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3 Motivation

■ Next generation severe accident modelling needs to
model a multitude of materials, interactions, closures, components, systems, etc.

explore the numerous permutations of postulated events, actions, and their consequences

provide quantitative insights for many different quantities of interest

Study Every Pebble, Walk Every Path, Limit No Horizon

"It's your study, you can do whatever you want. Then you'll get criticized for it."

Michael Corradini,

ACRS Regulatory Policies and

Practices Subcommittee Meeting,

October 18, 2017
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4 Outline

• MELCOR3 (physics simulator)
O MELCOR2
O Advancing State-of-the-Art
O Design and Features
0 Core Principles
O Foundational Features
O Our Quality Process
o Significant Uncertainty Minimization ("whack-a-mole")
o Summary and Future

• ADAPT (dynamic event tree driver)
O Purpose
o History
O Design and Features
O Applications
o Summary and Future
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6 MELCOR2

• Overview
O A fully integrated, engineering-level computer code that models the progression of severe
accidents in light-water reactor nuclear power plants

O Objective

0 Consistent modelling of relevant phenomena for source term calculation

Recent expanded scope includes containment response, advanced reactor analysis, and more

Absolute top in its class

• Physics models
O Decay heat loading and initial fission product distribution
O Corium formation, relocation, and concrete interaction

O Radionuclide release, transport, deposition, resuspension

O Hydrogen deflagrations and containment response

• Thermohydraulic response given initial coolant loading and external injections

O And much more...
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7 Advancing State-of-the-Art

• Why MELCOR3?
• MELCOR2 models are extensive and well-exercised.
• Architecture is primary target: more flexible, more extensible, several levels of fidelity

• Generalization of the conservation framework
o Current

• 4-field for thermohydraulics
• 12-field for core degradation (29-field if radionuclides are included)
• A few solution algorithms implemented directly in-code

• Advancement

• n-field for all materials

o everything is a moveable and fail-able

• A generic problem structure that is reduced to an optimal, per-situation solution algorithm.

• Move toward a plug-in architecture
o Current: separation based on physics bundled with solvers, explicit coupling

• Advancement: separation of solvers, closures, numerics, fluxes, sources, and facilities for global coupling

• Other Points
o General residual-based framework

o Automatic verification of transport equations
• Incorporate knowledge and needed structure of modern analysis techniques from the beginning

• And more...

•

There is a lot to unpack here!
Let's get more specific.
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8 Design and Features

Core Principles

Foundational Features

• Our Quality Process

• Significant Uncertainty Minimization ("whack-a-mole")

Each of these is a talk on their own. To follow: a broad, dense overview.

Disclaimer: 1111--ILCOR3 is a work-in-progress, and details presented here may change in the future.

12/21/2018 MELCOR3: Design and Features



9 Core Principles (1/4)

• Don't assume; measure and assess.

• There are an arbitrary number of fields (water, air, fuel, steel, etc.).
° Solver shall not care nor need knowledge of field information beyond residual value

• Every field shall evolve such that (Constraints keep solution on a "surface of
realizability")
1. mass is conserved,

2. energy is conserved,

3. momentum is conserved,

4. entropy is increased,

5. all physics have length scales and time scales.
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10 Core Principles (2/4) •

How many types of equations are currently considered by MELCOR3?
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11 Core Principles (3/4) •

- The fields evolve with the discrete, control volume equations
O All fluxes, forces, and sources must be conservative/telescoping (conservation)
O All fluxes, forces, and sources must lead to an increase in entropy

• Every term in the equations (all fluxes, forces, sources, and time differences) will be
individually tracked and analyzed
O Local truncation error is measured and ensured small
O Length scales are estimated and resolved through meshing

O Time scales are estimated and resolved time step adjustment
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12 Core Principles (4/4)

• Solution Method
• Jacobian-Free
O Consistent Physics-based Preconditioning (Preconditioner converges to Jacobian upon iteration)
O Linear (Krylov) Solver: Preconditioned Generalized Minimal Residual (PGMRES)

• Newton's Method
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13 Foundational Features •

• MELCOR3 parlance: Matryoshkas

Physics Matryoshka:
Ability to merge fields (i.e., create a HEM) arbitrarily with a measure of efficacy

O Example:

o Two fields: liquid water and steam

O Can simulate separately with burden of boiling/condensation time scales

O Can also HEM together with a set of difference equations monitoring "distance" from HEM

• Geometry Matryoshka
O Just like Physics Matryoshka: ability to join control volumes together with a measure of efficacy

• Solver Matryoshka
O Similar to above: explicit, semi-implicit, fully implicit depending on time scales and lengths

• Spatial Error and Temporal Error Monitoring
O Use previous quadratic terms and H.O.T. to measure errors
O Change control volume size, time step size to keep small ("drive the bus")
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14 Our Quality Process

• Matryoshkas, Spatial Error, Temporal error allow quantification of
o Numerical error
Model Form error (different models; e.g., interfacial friction)
Parameter uncertainty (same model; e.g., exponents in Dittus-Boelter)

SQA

Reduces Code

Bug Uncertainty

\Nal Feedback Loop

Code
Verification

Reduces

Numerical Bug

U ncertainty

Solution
Verification

Reduces Numerical

Discretization

Uncertainty

Validation

Reduces

Model Form

U ncertainty

Uncertainty
Quantification

Reduces

Pa ra meter

U ncertainty
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15 Significant Uncertainty Minimization ("whack-a-mole")

• Fictitious example for a given Quantity of Interest (QoI)

•
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16 Significant Uncertainty Minimization ("whack-a-mole")

• Fictitious example for a given Quantity of Interest (QoI)
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17 Significant Uncertainty Minimization ("whack-a-mole")

• Fictitious example for a given Quantity of Interest (QoI)
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18 Significant Uncertainty Minimization ("whack-a-mole")

• Fictitious example for a given Quantity of Interest (QoI)
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19 Summary and Future (1/2) •

• MELCOR3 will lead the next generation of severe accident modelling
O Algorithms are flexible and selectable/optimizable at run-time
O Arbitrary field count and sources/field interactions

O All terms errors

O Are measured

O Controlled/made small through dynamic meshing and time stepping

O Measurement of all error terms separately allows per-term analysis of uncertainty/error
contribution

O Knowing which terms are contributing most to uncertainty/error allows focused effort of
reduction to a set level of significance

O All pieces depend on one another

12/21/2018 MELCOR3: Significant Uncertainty Minimization



20 Summary and Future (2/2) ■

■ Currently
Working on pilot code
Developing architecture in-code to effect the needed features

■ Goal: completion of four test problems in Summer 2019

12/21/2018 MELCOR3: Significant Uncertainty Minimization
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22 Purpose

• MELCOR3 is a physics simulator
O Has length scales and time scales
O Failure modes

o Models parameters

• ADAPT is a dynamic event tree generator
O Has events and probabilities with a map to simulator parameters

o Needs a physics simulator to evolve toward a declared event

O Adjusts simulator restart according to signaled event

O Allows change in action

O Change in parameters (epistemic or aleatory)

O May map one-to-one or one-to-many

O Launches child simulations with all adjusted restarts

O Tracks parentage to build a tree of sequences informed by physics (unlike traditional PRA)

O Aims for high-throughput computing (could be considered a cousin of HTCondor)

12/21/2018 ADAPT



23 H 'story •
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New as of October 2018:

ADAPT is open source software under the LGPLv3.

http://www.sandia.gov/adapt/
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24 Design and Features (1/3)

■ Implementation
o Scheduler: Python

Database: MySQL (Python connector)

Web server: Python (cherrypy)

Web interface: pure HTML

Future new version details
o Release: TBD

o Python 3 only

o New web interface

o Jinja2 templating engine

jQuery, LESS.js
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25 Design and Features (2/3)

■ Required Files
o Wrapper

o Controls ADAPT interaction with simulator(s)

Preparing input file, running simulator, post-processing, recording results

O Branching Rules File (BRF)

0 Defines branching criteria, input to change, and probabilities

o Restart File

O Defines starting point of analysis (e.g., MELCOR restart file)

Template Simulator Input File (TSIF)

Contains all simulator parameters that may be modified by ADAPT

O Parameter values replaced with ADAPT variables corresponding to BRF

0 Applying BRF to TSIF renders valid simulator input for an individual branch

o Simulator executable

o Must be capable of running on all assigned computation hosts

12/21/2018 ADAPT



(522) [p=1] root melcor
(Branching Condition: Aleatory valve opening)

(Simulation Time (s): 0.01)
(Simulator CPU Time (s): 17)

(523) [p=0.5] sb 1 melcor
(max_time: 300.482)

(Simulation Time (s): 300.482)
(Simulator CPU Time (s): 21)

(524) [p=0.5] sb 2 melcor
(Branching Condition: Valve opening time)

(Simulation Time (s): 10.0438)
(Simulator CPU Time (s): 22)

(525) [p=0.125] sb 1 melcor
(Branching Condition: Valve open fraction)

(Simulation Time (s): 10.0538)
(Simulator CPU Time (s): 22)

(526) [p=0.125] sb 2 melcor
(Branching Condition: Valve open fracti

(Simulation Time (s): 20.736)
(Simulator CPU Time (s): 24)

(527) [p=0.125] sb 3 melcor
(Branching Condition: Valve open fraction)

(Simulation Time (s): 30.736)
(Simulator CPU Time (s): 25) 4

(528) [p=0.125] sb 4 melcor

(529) [p=0.0125] sb 1 melcor

(530) [p=0.1] sb 2 melcor

(531) [p=0.0125] sb 3 melcor

(532) [p=0.0125] sb 1 melcor

(533) [p=0.1] sb 2 melcor

(534) [p=0.0125] sb 3 melcor

(535) [p=0.0125] sb 1 melcor

(536) [p=0.1] sb 2 melcor

(537) [p=0.0125] sb 3 melcor



27 Applications (1/3) •

1
2006-2011

2009

2013

2013-2014

2014

2015-2017

2015-2017

2015-2018

2016-2017

Reactor Type Accident Type Simulator References

PWR SBO MELCOR2 [1, 2, 3, 4, 5, 6]

SFR Aircraft Crash RELAP5 [7]

PWR SBO MELCOR2 [8, 9]

PWR SBO MELCOR2 [10, 11]

PBMR LOFC MELCOR2 [12]

PWR SBO MAAP4 [13]

SFR UTOP SAS4A [14, 15, 16]

PWR ISLOCA MELCOR2 [17, 18]

N/A SNF Transport Multiple [19]
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28 Applications (2/3)

• Example
0 MELCOR-RADTRAD ISLOCA test case compared at 66,076 branches finished

O local (small) cluster on 132 (later 55) processors

O HPCs on up to 3,000 processors

0 An HPC-run DET Snapshot

o 697,663 branches finished

1,448,618 identified

o Over 46 Terabytes of data

•

12/21/2018 ADAPT



29 Applications (3/3)

• DET breadth/depth can explode combinatorically!
O HPCs needed for large number of branches

Load balancing is extremely important

• Active areas of effort
O Visualization of large trees
O Effective interrogation of data

O Tools enabling extraction of insights from large sequence sets

O Trimming branches based on metrics of importance and similarity (classification)

12/21/2018 ADAPT



30 Summary and Future •

• ADAPT is a DET Driver
o Simulator agnostic
Job scheduler

o Events based on evolution of physics

Naïve data visualization

Future / Current work
Categorization of event types (e.g., epistemic, aleatory, decision)

o Robust data visualization

• Large sequence sets

• Include event type information

o Leverage Machine learning to elicit insights

o New web interface

o Code modernization

12/21/2018 ADAPT



31 MELCOR3 and ADAPT ■

■ MELC OR3
° Next generation physics simulator

■ ADAPT
0 Next generation dynamic event tree generator

Study Every Pebble, Walk Every Path, Limit No Horizon
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32 MELCOR3 and ADAPT

Thank you.

Questions

■

12/21/2018
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