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Abstract

With the recent successful attempts against the digital control systems of critical infrastructures,
there is a need to develop new defense strategies that recognize two important realities, 1) state-
sponsored attackers can rely on a number of techniques including espionage, social engineering,
and brute force techniques, etc. to gain access to the raw data used to control system behavior, 2)
attackers can falsify operational data in manners that do not trigger conventional outlier/anomaly
detection techniques in order to go undetected, which is referred to as false data injection attacks.
Therefore, there is a strong need to explore another class of defense measures, referred to as
physical process defense, serving as a new line of defense in the event existing defenses relying
on information protection measures are breached. This physical process defenses utilize the
physics and engineering models of the system to build unique signatures for genuine system
behavior. If successful, the signatures would be able to detect attacks that falsify the operational
data and render them harmless before they can inflict physical damage on the system. This report
is focused on exploring the feasibility of physical process defenses for nuclear reactors, and their
associated functional requirements to maximize their resiliency against state-sponsored, or
equivalent, attackers.
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EXECUTIVE SUMMARY

Motivated by the growing frequency and level of sophistication of cyber-attacks against
critical infrastructures, specifically focusing on nuclear power plants, this work explores
the feasibility and functional requirements of a new class of defense methods relying on
the use of physics simulation of the system, referred to as physical process defenses. The
idea is to create a signature for the system/entity to be protected rather than the incoming
attack. The major findings of this study are:

Given that most of the technical know-how on nuclear plants design and operation is
in the open literature, attackers can develop self-learning techniques to approximate the
reactor’s dynamical state, even if some of the design details are missing.

The self-learning of system behavior must rely on physics models that emulate system
behavior; meaning that pure neural network-based models will not be sufficient to learn
system behavior in a manner that can produce reliable predictions for the wide range
of reactor conditions. In the event some of the modeling details are missing, attackers
can supplement their lack of knowledge by continuously monitoring reactor
measurements and employing estimation/inference techniques to determine the missing
details. This can be done using either active or passive monitoring. In passive
monitoring, the learning techniques rely on observing reactor measurements collected
by the network of sensors without interfering in reactor operation, whereas in active
monitoring, the attackers injects small perturbations in the control network to affect
changes to reactor state to improve the self-learning process or to prove their ability to
control reactor state.

Once the dynamical behavior of the reactor is learned, attackers could falsify the data
displayed to the operator in a manner that does not trigger existing plant consistency
checks, which are typically based on conservation principles. The ability to falsify data
displayed to the operator may be used to launch two types of attacks. The first is
designed to initiate an event which is typically identified by a number of well-known
scenarios, €.g., reduction in heat removal event. The second attack is designed to alter
normal (as-designed) reactor response to an event, by changing additional parameters
used by the control system to guide the system during an event, e.g., trip set points.
Defense measures relying on creating signatures for reactor behavior may be
introduced in either passive or active manners. Absent any obscurity measures, the
passive defense is not expected to be resilient as it will be based on the sensors data
and the physics models, which are both available to the attackers. By obscuring the
mathematical definition of the signatures, passive defenses can be effective.

Active defenses are expected to be more resilient in the event attackers have full access
to the defense strategy. Active defenses introduce small perturbations to the actuators
commands and the sensors readings in order to satisfy two conditions, first they are
small enough, i.e., within the noise, such as not to impact system behavior, and second,
their definition is based on randomized application of data mining techniques, where
the randomization affects the choice of the subset of components (including both
dominant and weak components) used for building signatures. This ensures that brute
forcing techniques will not be feasible approach to break the defense algorithm, since
there is no clear sequence of steps to follow such as the case with encryption techniques
which are widely known, with only few pieces missing, i.e., the encryption keys.
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INTRODUCTION

The increased frequency and level of sophistication of cyberattacks taking place in
recent years against digital control systems of critical infrastructures[1] have
heightened concerns over such attacks being directed towards nuclear power reactors.
Digital control systems are typically referred to as the SCADA[2], short for
supervisory control and data acquisition systems, which are used to manage,
supervise, and operate a wide range of industrial systems, including nuclear power
plants, fossil plants, chemical plants, water treatment facilities, etc. SCADA systems
continuously collect performance data about the systems using distributed network of
sensors and continuously issues commands to actuators to keep the system operating
per design specifications. Access to SCADA systems is currently being protected
using perimeter defenses (e.g., routers, firewalls, cryptography, etc.), which are
designed to stop unauthorized access. It is recognized that research is currently
underway to assess the robustness and resilience of already-in-place defense measures,
such as “perimeter defenses” and “information security” measures, which are designed
to stop unauthorized access to the SCADA traffic. While this research is criticality
needed, our work will focus on building another layer of defense, assuming that
existing defenses have already been bypassed. This new layer of defense is designed
to protect the SCADA traffic from malicious manipulation, which could be done via
systematic falsification of the performance data and/or modification of the commands
to actuators[2]. This new layer is designed to protect the system at the basic process
level, and is thus based entirely on the physical principles governing the system
behavior and derives its strength from the unique design and operational
characteristics of the engineering system. This layer of defense is referred to
hereinafter as physical process defense.

In designing physical process defenses, one must take into account a number of
unescapable realities for the class of digital control systems of interest, such as those
employed in nuclear reactors, a) the technical know-how on most critical
infrastructures such as nuclear reactors, fossil plants, water treatment facilities, electric
power grid, etc., exists worldwide and is accessible to the attackers; b) security by
obscurity is never an effective approach, because most breaches involve insiders
implying that any strategy relying on hiding or obfuscating the details of its operation
will eventually be hijacked; c) defense techniques that rely on secret passphrases,
private keys, etc. can eventually be bypassed with enough computing resources that
are available to state-sponsored attackers; d) reliability methods based on probabilistic
and dynamic risk assessment, are incapable of distinguishing between
malicious/deliberate accidents (as manufactured by the attackers) and normal
accidents that could result from equipment failure, especially when all information
displayed to the operators are falsified by the attackers [3].

Particularly we focus in this work on how much the attacker can do in light of the
above realities. Thus, the work will follow three thrusts. In the first thrust, we explore
whether an attacker equipped with knowledge about reactor system can predict the
reactor dynamical state. To do that, we employ a simplified point kinetics models with
a number of unknown parameters and explore how inference techniques may be used
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to fully determine the dynamical behavior of the system. In the second thrust, we
explore whether the predictive models used by the attackers need to be based on
physics simulation, or they can be constructed using machine learning techniques,
which are purely data driven. The data employed by this study, emulating a number of
critical reactor observables, are generated using a thermal hydraulics model of the
secondary and primary loops of a representative reactor. The third thrust provides
recommendations on the types of attacks that may be initiated and provides ideas on
how to develop monitoring systems that are capable of detecting intrusive false data
injection attacks.

With regard to the first thrust, the concept of online self-learning is not new to the
nuclear engineering community. In fact, there exists a strong arsenal of algorithms
which have been developed for condition monitoring and online senor
validation[4][5][6]. These algorithms employ a form on online self-learning
techniques to characterize the correlations between the various signals to determine
the reliability and robustness of signals against normal statistical noise and load
fluctuations. In the hands of the attackers, these methods can be exploited to design
attack signals that can bypass basic statistical checks, hence making data deception
attacks a real threat in modern control systems. This represents the goal of this thrust,
where online learning algorithms will be employed to learn the reactor dynamic
behavior. Taking this first step is essential to designing defensive strategies that can
anticipate the attackers moves. More importantly, it is to alert the community that
defensive methods based on approximate physics models could be bypassed by the
attacker who can approximate the models in an online mode during a lie-in-wait
period. For illustration, we employ a simplified point kinetics model and show how an
attacker, once gaining access to the reactor raw data, i.e., instrumentation readings,
can inject small perturbations to learn the reactor dynamic behavior. In our context,
this equates to estimating the reactivity feedback coefficients, e.g., Doppler, Xenon
poisoning, etc. We employ a non-parametric learning approach that employs
alternating conditional estimation in conjunction with discrete Fourier transform and
curve fitting techniques to estimate reactivity coefficients. An Iranian model of the
Bushehr reactor is employed for demonstration.
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2.2,

THRUST 1: SELF-LEARNING OF REACTOR STATE

The basic premise of physical process defenses is that instead of constructing
signatures for the incoming attacks, one would be developing signatures for the
genuine (i.e., unaltered) operational characteristics of the entity to be protected. This
class of defense techniques is sometimes denoted by other researchers as physics-
based or model-based defenses. While the premise is reasonable, one must question
the effectiveness of such signatures if the attacker has access to approximate models.
This thrust will address this concern and will demonstrate whether an attacker armed
with technical knowledge about the system can in fact develop a model whose
predictions are indistinguishable from the defender’s models.

To demonstrate, a point kinetics model for a reactor core is modeled but the model
parameters are assumed to be unknown. Inference techniques are employed to learn
reactor parameters in an online mode. In particular we use a combination of least-
squares, discrete Fourier transform, and nonparametric estimation to build an
inference model for the model parameters. A short description of the nonparametric
estimation technique employed is given in a separate section. Also a short description
of a generic industrial control system layout is given next.

Industrial Control System

A genetic instrumentation and control (I&C) network can be abstracted into 4 major
parts as illustrated in Figure 1: (1) physical response from a physical model, e.g.,
decrease in neutron flux , or coolant temperature, etc., this response is denoted as p ;
(2) Sensors are employed to detect p, and generate a response signal, y, , which is
delivered and visualized on the interface between 1&C system and practitioners; (3)
controllers receive the response y, from sensors and perform physics or statistics
checks or analysis, based on which, give control commands; (4) actuators convert the
control commands into physical changes u ., in the physical system, e.g., pressure
changes, movement of control rods, or boron concentration, etc.

. pn
Physical Model Sensors
FDI
Up Y |[#—— Attack
f ( yn) Vector
Actuator Controller

Figure 1. Generic Industrial Control System
Nonparametric Approach: Alternating Conditional Expectation (ACE)
algorithm

Despite the startling growth in computer power, rendering high number of executions
using high fidelity simulation is far beyond the reach of foreseen increase in computer
power. Thus, construction of simulation emulators is considered as an essential
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requirement to complete engineering analyses. An emulator, by definition, is any
mathematical construct that attempts to capture the main features of the high fidelity
simulation. For example, a model of simplified physics assumptions may be
considered an emulator, sometimes referred to as low-fidelity model. The lower
fidelity may be a result of using simplifications in the physics equations, or due to
numerical approximations, such as the use of coarse versus fine mesh to discretize the
model equations. These may be referred to as physics-based emulators, as they attempt
to retain the physics principles that underpin the behavior of the system. Another class
of emulators employ function approximation techniques, wherein a parametric
representation is used to approximate the model behavior over the envisaged range of
model application. This approach is also referred to as response surface
approximation, where an assumed functional form, typically with unknown features
such as undetermined coefficients, is fitted against the model behavior at a number of
training points. The fitting is done via a minimization search that identifies the surface
features that minimize the discrepancy between the model predictions and the assumed
surface predictions at the training points. An excellent example of this class of
methods is the commonly used least-squares-based polynomial fitting approach. With
different surfaces, a wide class of methods have been proposed over the years.
Examples include the use of radial basis functions, polynomial chaos expansion,
orthogonal polynomials, etc. In the statistics community, this type of function
approximation is typically referred to as supervised learning. Another class of methods
that have gained a lot of prominence in the data mining community is the so-called
unsupervised learning methods, which employ nonparametric methods for emulator
construction. Nonparametric methods preclude the need for parametric surface
representation. Instead the emulator uses the data directly to make predictions.

The ACE is provided with training datasets, {(x,, x,,x;,y)}. Then we get transforms
of each quantity, ¢ (x;) and @(y) . The algorithm process can be expressed as below[4]:

1. Initiate all data, O(y) = y/|y|. 4,(x) =0, |y =[E(»)*1"
2. &($,0) = E[0(y) - Z¢.(x)T’

3. Iterate until e”(¢,0) fails to decrease:
4.For k=1to p,do:
¢, '(x,)=E[0(y)-Z,_ . 4,(x)
Replace ¢, (x,) with ¢ '(x,)
End For Loop;
End Inner Iteration Loop;
0'(y) = EIZL,4(x)|y1/ | ETEL, 6, (%)
Replace 6(y) with 8'(y)

End Outer Iteration Loop;
6, ¢ are solutions, mentioned as transforms.

5.End ACE Algorithm.

x 1

V|
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2.3.

Physical model: Point Kinetics

This study employs a point kinetic reactor model which is described by Equations (1)-
(4), for Bushehr reactor, see Ref[5] for a full description of the model. The model is
based on four differential equations that follow the evolution of reactor flux or power,
precursors concentration, lodine, and Xenon concentrations. Xenon decays
radioactively and is produced from both of fission and the decay of lodine, which is
generated from fission.

P _Pulap, ;¢

& A (1)
‘;—f - %ﬂp—zeffc @
% =y, P41 3)
% =y Zo P+ A1 — A, Xe— G, XeP )

In equation (1), p ., denotes net reactivity, which demonstrates how neutron source
and feedback effects working on the system, where &,, is an effective value for

Xenon absorption cross section, expressed in equation (6).
EXe

Pret :pext_aP[P(t)_I)()]_ > [Xe(t)_Xe()] (5
F
Gy = ©)
3,EV

where V' is the reactor volume. In addition, the coefficients designed values are listed
in Table 1.

Table 1. Point kinetics designed parameters

Symbol | Quality Value

P(1) core power P, =3000MW

C(1) precursor concentration

Lo external reactivity injected into the core

Lo net reactivity of the core

& power coefficient of reactivity (temperature | 0.48x 10" W-!
dependent feedback)

1(1) Iodine concentration

Xe(t) Xenon concentration

i effective delayed neutron fraction 700%10-

Az effective precursor decay constant 7.841x1072% 7!
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A neutron mean generation time in the core 32x10¢s

Y average neutrons produced by fission 245

Z; effective one group cross section for the core | 0.77x1072

7, fission yield for Iodine 6.386x102
2, Iodine decay constant 2.875%107s!
xe fission yield for Xenon 0.228x10
Ay, Xenon decay constant 2.092x107s!
oy, neutron capture cross section for Xenon 2.7x10 ¥ cm?
E, Energy released per fission 320%x1013J
Vv Core volume 27.8 m?

Since Xenon has an exceedingly large neutron absorption cross section, the neutron
flux changes as Xenon concentration varies. With respect of this fact, during a period
of reactor operation, a rivalry between the addition and removal rates of Xenon results
in a periodic variation of neutron flux, Xenon and Iodine concentration. However, this
oscillation is undesirable, since it can induce some difficulties e.g., a dead time for
reactor restart, violation thermal limitations at local areas, or hiding attacker's false
data injection, etc. In order to model this oscillation behavior accurately, the physical
model and related parameters above are necessary. In our approach, these significant
parameters can be estimated in a surrogate model, by introduction of perturbations to
the reactor.

16



SIMULATION RESULTS

For this study, three parameters are selected to demonstrate the proposed approach,
these parameters are the power feedback coefficient ¢, , the neutron capture cross

section of Xenon o, , and the fission cross section X . Figures 2 through 4 show

results of a parametric study in which each of these parameters is perturbed by a small
amount. As evident, these parameter perturbations result in changing oscillations
amplitude, phase, and dying speed. To identify the parameters only by a brute force
least-squares solver is proved to be inadequate.

1.08 , w w w

—DesignedFlux
1.06 ﬂ h —RealFlux |
1.04

i !

0.96 |

0.94 ‘ ‘ ‘ ‘
0 20 40 60 80 100
Time/hour
Figure 2. Flux Sensitivity due to Parameter Z;

1.08

—DesignedFlux
1.06 | ?\ —RealFlux 1

0.94 : :
0 20 40 60 80 100

Time/hour
Figure 3. Flux Sensitivity due to Parameter ox.
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3.1.

1.08

—— RealFlux

1.06

ﬁ ——DesignedFlux

1.04

1.02 |

Flux

0.98

0.96

0.94 : : ‘ :
0 20 40 60 80 100
Time/hour

Figure 4. Flux Sensitivity due to Parameter ap

Computational Procedures

The following inference approach is employed:

1. Starting with estimates for the k parameters (k =3), generate an estimate for the
flux profile by solving Equation (1) through (4). Let N refer to the dimension of the
flux profile, i.e., the number of components, one component per time step.

2. Generate M randomized perturbations of the parameters, and calculate the
corresponding flux profiles.

3. Calculate fast Fourier transform of the M flux profiles .

4. Using scatter plots and simple variance measures, identify the dominant Fourier
coefficients associated with each parameter, where dominance implies strong sensitivity
to the input parameters.

5. Combine all identified Fourier coefficients into a K component vector.

6. This reduces the inverse problem to one with k input parameters and K output
responses. The goal is to identify the best transfer function relating inputs and outputs.
7. Apply the ACE (Alternating Conditional Expectation) algorithm to help identify
the best input-output transfer functions. For this work, given the smoothness of the
coefficients variations with the parameter perturbations, a 3rd order polynomial is
employed.

8. For a given flux shape, one can update the parameters by first identifying the K
Fourier coefficients, and inverting the transfer function in step 7 to determine necessary
adjustment for the parameters.

9. With the fitted functions for transforms and inputs, a numerical solver is employed
to find a new value for input, given the transform values of responses as well as initial
estimation guess.
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Figure 5 through 7 show the Fourier coefficients for a number of perturbations where a

single parameter is perturbed at a time.
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Figures 8 through 10 show results of the parametric study of select number of Fourier

coefficients versus each of the three parameters.

70 T

Norm of Coefficient
N w S (9, D
o o o o o

—
o
T

1 2 3 4

5 6 7 8 9
Perturbation/%

10

[ 11

11
12
13

- 14

15
16
17

- 18

19
20

Figure 8. Coefficients Variation with Perturbed aj,

20




90

O 00 N O U D W N -

I

Norm of Coefficient

16 ; - : . i

1 2 3 4 5 6 7 8 9 10
Perturbation/%

Figure 9. Coefficients Variation with Perturbed Z;

180
: — 11
160} i 1 — 12
’ — 13
140\ : e 14
= Z 15
120} : ]
18 : 16
% 100 : 1
o : - 18
P11 S — — nsmmmnisselmenoed | 19
£ : — 20
5 B0 | I S I ]
< :
40! /
20 S SEI I SCE Sy
) : ‘

1 2 3 4 5 6 7 8 9 10
Perturbation/%
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The figures above show that variations of the different Fourier parameters, from
which we select a subset of dominant coefficients, coefficient 10, 11 and 12, as
responses to apply ACE algorithm. ACE is a nonparametric method meaning that no
prior parametric representation is required to describe the dependence of the Fourier
coefficients on the input parameters. Instead, this dependence is learning directly from
the data. To evaluate the accuracy of this application of ACE, we divide the sample
into 2 parts, one for training the model of ACE, meanwhile the other for testing the
accuracy of trained ACE model. Training data are distributed at 960 random points in
the 3 dimensional space of the parameters mentioned before. A 3x960 matrix X stores
the relative values of parameters; and the corresponding responses, are three selected
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coefficients from fast Fourier transform, which are stored in three 1x960 vectors Y;,
Y, and Y;. Independent from the training data, there are 40 random points in testing
data which are stored in a 3x40 input matrix and three 1x40 vectors for storing
responses.

We apply the algorithm in based python developed function by Nick Touran[6]. Given
training data, this function gives transformations of each perturbed quantity and
responses, from which we can identify the general relationship between the quantities
and their corresponding transformation, employ interpolation to predict the responses
of test cases, and apply curve-fitting to obtain the transformation function afterwards.

The evaluation calculation process is shown in Figure 11, and functions in the process
are defined as below. Then we can get the residuals by the difference between 'y,
and y .

fi(x) = finterpolation (x,,0,(x,));
Pp=24(x,)
h(¢) = hmterpolation (#,0);
g(0) = & interpolation 0,y);

"
Xo ¢o

1 1i (%) }¢1 h 0 ;
L f; (x >_)¢ (9) >9 g(0) >ynew,

%5 ¢2

x3 J ¢3 J
Figure 11. Evaluation Calculation Process

Figure 12 shows an example of the nonparametric dependencies discovered by ACE for
one of the Fourier coefficients. With the known nonparametric relationship generated
from ACE, We employ least square to functionalize the variables and the corresponding
transforms. Then we apply data for testing to the fitted formulation, which is shown in
Figures 13-15.
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Figure 16 compares the original flux and the flux reconstructed using the estimated
parameters, which represents the model to be used by the attackers. Results indicate
that the inference approach produces highly accurate estimation of the flux shape,
implying that the attacker can later use this model to inject false data into the 1&C
network while going undetected by the conventional outlier/anomaly detection
techniques.
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Figure 16. Comparison of Estimated Flux and Real Flux
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41.

THRUST 2: DATA DRIVEN LEARNING OF REACTOR STATE

This thrust poses the question of whether data driven techniques, not aided by physics
models governing reactor behavior, may be used to estimate reactor state in an online
mode. To achieve that, we employ the RELAPS thermal-hydraulics model to design
representative behavior for a reactor under a number of operating scenarios to judge
the ability of data driven techniques to learn reactor states. Data-driven techniques
may be thought of as black-box learning techniques which assumes complete
ignorance of the physics models governing the observed behavior. They deal only with
the inputs and outputs and attempt to build predictive models. Examples include
response surface methodologies and function approximation techniques, which may be
applied in either parametric or nonparametric fashions. Parametric techniques assume
a surface with a number of unknown coefficients, such as polynomial fitting, and
employ a minimization procedure to identify the coefficients that maximize the
predictability of the assumed surface, i.e., minimize the discrepancies between
measured and predicted responses using the assumed surface. In nonparametric
techniques, such as alternating conditional expectation, explained earlier, no surface is
assumed, and the best functional shape is determined directly from the data. Both
approaches are typically applied after some dimensionality reduction is applied to
explore any dependencies between the data to improve the performance of the
minimization procedure.

RELAPS5 Model Descriptions

The RELAPS5 model simulates a PWR with two primary coolant loops by 139
volumes, 142 junctions, and 83 heat structures. Heat structures are used to represent
heat transfer from fuel rods, U-tubes, pressure vessel wall, vessel downcomer wall,
core shroud, and internals in the upper head and lower and upper plena. This model
prints output every 20 seconds from 0 to 5000 seconds. The nodalization of the model
is illustrated in Figure 17[7] and 18[7].
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Reducibility of RELAP5 Model

Before applying data driven techniques on the physical model, we check the
reducibility of this model. We change two control variables to simulate the scenarios
which could happen when false data are injected in the control system of nuclear
power plant. The changed two variables are steam demand and feed water flow rate in
the lumped loop. These two variables are perturbed around their reference values to
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simulate normal variations during operation. The reference values have been selected
to introduce oscillation in the predicted response, which is an undesirable behavior
during operation, but selected here to measure the ability of data-driven techniques to
predict system behavior when behavior deviates from normal steady state behavior. As
responses, 5 physical quantities are selected: pressure in pressurizer, temperature in
pressurizer, liquid level of pressurizer, liquid level of steam generator and total
power. The simulation results for 9 different cases are stored in a matrix with 45 rows,
representing 5 responses per simulation, and the number of columns represent the
number of time steps. The goal here is to gauge the level of correlations between the
responses over a range of operating conditions. Rank revealing decomposition, e.g.,
SVD, is applied to determine the effective rank of the resulting matrix. Figure 19 plots
the rank as a function of the maximum reconstruction errors. Examples of the
reconstructed responses, pressurizer level, power, and steam generator levels, with
rank 10 are given in the following figures. Assuming a tolerance of 0.001, that’s 0.1%
of the nominal values, the rank is higher than the number of responses, indicating that
the correlations between the responses over time, which must be captured by the data-
driven approach employed. If one employs a weaker criterion, say 1%, the rank drops
significantly to about 5-6, which implies one cannot predict one response from
knowledge of all other responses. These results are interesting to both attackers and
defenders because the noise level will determine the tolerance needed to predict
system responses. With higher noise, it becomes easier for the attacker to learn a
model that is indistinguishable from the defender’s model. To the defender however,
this may represent a possibility to develop signatures using the high order correlations
which are below the noise level.
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In order to explore the dependence of the responses variations on various conditions,
such as inlet feed water flow rate and temperature, one can derive features from the
responses variations directly and explore their dependencies on such conditions. For
example, a common approach is to calculate the components of the responses
variations along some prominent basis, such as Fourier transform basis, or a basis
directly derived from the responses variations, such as the singular vectors from the
singular value decomposition, or principal components of principal component
analysis. For our application, we explore deriving features using both the right
singular vectors and the fast Fourier transform. Figures 23 through 25 show the results
for the singular vectors, and Figures 26 and 27 for the Fourier transform. Results
indicate that while some patterns may exist, it is difficult to use this information to
reconstruct the full responses variations. Many attempts have been done to explore this
but all results were negative, indicating that the data cannot be reduced, and their
dependencies cannot be captured using response surface models, which are not
informed by the physics.
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Figure 25. § of Liquid Level in SG vs. Steam Generation variation
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5.1.

THRUST 3: RECOMMENDATIONS

In this thrust we provide two types of recommendations on the types of attack
scenarios that may be initiated by the attackers, and on the defense strategies needed to
identify FDI attacks.

Recommendations on the Threat Scenarios

Two principal FDI threat scenarios (see Figure 28) may be envisioned, both designed
to generate control commands that divert the reactor state from its normal range of
operation for malicious purposes. The first threat scenario is designed to initiate an
event, which can be done by falsifying sensors readings, and the second threat is to alter
the normal (i.e., as-designed) reactor response to an event, which can be done by
changing the controller logic.

An example of the first threat is when the attacker attempts to falsify a reduction in the
heat removal in a BWR core by injecting false flowrate readings. To go undetected by
the plant computer’s checks, the attacker changes all other sensors’ readings which are
correlated with the core flowrate (e.g., neutron detectors signals used to estimate
reactivity, outlet core temperature, water and steam levels, etc.). These correlations can
be established via conservation principles or determined, as discussed earlier, via self-
learning using condition monitoring techniques. Following that, the attacker lets the
reactor respond to the event per design procedures (e.g., via actuation of fine motion
control rods).

|' y is a response, responses, or correlations thereof

r‘ -+ Normal Response to Event
y

=~ FDI Response to Event

A FDI Initiating Event

1: time A Normal Reactor Event

Figure 28. FDI Threat Scenarios

In the second threat, the attacker attempts to alter the normal plant response by changing
for example the steam generator set point for trip or by trapping the reactor in an
oscillatory regime that would otherwise be damped by the natural reactor response. For
example, one could introduce undamped density wave oscillation (DWO) in a BWR. A
DWO is a wave of traveling voids that produces a lagging pressure drop. Natural reactor
response can dampen these oscillations because an increase in the flow increases
pressure drop which reduces the flow thereby killing the oscillatory behavior. The
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5.2.

attacker could interfere with this natural behavior by changing the phase shift (via
falsifying measured flowrate and all correlated sensors, e.g., OPRMs) until it reaches
180°, where pressure drop feedback becomes positive, which results in unstable
oscillations. Left undetected for long time leads to fuel clad failure.

Recommendation on the Defense Strategy

Based on the findings of this study, we propose a new formulation of the cybersecurity
defense problem against false data injection attacks, based on the concept of active
monitoring of system behavior. This defense relies on building mathematical
signatures of the entity to be protected as functions of its unique historical operational
and design characteristics which are expected to serve as fingerprints such that no two
entities can be the same. An initial step towards this goal is to focus on measuring the
strength of the mathematical signatures developed and what would it take for an
attacker to break them, assuming they have access to everything about the system,
including system design, raw signals data and the physics models employed by the
control system, and the defense algorithms used to build the signatures.

Active monitoring relies on the physical understanding of the engineering system to
establish a new measure of security that derives its strength from the unique design
and operational characteristics of the reactor system. This approach is essential
because the important accidents in a nuclear reactor have a very short response time,
making it difficult for operators to enact proper counter measures, especially when
their displayed information is falsified by the attack. In active monitoring, the data
traffic of the digital control system are actively perturbed based on physics-based
understanding of system behavior. These active perturbations represent small
inconspicuous distortions to the data traffic that do not impact system behavior but
make it nearly impossible for the attacker to go undetected when attempting to learn
and/or modify system behavior. The main value of this approach is to allow for early
detection of threats during their initial lie-in-wait period where attackers typically
excite the system with small perturbations, e.g., commands to actuators of system
components, to learn the system’s dynamical behavior. Detecting the attack at early
stage is very important given the short response time for most important accidents.

To demonstrate the resilience of this approach, the raw sensors data, the computer
physics codes used to stimulate the system as well as access to the operators-displayed
information is to be assumed exposed to the attacks at varying levels of access up to
full-fledged access. In the full-fledged access, the attacker is assumed to have access
to the algorithms used to design the data distortions used by the defender’s active
monitoring system. This is an important assumption in the development of any
security approach, because research has proven that security by obscurity is never an
effective strategy. For each access level, the attacker success criterion will be based on
their ability to devise strategies that learn system behavior and identify engineering
vulnerabilities that can be exploited to launch attacks that take the system outside its
per-design operational boundaries. Part of the attackers’ success will be measured by
their ability to deceive operators to stop them from taking corrective measures that
minimize the impact of the attack. The success criterion of the defense algorithm is to
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be measured by several factors including the ability to distinguish between malicious
and normal deviations that could potentially lead to accidents, the ability to detect
intrusions during their lie-in-wait periods before active attacks are initiated, and the
ability to render such attacks harmless, i.e., the ability of the control system and/or the
operators to automatically or manually shut down the system without violating any of
the safety limits.

The concept of active monitoring is markedly different from passive monitoring which
is commonly employed to check equipment reliability and predict early failure. In
passive monitoring, the goal is to continuously monitor control system traffic
(including both sensors readings and commands to actuators) to determine whether
their behavior is consistent with expected variations. Passive monitoring can be
ultimately bypassed by technically-able adversaries, as they are expected to possess
the system’s know-how and can develop computer models that mimic behavior to high
degree of accuracy, which can be used to falsify SCADA traffic without alerting
operators. Active monitoring, however, introduces small perturbations to SCADA
traffic, designed to be small enough as not to impact system performance, but can be
leveraged to generate new signatures that are known only to the defender, and thus can
be used to detect intrusion. These perturbations can be identified using a number of
mathematical techniques, collectively referred to as reduced order modeling (ROM)
techniques, which can identify perturbations with negligible impact on system
performance. The signatures represent mathematical functions of the all the data
comprising the SCADA traffic, including sensors readings and commands variations
over space and time, which can be harvested using data mining techniques.

Active monitoring allows for early detection of intrusion that attempts to learn system
behavior during an initial lie-in-wait period. For sufficiently complex and stealth
attacks, the attackers typically excite the system with small perturbations initially to
learn system behavior before launching their attack. These perturbations are selected
to have small impact on system behavior and designed to be consistent with normal
operational manoeuvers, to avoid detection by operators. Active monitoring will detect
these intrusion attempts early on as the attacker’s introduced perturbations will not be
consistent with those developed by the first module of the active monitoring software.

The data mining algorithms will perform the following functions

1. Identify active perturbations. This module is designed to execute the system’s
engineering model many times in an off-line mode to search for the optimum
perturbations using reduced order modeling techniques. The engineering model is
not part of this invention and will be system-dependent. ROM techniques are well-
established in the literature, and are typically used to reduced complexity of a
given model by identifying perturbations with maximal impact on system
behavior. In this invention, ROM is used to search for the perturbations with weak
impact on system performance.

2. Identify Signatures. This module will employ conventional data mining techniques
to identify in an off-line mode mathematical relationships between the identified
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perturbations (generated by the first module) and sensors variations over the
combined spatial-temporal phase space.

3. Detect Signatures. This module will be executed in an online mode to compare the
signatures identified by the second module to the online SCADA traffic.

The immediate goal of active monitoring is to develop measures by which one can
distinguish between genuine behavior, even under accident conditions, and behavior
that has been modified by potential adversaries. This monitoring strategy has a wide
range of other applications. For example, it may be used as a watermarking tool for a
general software predictions. Watermarking is typically used to authenticate
authorship of a static representation of a file, e.g., a document, or a picture, but one
may think of the need to create watermarking capability for dynamic data, such as
videos, or software predictions. In many cases, adversaries may resort to reverse
engineering to predict the internal mechanics of a captured component, e.g. drone.
This will be based on building approximate models for the system, based on the best
available data on system behavior. If one has a capability capable of authenticating the
field data before they are used to issue commands to the various system components,
one can develop another layer of defense to ensure that captured components are
designed to self-destroy if captured by adversaries, thereby protecting the technology.
This can be achieved by inserting small perturbations into the field data of the
component, that do not impact its performance, but can be used to authenticate the
source of the data, i.e., whether produced by an authorized version of the simulation
software, or an approximation thereof. We demonstrate the application of such idea
using the following model.

An OpenFOAM model for a pipe is employed to calculate the speed of a liquid in a
pipe, subject to perturbations in the boundary conditions, the inlet speed from two side
openings, see Figure 29. After executing the model for a wide range of conditions, the
dominant behavior is evaluated, as captured along the principal components of the
velocity field, these are the components of the velocity vector along the left singular
vectors, evaluated using singular value decomposition. Small perturbations, referred to
as the active perturbations, determined as randomized linear combination of the most
dominant directions are added to the velocity vector, such as to render it
indistinguishable from the original value. The singular value decomposition of the
perturbed velocity field, assumed to be accessible to the attacker, is repeated, and the
components along the entire spectrum of singular vectors is compared to the
components along the unperturbed singular vectors. Figure 30 shows that one can
design such perturbations in a manner that preserves the dominant part of the
spectrum, implying that the attackers will not be able to detect that the data have been
modified from their original values. The differences in the spectrum start to show later
in the spectrum, where the variations are small enough to be within the noise level.
Noise-canceling coding schemes, e.g., dirty paper coding, can then be used to insert
hidden information along these components to serve authenticate the process used to
generate the simulation results. We believe this technology could have a wide range of
applications beyond the cybersecurity problem, which will be investigated in future
work.
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CONCLUSION

This work served an important goal, that is to explore the seriousness of intrusive attacks
into the SCADA systems of a critical infrastructure such as a nuclear power plant, whose
design details and operational characteristics are widely known. The study confirmed
that technically-able attackers can indeed learn system behavior if equipped with
physics models that approximate system behavior, and further, no reliable learning can
be achieved using black-box data-driven techniques, such as neural networks. Data
mining technique prove useful in determining unknown features of the physics model,
which may include some proprietary data that are not available in the public domain,
such as dimensions, compositions, etc. In doing so, the data mining procedure will be
carefully guided by physics models that closely approximate system behavior. Again,
this is possible, because enough knowledge about these systems is available in the public
domain. Moreover, if the attacker does not have access to the physics models used by
the defender, we believe that it is possible to develop signatures that employ the higher
order correlations between field data. However, we don’t believe this is a valid strategy,
because the software used to model most critical infrastructures can only be protected
using obscurity measures, and typically these types of software are exposed to a large
number of code developers, and hence can eventually be acquired by persistent attackers.
Hence, passive monitoring techniques are not expected to be resilient enough to build
signatures for system genuine behavior. The study provides recommendations on the
types of attacks that may be initiated by attackers once have gained access to the
SCADA field data, and proposes defense strategies based on active monitoring
techniques. In active monitoring, small perturbations are actively inserted in the
SCADA field data, in a manner similar to what the attacker does, but for the purpose of
authenticating whether the SCADA field data have been manipulated.
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