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1. Abstract

Often, when testing structures, engineers assume the experimental system only exhibits linear behavior. This linear
assumption means that the modal frequency and damping of the structure do not change with response level. In
many assembled structures, components are connected through bolted joints. These systems behave in a weakly
nonlinear fashion due to frictional contact at these interfaces, but often these structures are still treated linearly at
low excitation levels. This work contains a case study where an assumed linear system exhibits nonlinear behavior.
Because of this nonlinearity, if the force applied to the structure during /inear testing is not sufficiently low then the
test may capture a nonlinear frequency or damping instead of the true linear parameters. The errors associated with
this linearization causes inaccuracy when simulating a system response. In particular, a linear substructuring
problem is presented in which true linear frequencies and damping ratios are compared to slightly nonlinear
counterparts to observe the error caused in the assembled response. This paper documents lessons learned and
heuristics to be considered when capturing true linear parameters from a weakly nonlinear structure.
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2. Introduction

Traditional experimental modal analysis transforms a set of measured responses into single degree-of-freedom
(DOF) modal responses. Linear modal analysis is a useful tool for updating finite element models, performing low
excitation level system predictions, and obtaining modal information about a mechanical system (i.e. natural
frequencies and mode shapes). Many industries manufacture mechanical systems assembled using bolted joints. The
frictional interfaces that occur due to these joints often introduce nonlinearity into an otherwise linear system. This
type of weakly nonlinear response is often observed experimentally as a small change in frequency and a large
change in damping [1, 2, 3]. Often this nonlinearity is overlooked when predicting system response which can lead
to erroneous results.

This work shows the errors that can arise when one assumes linearity of a weakly nonlinear system and documents
this practice from the previous work [4]. This is shown through an experimental-analytical substructuring problem
and highlights the errors which arise when the wrong linear parameters are identified due to a weak nonlinearity.
The assembly of interest contains multiple bolted joints which add nonlinearity to the system. This system was
previously thoroughly tested for nonlinearity in [3, 5, 4] where in [4] the authors completed nonlinear substructuring
on the same structure of interest. In [4] the linear substructuring errors for the system were significantly lower than
previous works using similar techniques. This study documents the methods used to minimize these substructuring
errors through the use of nonlinear theory and testing, providing heuristics and tools to ensure an experimentalist is
obtaining the linear dynamics of a system.

This paper is organized as follows. Section 3 details the substructuring example covered in this work. Section 4
provides the theory behind the substructuring method used and the tools suggested to obtain true linear parameters
of the system. Section 5 steps through a case study on the experimental system. Finally, Section 6 contains
conclusions from this study.
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3. Subcomponent Definitions
The structure of interest consists of 5 main parts: the nose-beam, plate, cylinder, aft-plate, and tail-beam. The beam

is bolted to the plate which is attached to the cylinder using eight bolts. The aft plug threads into the cylinder and has
a flange that seats on the aft of the cylinder. Finally, the tail is attached to the plug by two bolts. A finite element
mesh of the structure is shown in Fig. 1 and the physical hardware is shown in Fig. 2.
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Fig. 2. Truth assembly test hardware

To complete substructuring predictions for this structure, two subcomponent assemblies were tested. The first,
subcomponent A, consists of the nose-beam, plate, cylinder, and aft-plate, with no tail-beam. The second
subcomponent, B, consists of the plate, cylinder, aft-plate and tail-beam. Finally, a finite element model of the
cylinder with end plates is used to connect the two structures. This work stems from [4] where more details on the
experimental set-up and substructuring configurations can be found.

4. Theory

This section provides an overview for the theory used in this work. First, the dynamic substructuring theory of the
TS method is presented. Second, a nonlinear analysis tool the Hilbert Transform is presented as a means to verify
the linear modal parameters extracted from measurements.



4.1 Transmission Simulator Method

The Transmission Simulator method was first introduced by Allen and Mayes in [6]. This method provides a quality
modal and best simulates the boundary conditions between subcomponents by mass-loading the interface between
subcomponents. In this study, experimental Subcomponent A and B are connected a central cylinder which acts as a
mass-loading of the jointed interface. The theory for the TS method is briefly discussed here for convenience.

First, each subcomponent is written as a set of uncoupled modal equations of motion. Modal parameters w, ¢, and ¢
are the linear natural frequency, damping ratio, and mode shapes of a subcomponent model. The modal
acceleration, velocity and displacement and external force are represented by §, ¢, g, and F.
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To couple the subcomponents, constraints must be enforced on these equations of motion. The constrains are first
written in the form of Eqn. (2). Here, x represents physical displacements of each subcomponent, and B is a Boolean
matrix such that the motion of shared DOFs between multiple subcomponents is equal.
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Using a modal approximation, this constraint equation can be transformed into modal coordinates as shown in Eqn.
(3). The constraints have been softened using the pseudo-inverse of the TS shapes as it would be difficult to enforce
them strictly when using measured data.
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A coordinate transformation g = L7 is used to enforce these constraints on the uncoupled equations of motion.
Rewriting the constraints in terms of the new generalized coordinate is shown in Eqn. (4).

Bln =0 (4)
Because B is known and because 7 is arbitrary, L must reside in the nullspace of B.
L = null(B) (5)

Using the transformation matrix L, the uncoupled equations of motion can be synthesized into a new set of equations
of motion which describe the dynamics of the fully coupled structure. Solving the eigenvalue problem of these
equations of motion provides predictions of linear natural frequencies and modes shapes of the assembled structure.
Note, the predictions of the assembly involve the linear natural frequencies and damping ratios of the subcomponent
system. Therefore, if those are inaccurately measured due to nonlinearity the system level predictions will be
inaccurate. This study will explore the magnitude of such errors when the nonlinearity of the system is activated
during linear testing.
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4.2 The Hilbert Transform

Low-level testing is used to capture the linear modal parameters of each subcomponent. To ensure the linear test is
not exhibiting any nonlinear behavior the authors implemented the Hilbert Transform [7]. To use this tool a high-



level excitation is performed to obtain ringdown data from the structure. Then, the physical measurements from this
excitation are transformed to a modal response using the mode shape matrix as a spatial filter.

The Hilbert Transform assumes the modal response can be rewritten in an exponential form as shown in Eqn. (7),
where 1, (t) is the Hilbert envelope and y;(t) is the unwrapped phase.

G = e¥r®+i® (7)
This amplitude and phase can be fit and used to calculate a time varying frequency and damping ratio for the
measured response.
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These values can then be plotted against response amplitude to obtain amplitude dependent relationships for
frequency and dissipation of each mode. Knowing that at low levels a linear response should have a stationary
frequency and damping ratio. Therefore, obtaining ringdown data, performing the Hilbert Transform, and then
calculating these amplitude dependent parameters can be used to reveal a true linear frequency and damping ratio
during subcomponent testing.

5. Linear Substructuring Tests and Predictions

In this section the linear substructuring predictions from [4] are investigated. The linear predictions are performed
with two sets of data. First, slightly nonlinear modal parameters are used from a low-level modal test. Next, the
Hilbert Transform is used to determine a shaker setting which is low enough to extract true linear parameters. The
predictions are updated with these new parameters in order to highlight the importance of ensuring a linear test is not
exceeding linear response levels.

5.1 Original Measurements

Low excitation level impact and shaker tests were performed on subcomponents A and B. Linear natural
frequencies, damping values, and mode shapes were obtained using the Synthesize Modes and Correlate (SMAC)
[8] program developed by Mayes and Hensley. The results for substructures A and B are shown Table 1 and Table 2
respectively. Here, the subscript o represents the parameters found from initial testing (which was performed at
slightly nonlinear levels).

Table 1 — Subcomponent 4 Original Linear Parameters

Mode Jo S Shape Description
[Hz] | [%cr]
7 128.03 | 0.38 1* bend of Beam in soft direction
170.00 | 0.28 1% bend of Beam in stiff direction
9 54836 | 0.37 Axial mode
10 | 863.75| 1.15 (2,0) ovaling of Cylinder
11 | 87825 ] 1.11 (2,0) ovaling of Cylinder
12 1 980.80 | 0.45 (3,0) ovaling of Cylinder
13 | 987.70 | 0.46 (3,0) ovaling of Cylinder
14 11084.20| 0.12 2" bend of Beam in soft direction

Table 2 — Subcomponent B Original Linear Parameters



Linear substructuring predictions were calculated following Eqn. (6). There are many realizations of substructuring
predictions to consider. In this case, the target range for predictions was up to 600 Hz. Thus, following general
component mode synthesis heuristics, modes up to 1200 Hz were included in the subcomponent models. This results
in 14 modes for both substructures A and B and only 10 modes for the TS. The predictions from this substructuring
exercise are shown in Table 3 compared to the results obtained from an assembled truth test. Note, the frequency
error in these predictions is low (under 2%), but the damping error is high (over 30% on multiple modes). These
results are typical of component mode synthesis practices, but in [4] the authors were trying to observe the

Mode Jno S Shape Description
[Hz] | [%cr]
7 1232.23] 0.174 1* bend of Tail in soft direction
607.00| 0.869 1% bend of Tail in stiff direction
9 [879.75| 0.996 (2,0) ovaling of Cylinder
10 | 886.06| 1.058 (2,0) ovaling of Cylinder
11 ]981.82| 0.437 (3,0) ovaling of Cylinder
12 1990.10| 0.390 (3,0) ovaling of Cylinder
13 |1148.75| 1.406 Axial Mode
14 11279.50] 0.590 2" bend of Tail in soft direction

nonlinearity in the system damping. Therefore, a minimization of this damping error was desired.

Table 3 — Original linear Substructuring Predictions

Predicted | Measured ” Predicted | Measured
Mode | fro fa D %o ¢ % Diff. | MAC
[Hz] [Hz] [%ocr] [%cr]
7 128.50 128.22 0.22% 0.381 0.276 38.22% 1.00
8 170.30 169.46 0.46% 0.282 0.176 60.53% 0.99
9 232.29 233.37 -0.46% 0.168 0.176 -0.70% 1.00
10 548.37 551.39 -0.55% 0.375 0.245 52.97% 0.99
11 606.18 616.25 -1.63% 0.860 0.426 101.57% | 1.00




5.2 Example Hilbert Transform Analysis

High-level excitations were performed using a windowed sinusoidal excitation technique discussed in [5]. Using the
Hilbert Transform as discussed in Section 4.2 amplitude depenedent relations for frequency and damping ratio were
obtained for the first mode of the subcomponent 4 and are shown in Fig. 3. Here, the blue curve shows the measured
amplitude dependent relationship, the circular marker shows the linear results from Section 5.1. The red line shows
the true linear parameter as identified from the testing described in Section 5.3. This analysis was repeated for all
modes showing a nonlinear response until linear parameters were identified for all modes used in the substructuring

predictions.
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Fig. 3. Hilbert Transform derived amplitude dependent relationships for frequency and damping ratio

5.3 Revised Measurements

Updated linear modal parameters were obtained by continually lowering the excitation level until the extracted
parameters were not sensitive to such changes. The final updated parameters for Subcomponents A and B are
contained in Table 4 and Table 5. Here, the subscript o represents the original measured linear parameters and the
subscript u denotes the updated parameters. For both subcomponents the frequency error from the original
measurements was relatively small (less than 1%) but the damping ratio errors were large (many modes over 50%).
This is expected as the amplitude dependence of damping is usually more sensitive than that of frequency in weakly
nonlinear structures.

Table 4 — Subcomponent 4 Updated Linear Parameters

fn,o CO fn,u {‘u fn {
[Hz] | [%cr] | [Hz] [%cr] | % Error | % Error

Mode

7 128.03 | 0.384 | 129.2 | 0.294 | -0.91% 30.61%
8 170.00 | 0.284 | 171.1 | 0.170 | -0.64% 67.06%
9 548360373 | 552.0 | 0.241 | -0.66% 54.77%
10 | 863.75 | 1.149 | 867.8 | 1.122 | -0.47% 2.41%
11 | 87825 ] 1.113 | 8833 | 0930 | -0.57% 19.68%
12 1 980.80 | 0.451 | 980.8 | 0.447 | 0.00% 0.89%
13 ] 987.70 | 0.456 | 987.7 | 0.462 | 0.00% -1.30%
14 11084.20] 0.123 | 1031.8 | 0.090 | -0.10% 37.17%




Table 5 — Subcomponent B Updated Linear Parameters

Mode fro %o fou Su fa ¢

[Hz] | [%cr] | [Hz] | [%cr] | % Error % Error

232.23]1 0.174 | 232.5 | 0.168 -0.12% 3.87%
607.00| 0.869 | 608.9 | 0.415 -0.31% 109.25%
9 1879.75|0.996 | 882.5 | 1.138 -0.31% -12.47%
10 |886.06| 1.058 | 892.4 | 0.812 -0.71% 30.35%
11 ]981.82] 0.437 | 981.8 | 0.448 0.00% -2.49%
12 1990.10] 0.390 | 990 | 0.393 0.01% -0.64%
13 |1148.75/ 1.406 | 1171 | 1.075 -1.90% 30.79%
14 ]1279.50] 0.590 | 1284.5 | 0.480 | -0.39% 22.87%

Table 6 contains the substructuring predictions using the updated linear subcomponent parameters. The results
showed great improvement in the damping ratio predictions with only one mode having an error higher than 5%.
The frequency errors remained mostly constant. The first two elastic modes increased in error, from below 0.5%
error to 1% error, while the following three modes all decreased in frequency error. This case study shows that it is
prudent to ensure that linear testing is truly linear!

Table 6 — Updated linear substructuring predictions

Predicted | Measured Predicted Measured
Mode B & % Diff. Cu ¢ % Diff. | MAC
[Hz] [Hz] [“ocr] [“ocr]
7 129.62 128.22 1.09% 0.295 0.276 6.94% 1.00
8 171.47 169.46 1.19% 0.171 0.176 -2.90% 0.99
9 232.56 233.37 -0.35% 0.168 0.176 -4.47% 1.00
10 552.01 551.39 0.11% 0.241 0.245 -1.43% 0.99
11 608.08 616.25 -1.32% 0.415 0.426 -2.56% 1.00

6. Conclusions and Remarks

This paper documents lessons learned from a substructuring exercise previously presented in [4]. In this previous
study the authors completed experimental-analytical dynamic substructuring predictions at linear levels with very
low damping ratio error. To achieve this accuracy level the authors performed multiple tests on each subcomponent
to assure that the systems were being tested at low, linear excitation levels. With the original measurements damping
ratio errors were observed as high as 100% error. After using a few heuristics to ensure the quality of the extracted
linear model, this error was reduced to under 7%, showing a drastic improvement.

It is recommended that for future test plans, where linear information is desired, that test engineers include test
points at high-level and use the Hilbert Transform to determine if the level set for linear testing is sufficient for
capture linear structural dynamic behavior. An alternative recommendation to high-level testing would be to make
multiple measurements decreasing the amplitude of excitation in each case until the extracted modal parameters are
shown to not change.



Notice: This manuscript has been authored by National Technology and Engineering Solutions of Sandia,
LLC. under Contract No. DE-NA0003525 with the U.S. Department of Energy/National Nuclear Security
Administration. The United States Government retains and the publisher, by accepting the article for
publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so,
for United States Government purposes.

References

[1] D. Segalman, "A Modal Approach to Modeling Spatially Distributed Vibration Energy Dissipation,"
Sandia National Labs SAND2010-4763, Albuquerque, NM, 2010.

[2] B. J. Deaner, Modeling the Nonlinear Damping of Jointed Structures Using Modal Models, Masters
of Science Thesis: University of Wisconsin, Madison, 2013.

[3] R. L. Mayes, B. R. Pacini and D. R. Roettgen, "A Modal Model to Simulate Typical Structural
Dynamic Nonlinearity," in Proceedings of the International Modal Analysis Conference XXXIV,
Orlando, FL, 2016.

[4] D. Roettgen, B. Pacini, R. Mayes and T. Schoenherr, "Experimental-Analytical Substructuring of a
Complicated Jointed Structure Using Nonlinear Modal Models," in Proceedings of the International
Modal Analysis Conference XXXVI, Orlando, FL, 2018.

[5] B. R. Pacini, R. L. Mayes, B. C. Owens and R. Schultz, "Nonlinear Finite Element Model Updating,
Part I: Experimental Techniques and Nonlinear Modal Model Parameter Extraction," in Proceedings
of the International Modal Analysis Conference XXXV, Garden Grove, CA, 2017.

[6] M. S. Allen, R. L. Mayes and E. L. Bergman, "Experimental modal substructuring to couple and
uncouple substructures with flexible fixtures and multi-point connections," Sound and Vibration, vol.
329, no. 23, pp. 4891-4906, 2010.

[7] M. Feldman, "Time-varying vibration decomposition and analysis based on the Hilbert transform,"
Journal of Sound and Vibration, vol. 295, no. 3-5, pp. 518-530, 2006.

[8] D. P. Hensley and R. L. Mayes, "Extending SMAC to Multiple References," in Proceedings of the
International Modal Analysis Conference XX1V, 2006.



