
44.9 MWth High Temperature Recuperator

14.6 MWth Low Temperature Recuperator
11.6 MWth Cooler
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Our group has discussed heat exchanger R&D needs by application
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7 | High temperature heat exchangers still need development
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*Heat exchangers made from 300 series stainless P
5 o
steels typlcally work up to 550-600"C 25000 - |Heat Exchanger Materials Selection

* Limit primarily due to corrosion and secondatily (Application boxes based on P/s = 0.22)
allowable stress

*Nickel-based alloys can handle higher
temperatures, but diffusion bonding still needs
to be developed for PCHESs
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8 | Thermal transient and fatigue limits are unknown in PCHEs ] I

*Heat exchanger vendors typically certify steady-state use without cycling

*In the modern grid with increasing renewable penetration, sCO, power cycles will need I
to be flexible

*We are simulating thermal transients for an understanding of limits
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*We are seekine funding for complementary experiments
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