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Abstract

This report describes a seedling project in which we developed experimental
paradigms for studying patterns of analyst attention to streaming data. The project
identified key structure features that can be used to generate appropriate stimuli for
nearly any mission domain.
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1. BACKGROUND

In many sensor systems, particularly systems operating on streaming data, the volume
of data acquired outstrips computational and analyst capacity. Analysts are confronted
with a deluge of data, much of which falls arbitrarily to the cutting room floor. New
approaches are needed to triage, or compress, these massive streams of data so that the
most decision-relevant segments are retained for use by the analysts or by subsequent
automated processing systems.

The goal of this seedling project was to develop the basic science associated with
understanding the patterns of analyst perception and attention when processing
streaming sensor data. We aimed to test the feasibility of developing lossy
compression algorithms for streaming data that are based on patterns of human
attention. In many existing lossy compression algorithms, knowledge about human
perception is used to drop nonessential data so that file sizes are reduced without
impacting how a user perceives the information. We hypothesize that an analogous
approach could be used to triage streaming sensor data by modeling patterns of human
attention and identifying data features that draw attention. If this is possible, it could
highlight features of interest while compressing or de-emphasizing data that is
irrelevant to decision making, resulting in improved human-system performance.

In support of this overarching idea, we proposed to develop a new methodology for
using cognitive neuroscience techniques to inform the development of compression
algorithms. Specifically, we used a combination of eye tracking and
electroencephalography (EEG) methods to characterize patterns of human attention
when viewing streaming data. This seedling project supported a pilot study in which
we developed and tested this methodology with a small group of participants. We
developed stimuli that have an attentional profile similar to streaming sensor data,
such as full-motion video (i.e., a continuous stream of irrelevant events with important
events interspersed at unpredictable intervals). We collected a pilot dataset using these
experimental paradigms and stimuli to assess their effectiveness. These pilot results
served as a proof-of-concept and will be used to support future proposals that will
expand upon this preliminary work.

Project Goals

This project had three main goals:

1. Develop experimental analogs of streaming sensor data that mimic the attentional
demands of streaming data but provide experimenters with full control of variables of
interest.

2. Combine EEG and eye tracking data to track the time course of analysts' attention
to features in streaming data.

3. Collect a small EEG/eye tracking dataset to assess the success of goals 1 and 2.
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One of the key elements that is required for studying patterns of analyst perception
and attention in streaming data is a well-defined stimulus set that will allow
experimenters to control factors that drive human attention. These factors include the
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frequency of events of interest and distractor events, the timing and duration of the
events, the perceptibility of the events, and the overall length of the task. The stimulus
set must be an effective analog for streaming sensor data while providing
experimenters with control over each of the relevant attentional variables. Our first
goal was to develop such a stimulus set, drawing on the existing scientific literature on
human attention and visual cognition.

Our second goal was to integrate the stimulus set into a test environment that can
combine eye tracking and EEG data collection modalities. Eye tracking provides
information about what an analyst looked at in a streaming data set, and EEG provides
information about whether and how that information was processed. EEG records
millisecond-level information about the electrical activity of the brain, and the
relationships between specific patterns in EEG data and neural processes related to
attention are well established in the cognitive neuroscience literature (see Fabiani,
Gratton & Federmeier, 2007 and Herrmann & Knight, 2001 for reviews, see also
Harmony et al., 1996; Klimesch et al., 1998; Muller, Gruber & Keil, 2000; Sauseng et
al., 2005). EEG data can be used to determine the depth of encoding of stimuli
(Hanslmayr, Spitzer & Bawd, 2009; Haass & Matzen, 2011; Rugg, Allan & Birch,
2000; Rugg & Curran, 2007; Sanquist et al., 1980), to determine whether the
processing was automatic or controlled (Hoffman, Simons & Houck, 1983; Schneider
& Shiffrin, 1977; Strayer & Kramer, 1990), and even to detect leading indicators of an
analyst's decision (Gratton et al., 1990; Leuthold, Sommen & Ulrich, 1996). Human
attention waxes and wanes over time (Busch & VanRullen, 2010; Egeth & Yantis,
1997; Sarter, Givens & Bruno, 2001), so the combination of eye tracking and EEG
will allow us to assess what visual features draw the participants' attention and the
level at which that information is processed in the brain (i.e., automatic versus
controlled and shallow versus deep encoding). Integrating eye tracking and EEG is
crucial for characterizing human attention to streaming data, but it is also a non-trivial
technical challenge.

After developing an integrated EEG/eye tracking test environment and a series of
experiments in which variables related to attention can be manipulated, we collected a
small dataset of EEG and eye tracking data from individuals completing our
experimental paradigm. This dataset was intended to test the validity of the design of
the streaming data analog as well as the feasibility of integrating eye tracking and
EEG for this application.

This project was intended to lay the groundwork for future research on analyst
attention and for the development of new data compression algorithms that are based
on human attention. Ultimately, our vision is to track attention and processing to
different features in the data set and map their contributions to the analyst's decision
making process. The resulting mapping could be used to develop data compression
and data visualization algorithms that retain and highlight information that is likely to
be central to an analyst's decision making process while de-emphasizing information
that is unlikely to be relevant.
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1.2. Developing Experimental Analogs of Streaming Sensor Data

One of the main challenges in this project was developing experimental paradigms
that can be adapted to multiple types of streaming data. To address this challenge, we
focused on identifying cognitive aspects of scene perception that would apply to any
domain, regardless of the specific details of the data or analytic process.

Wolfe and Horowitz (2017) reviewed the existing literature on the factors that drive
visual attention in natural scenes. They identified several key factors that have been
shown to drive attention across multiple studies. The factors that were most relevant to
our investigation were the following:

1. Top-down drivers of attention, such as the viewer's task and the relative value of
search targets

2. Bottom-up drivers of attention, such as the physical features of the stimuli

3. Syntactic constraints within scenes, such as physical constraints about where
certain items could appear

4. Semantic constraints regarding the likelihood of different objects appearing in
different parts of a scene

By focusing on these four factors, we developed an experimental framework that can
be generalized to any domain. Top-down and bottom-up drivers of attention are well-
characterized and can be defined for different mission areas after an understanding of
the analysts' data sources, goals, and analytic process has been developed. By framing
data streams in terms of their syntactic and semantic constraints, we can further
characterize the patterns of attention that any given data stream is most likely to elicit.

The sections below describe the two experimental paradigms that we created to
manipulate these parameters and test their impact on participants' patterns of attention.
Experiment 1 used still images, presented in sequences that had congruent or
incongruent endings, where the incongruent endings could be either semantic or
syntactic incongruities. Experiment 2 used animated videos that were created using
video game world and character models. The tasks in Experiment 2 mimicked
streaming data in the form of physical surveillance videos, and each scenario has
semantic and syntactic constraints that can be manipulated by the experimenter.

1.3. Combining EEG and Eye Tracking to Assess Analyst Attention

One of the technical challenges involved in this project was integrating the stimulus
presentation, eye tracking, and EEG systems to allow for analysis of multiple data
streams. Each of these aspects of the data collection is controlled by a different
software system running on separate computers. In order to accurately analyze
patterns of attention to streaming data, we must be able to insert time-locked triggers,
encoding specific events that happen in the stimuli and the participants' responses to
those events, into the eye tracking and EEG data streams with high temporal precision.
This is a non-trivial challenge.
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We tested a variety of setups for accomplishing the required data synchronization.
Ultimately, we used the software package E-Prime 3 to send triggers to both data
collection systems. E-Prime recorded the participants' behavioral responses and
presented the stimuli such that the onset of each trial or video was synchronized with a
refresh of the stimulus presentation monitor. E-Prime sent triggers related to the onset
of specific stimuli and participants' responses to the EEG amplifier via parallel port.
At the same time, it sent triggers to EyeWorks Record, the eye tracking data collection
software, by sending codes over the network to the eye tracking computer. These two
sets of triggers, sent simultaneously, allowed us to time-lock both data streams to
events of interest and to synchronize them with one another.
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2. EXPERIMENT 1

In Experiment 1, we tested how humans process semantic and syntactic violations in
scene sequences. Semantic violations refer to violations of meaning-related aspects of
a scene, whereas syntactic violations refer to violations of structural or functional
elements of a scene (more examples provided below). This experiment will help
characterize patterns of human attention to these two types of anomalies occurring in
naturalistic scene sequences, data which could then be used to inform compression
algorithms for streaming data as to which elements of scenes are and are not important
for human viewers to process in order to correctly interpret the scene. Specifically,
semantic and syntactic violations scene could have different meanings for the analyst
and could help distinguish between a threat or non-threat anomalous event. Although
computer vision algorithms could likely learn to distinguish low-level cues from a
scene (i.e., is there a person present in the scene), the ability to identify whether an
object or event is unexpected given the context is still a uniquely human skill.

There is a large body of work that has examined the brain electrical activity elicited by
semantic and syntactic violations in linguistic stimuli. Much of this work has been
done by collecting event-related brain potentials (ERPs), which are portions of the
ongoing electroencephalogram (EEG) recorded at the scalp and time-locked to
stimulus events of interest. ERPs are a multi-dimensional data source, and provide
information about the timing, amplitude, and polarity of brain activity elicited in
response to specific types of stimulus events. Importantly for our purposes, they are
automatically elicited even in the absence of a task, and can even show effects that
participants cannot report behaviorally (e.g., responses to grammatical violations in
second language learners; Tokowicz & MacWhinney, 2005). In this way, ERPs
collected to streaming data could potentially reveal anomalies in the data stream that
the human analysts may not be able to report behaviorally.

There are two distinct event-related potential (ERP) components that are elicited to
semantic and syntactic anomalies: the N400 and the P600. The N400 is a negative-
going ERP deflection that is elicited by all meaningful or potentially meaningful
stimuli, peaks 300-500 ms post-stimulus onset, and is largest over centro-parietal
electrode sites (for review, see Kutas & Federmeier, 2011). Its amplitude is largest for
anomalous or totally unexpected stimuli, and is reduced proportionally relative to an
items predictability given the preceding context. On the other hand, the P600 is a
positive-going ERP deflection elicited by syntactic violations (Osterhout & Holcomb,
1992), as well as a wide range of difficult-to-process syntactic structures and other
types of grammatical errors. It is broadly distributed over posterior channels, and tends
to peak around 600 ms post-stimulus onset, although its timecourse can vary from
500-100ms post-stimulus onset.

Although the study of syntactic and semantic violations has been most often studied
using linguistic stimuli, other work has begun to extend this work into non-linguistic
settings (for review, see Sitnikova, Holcomb, Kiyonaga, & Kuperberg, 2008),
demonstrating that these mechanisms reflect how people generally make sense and
meaning from the world, as opposed to processes that are strictly linguistic in nature.
This experiment is a direct extension of Sitnikova et al. (2008), and as such, we will
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briefly describe their experimental paradigm and results. Sitnikova et al. (2008)
showed participants videos of people performing everyday actions (e.g., turning on
water in a bathroom sink, putting shaving cream on face) that could end with either an
expected action (e.g., shaving face with razor), a semantic violation (e.g., the scene
jumps to the same actor performing a completely unrelated action, like putting food in
the microwave), or a syntactic violation (e.g., the person rolling a rolling pin on their
face). Across two separate experiments, they found that semantic violations elicited an
N400 relative to the congruent condition, whereas syntactic violations elicited a P600
component relative to the congruent condition. They interpreted these findings as
showing that the comprehension of real-world events is mediated by two largely
distinct processing mechanisms: one, indexed by the N400, that evaluates new
information based on the strength of their semantic relationships with previously
viewed information, and a second mechanism, indexed by the P600, that evaluates
new information based on how it fits the physical constraints of the scene. This is
consistent with other work that has also found N400-like components to objects
containing incongruent scenes (e.g., Demiral, Malcolm, & Henderson, 2012; Ganis &
Kutas, 2003; Mudrik, Lamy, & Deouell, 2009; Sitnikova, Kuperberg, & Holcomb,
2003), although under situations where prediction is made more difficult, P600 effects
have been observed instead (Demiral et al., 2012).

The current experiment expands Sitnikova et al. (2008) in two ways. First, we will ask
whether the N400 and P600 components to the two types of violations are elicited
within the same individual when they encounter intermixed semantic and syntactic
violations. Secondly, we will present participants with two scenarios to track
simultaneously, one in each visual field (biasing processing to the contralateral
hemisphere initially), which will allow us to ask two related questions: 1) can people
track two ongoing scenarios sufficiently so as to elicit the canonical ERP effects
associated with these violations, and 2) do the two hemispheres respond to violations
in scenes differently (from both each other, and from the pattern observed at central
fixation)? Federmeier (2007) has shown that the left hemisphere tends to do more
predictive, top-down processing, whereas the right hemisphere tends to do more
veridical, integrative, bottom-up processing. Given these findings, it is possible that
the two hemispheres will show different effects to these violations, especially if
predictive processing is necessary to elicit the N400 effect.

These questions are also important to inform the creation of compression algorithms
for streaming data, for several reasons. First, it will often be the case that the same
analyst will view data streams that contain multiple types of anomalies, and so it is
critical to understand how the same person processes several, interleaved types of
anomalies. Secondly, analysts will typically view multiple data streams
simultaneously, and those presented to their different visual fields will necessarily
elicit different neural mechanisms, so it is crucial to characterize these differences in
order to incorporate them appropriately into data compression algorithms based on
patterns of human attention.
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2.1. Participants

Eight employees (five female) of Sandia National Laboratories participated in the pilot
data collection. The participants ages ranged from 24-59.

2.2. Materials

Stimuli were adapted from Sitnivoka et al. (2008). The original stimulus set consisted
of color movie clips that depicted an actor performing an everyday activity (e.g.,
getting out a loaf of bread and putting it on a cutting board). Each video was
constructed to have three possible endings: congruent, semantically incongruent, and
syntactically incongruent. In the congruent condition, the final scene of the clip
depicted the individual using an object in a congruent manner that followed from the
semantic and syntactic constraints of the scene (e.g., uses a knife to cut the bread). In
the syntactically incongruent condition, the actor was depicted using an object in an
incongruent way that was inconsistent with meeting their goal-directed behavior in the
scene (e.g., using an iron to unsuccessfully cut the loaf of bread). In the semantically
incongruent condition, a congruent scene from a different movie clip was spliced onto
the end of the original video, to depict the same actor performing an action that was
not related to the preceding context, but in which they were using a tool in a realistic
way (e.g., ironing pants). The wholly unexpected nature of both movie endings was
confirmed by a norming study with 18 separate individuals (see Sitnikova et al., 2008,
for details).

In the current study, the videos were adapted in order to be shown as four consecutive
still images (to standardize the length of each scenario and enable clear time-locking
to events of interest). To do so, individual frames were saved from the beginning,
middle, and end of the initial set-up of each video, as well as a single frame from each
of the three ending conditions that reflected the action of the scene. For the
semantically incongruent endings, the same video frame was used as when the scene
appeared as a congruent ending to ensure that these remained physically identical.
Participants viewed the scenarios in two different configurations: a 1-scenario
condition, in which only one scenario was presented at central fixation, and a 2-
scenario condition, in which two scenarios were presented simultaneously (with one
image in the left visual field, and one image in the right visual field).

There were 80 critical stimuli, each of which had three possible endings, for a total of
240 possible unique scenarios. Participants saw each stimulus four times total across
the 1-and 2-scenario conditions: twice in the 1-scenario condition (once as congruent,
once as incongruent), and twice in the 2-scenario condition (once as congruent, once
as incongruent). Specifically, every participant saw every stimulus in its congruent
form in both the 1- and 2-scenario conditions. However, if they saw it as semantically
incongruent in the 1-scenario condition, they would see it was syntactically
incongruent in the 2-scenario condition, and vice-versa. Eight counterbalanced lists
were created, which ensured that across participants, stimuli were rotated through
conditions equally often in the 1-scenario and 2-scenario conditions, and that within
the 2-scenario condition, a stimulus' appearance as congruent and incongruent was
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balanced across visual fields. A set of 80 filler scenarios was created in order to fill in
the second position of the 2-scenario condition by drawing from freely available
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YouTube videos depicting everyday events similar to those in the critical scenarios
(e.g., cooking, cleaning, yard work). All of the filler scenarios consisted of four
individual video frames, and all endings were semantically and syntactically
congruent. Each of the four instances of a critical stimulus was paired randomly with a
filler scenario, and this pairing of scenarios rotated through conditions together (to
ensure that the physical characteristics of the screen that appeared alongside each
critical scenario were held constant across conditions).

Participants saw 320 trials total, 160 in the 1-scenario condition, and 160 in the 2-
scenario condition. Within these conditions, half of all trials contained a congruent
ending, and half contained an incongruent ending (half of which were semantically
incongruent, and half were syntactically incongruent). Trials were presented in a fixed
random order . Order of the 1- and 2-scenario conditions was counterbalanced, such
that half of participants started in the 1-scenario condition, and half started in the 2-
scenario condition.

2.3. Apparatus

EEG data were collected using an Advanced Neuro Technologies (ANT) system with
a 128-channel, Duke layout cap and digitized at 250 Hz. Stimulus presentation was
controlled by E-Prime software. For each event within Experiment 1, such as the
presentation of an image or a button press made by a participant, a trigger was sent to
the EEG amplifier via parallel port.

2.4. Procedure

Participants were tested individually in a sound-attenuated booth. Participants sat 90
cm away from the computer monitor, such that videos were viewed at a size of 4
degrees of visual angle horizontally (as in Sitnikova et al, 2008). In the 1-scenario
condition, scenarios were viewed at central fixation. In the 2-scenario condition,
participants maintained fixation on a central fixation cross to minimize eye movement
artifacts and help ensure that participants were attending to both scenarios
simultaneously. Trial sequences went as follows. Each trial began with a fixation cross
for 1500 ms (jittered by 10-100 ms across trials). In the 1-scenario condition, the
images replaced the fixation across. Each image of the sequence was visible for 1500
ms with a 300 ms inter-stimulus interval . After the final image, a red question mark
appeared, to which participants responded as to whether the final image of the scene
was congruent with the preceding context ("yes") or not ("no"). The yes response was
always made by pressing a trigger on the left side of a game pad, and the no response
was always made by pressing a trigger on the right side . The question mark remained
on the screen until the participant responded, at which point the next trial began.
Participants were instructed that if they

In the 2-scenario condition, the same stimulus timing was used. The only difference
was that the fixation cross remained on the screen (to make it easier for participants to
maintain central fixation), and the two scenarios appeared simultaneously on the
screen immediately adjacent to the fixation cross (beginning approximately 1 degree
of visual angle from fixation, and each image subtending four degrees of visual angle
horizontally). At the end of the trial, participants were instructed to respond "no" if
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either of the final images was incongruent with its preceding scenario (although only
the critical scenarios had incongruent endings).

The 1-scenario and 2-scenario blocks were each subdivided into four blocks of work,
each consisting of 40 trials and which took approximately 5-7 minutes to complete.
Participants received a self-timed break between each block, as well as a slightly
longer break between the 1- and 2-scenario blocks.
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3. EXPERIMENT 2

In Experiment 2, we developed a method of creating streaming (video) stimuli.
Traditionally, visual search experiments rely primarily on static images of stimuli such as
letters and basic shapes (Wolfe et al., 2011) which may not be ecologically valid for
analysts who examine streaming data feeds such as guards monitoring video feeds of
security cameras. EEG research has been conducted with stimuli in motion (e.g., Hirai et
al., 2006; Steel et al., 2016), and a number of databases of motion stimuli exist (e.g,
Mandery et al., 2015). In addition, behavioral research using stimuli in motion has
suggested that the number of moving objects influences the percentage of missed targets
(Sulman et al., 2008). There are several limitations to this previous work. For instance,
Sulman and colleagues (2008) used stimuli in motion, but the stimuli were shapes.
Biological motion appears to have a particular influence on salience and interpretation of
the scene — including discernment of the intentions of the actors (Steel et al. 2014).
Therefore, the use of human actors instead of abstract shapes is critical for research in
security domains. It can be difficult, however, to develop such stimuli. The use of
motion-capture, professional animations, or live-action video can be expensive, time-
consuming, difficult to modify, and have a steep learning curve that acts as a barrier to
entry.

Therefore, the primary goal of Experiment 2 was to develop a method of creating video
stimuli that are analogous to streaming data and contain the desired semantic and
syntactic constraints, that can be created and modified easily, and are simple to use and
understand. In addition, the stimuli and method of presentation must provide sufficient
experimental control such that timing and distribution of stimuli enable rigorous
experimentation protocols. Given these requirements, and the limitations of previous
methods, we settled on using a sandbox physics game (Garry's Mod, created by
Facepunch Studios; https://gmod.facepunch.com/). This software platform was built to
allow for easy modification of scenes and characters. Furthermore, actions of characters,
such as spawn location, movement path, and movement speed can be scripted via Lua
files to provide precise control over situations. Video can be captured as scenarios play
out, and subsequently can be presented as stimuli, as in the current proof-of-concept
experiment. We developed tasks that mimic streaming data in a physical security
scenario, in which a human must monitor video feeds and respond to potential threats.
EEG and eye tracking were recorded while participants watched the videos and
responded to events they were instructed to view as threatening.

3.1. Participants

Eight employees (five female) of Sandia National Laboratories participated in the pilot
data collection (the same participants who were included in Experiment 1).

3.2. Apparatus

EEG data were collected using an Advanced Neuro Technologies (ANT) system with
a 128-channel, Duke layout cap and digitized at 250 Hz. Stimulus presentation was
controlled by E-Prime software. Eye tracking data were collected using the EyeWorks
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Record software produced by Eyetracking, Inc. For each event within Experiment 2,
such as the initiation of a video scenario or a button press made by a participant, a
trigger was sent to the EEG amplifier via parallel port and to EyeWorks Record over
the network.

3.3. Materials and Procedure

Three video scenarios were created to reflect common types of monitoring tasks in the
physical security domain. In the first scenario, participants were presented with
scientist character models entering a fictional research facility (see Figure 3.1, below).
Participants were told that scientists walking into the building was a normal activity
that did not require a response. Scientists running into the building represented an
anomaly worth noting (via a button press), but did not constitute a threat (perhaps they
are just late to a meeting). Scientists running out of the building should be considered
a threat as they may have stolen sensitive material, and the participant should alert
security by pressing a "threat detecteC button. There were 140 stimuli total; 100
common stimuli (walkers), 20 non-threat distractors (runners into the building), and 20
threats (runners out of the building). Non-threat and threat stimuli could co-occur with
common stimuli, but did not co-occur with each other. Common stimuli were spaced
an average of 6 seconds apart, with up to 500 ms of jitter on either side (5.5 s — 6.5 s);
the 40 runners were spaced an average of 15 seconds apart, with up to 1250 ms of
jitter on either side (13.75 s — 16.25 s). As runner co-occurred with walkers, the total
duration of the video scenario was 10 minutes (100 walkers with an average of 6
seconds in between).

Figure 3.1. A scenario in which scientist characters are seen entering
and exiting a research facility
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In the second video scenario, civilian character models were seen entering or exiting a
convenience store (see Figure 3.2 below). Participants were instructed to ignore
characters entering the store, but to indicate via a non-threat button press characters
who exited the store, went into the parking lot, and passed between vehicles. They
were asked to press the "threat detecteC button when characters whom paused to peer
into a car window, as this could indicate a potential car theft. Distribution (100
entering the store, 20 non-threats exiting, 20 threats exiting) and timing (an average of
6 s with up to 500 ms jitter in between common stimuli; an average of 15 s with up to
1250 ms of jitter for the uncommon stimuli) was the same as in the hallway scenario.

Figure 3.2. A parking lot scenario in which civilians are seen entering
and exiting a convenience store
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In a third scenario, participants were presented with a depiction of a military installation with a
fence separating the installation from public space (see Figure 3.3 below).

Figure 3.3. Depiction of a military installation with soldiers inside the
fence and security guards and civilians appearing outside

Participants were told that soldiers were perforrning their morning exercises, and soldiers
running inside of the fence could be safely ignored. The fence may be approached from the
outside by both civilians and security guards. Civilians walking by the fence without stopping
were a notable (button-press) non-threat event, as were security guards stopping to check the
fence as per their duties. Conversely, participants were told that civilians stopping at the fence
were a threat, as were security guards failing to stop at the fence (see Figures 3.4 and 3.5 below
for guard and civilian models, respectively).
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Figure 3.4. Security guard models used in the third video scenario

Figure 3.5. Civilian models used in the third video scenario

Therefore, this scenario required a conjunction consideration (character model +
action) in order for a given character to be deemed a threat or non-threat Timing was
the same as the first two scenarios (6 s on average in between with up to 500 ms jitter
on either side for the common soldier stimuli; an average of 15 s in between for
civilian and guard stimuli with up to 1250 ms jitter on either side). Distribution of
stimuli was similar as well, though with conjunction considerations, as follows: 100
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common soldier stimuli, 10 civilian threats, 10 civilian non-threats, 10 guard threats,
10 guard non-threats.

These three scenarios were presented in a randomized order following completion of
Experiment 1. Finally, participants were presented with six video stimuli at one time —
the three video scenarios, each duplicated once with a different offset in timing and
different character models for the scenario 1 and 2 duplicates (see Figure 3.6 below).

Figure 3.6. Six simultaneous video scenarios

This scenario involved looping the 10-minute scenarios once, such that total
presentation time was 20 minutes. This was designed to evaluate the effects of
multiple presentations of stimuli on ability of participants to detect threats and notable
non-threats (they were asked to respond to the same types of events as they had during
initial presentation of the three scenarios) and to examine the effects of fatigue on
performance.
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4. RESULTS AND CONCLUSIONS

As the goal of this project was the collection of a pilot dataset that will support future
proposals, we will not present a detailed analysis of the data in this report. However,
preliminary analyses of the data indicate that we succeeded in creating a series of tasks
that progressively increases the fidelity of the stimuli and the difficulty of allocating
attention effectively to one or more scenes. In addition, we demonstrated that we can
effectively combine our eye tracking and EEG systems by sending simultaneous
triggers to both recording systems from a single stimulus presentation system (see
Figure 4.1 for an example). This combination will benefit any future projects that
would like to collect simultaneous EEG and eye tracking data.
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Figure 4.1. image of one participant's EEG data from the six video
surveillance task. The green bars in the EEG data indicate regions that
are time-locked to the participant's responses and corresponding eye

tracking data

As outlined in the introduction, the goal of this project was to develop experimental
paradigms that lay the groundwork for future studies that will investigate the
feasibility of developing compression algorithms based on patterns of human
attention. We extended the existing research on visual attention in natural scenes and
bridged that work with the literature on the event-related potentials elicited by
semantic and syntactic anomalies. In addition, we explored new methods for
experiment stimulus creation using video game engines and scripting. We found that
this approach can produce realistic tasks in which experimenters can manipulate the
semantic and syntactic constraints within one or more scenes. Factors that drive top-
down and bottom-up attention, such as the participants' task and the visual
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characteristics of the scenes can be controlled to study the dynamics of human
attention in the context of monitoring streaming data. The basic characteristics that

22



were included in the exemplar tasks can be manipulated to match the constraints of
any mission area or data type.

In summary, this project successfully developed an experimental framework that is
both novel and highly adaptable. This work leaves us well positioned to study the
dynamics of analyst attention in any mission domain that involves dynamic streaming
data.
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