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Abstract

This paper describes and demonstrates the Real Space (RS) model validation approach and the
Predictor-Corrector (PC) approach to extrapolative prediction given model bias information from
RS validation assessments against experimental data. The RS validation method quantifies model
prediction bias of selected output scalar quantities of engineering interest (QOIs) in terms of
directional bias error and any uncertainty thereof. Information in this form facilitates potential
bias correction of predicted QOIs. The PC extrapolation approach maps a QOI-specific bias
correction and related uncertainty into perturbation of one or more model parameters selected for
most robust extrapolation of that QOI’s bias correction to prediction conditions away from the
validation conditions. Such corrections are QOI dependent and not legitimate corrections or fixes
to the physics model itself, so extrapolation of the bias correction to the prediction conditions is
not expected to be perfect. Therefore, PC extrapolation employs both the perturbed and un-
perturbed models to estimate upper and lower bounds to the QOI correction that are scaled with
extrapolation distance as measured by magnitude of change of the predicted QOI. An optional
factor of safety on the uncertainty estimate for the predicted QOI also scales with the
extrapolation. The RS-PC methodology is illustrated on a cantilever beam end-to-end uncertainty
quantification (UQ) problem. Complementary “Discrete-Direct” model calibration and simple
and effective sparse-data UQ methods feed into the RS and PC methods and round out a
pragmatic and versatile systems approach to end-to-end UQ.

1. Introduction

Methodologies for modeling and prediction in the presence of uncertainty are being actively
researched and formulated by the modeling and simulation community. Comprehensive and
detailed frameworks for end-to-end uncertainty quantification (E2E UQ) that spans experiment
design, experimental uncertainty and data UQ processing, model calibration and validation, and
extrapolative prediction under uncertainty, are still elusive. Over 100 references considered in [1]
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- [7] reveal various lines of thinking and progress in these areas. This paper concentrates on the
data UQ and model validation and extrapolative prediction elements of end-to-end UQ, while
keeping in mind their necessary connectivity to the up-stream UQ elements.

Model validation is still a fast-developing field in engineering and science. For example,
institutions [8] — [13] cite the following common definition of model validation (within a few
slight variations): the process of determining the degree to which a computer model is an
accurate representation of the real world from the perspective of an intended use of the model.
But as pointed out in [4] and [5] there are important differences in how the definition is
interpreted by the institutions and how it might be implemented in practice. Indeed, a wide
variety of associated viewpoints and methodologies exist in the literature. Besides those already
mentioned, references such as [8] — [30] explore many important philosophical and
implementation issues in model validation, and survey various paradigms and tactical approaches
for performing model validation for application problems. Some of these references go on to
develop a specific approach and implementation framework.

With both philosophical and practical considerations in mind, a “Real Space” (RS) approach to
model validation has been developed and applied at Sandia over the past decade. The RS approach
adopts some elements and constructs from the literature (sometimes adding needed refinement)
and adds pivotal new elements and constructs. The approach reflects pragmatism, versatility, and
capabilities derived from the author’s experience with many industrial-scale validation and
calibration applications in the following areas: device thermal response and failure [2], [34]; foam
thermal pyrolysis and vaporization [31], [32]; computational fluid dynamics fire combustion and
object heating [23]; propellant fire combustion and object heating (draft report not publicly
available); sealing glass solid mechanics constitutive model [33]; device thermal-structural
response and failure [28], [30]; structural dynamics model of arming and fusing assembly (report
not publicly available); radiation-damaged electronics behavior models (reports not publicly
available).

These applications have involved calibration and/or validation of models of stochastic
phenomena and/or systems with small random variations from unit to unit and test to test.
Significant tactical UQ difficulties addressed include appropriate representation, interpretation,
propagation, and aggregation of heterogeneous sources and types of experimental uncertainty:
probabilistic, interval, aleatory, epistemic, traveling, non-traveling, continuous, discrete, scalar
and functional. Additional challenges included probability distributions of uncertain form and/or
shape, and dealing with data sparseness both in terms of only one or a few imperfectly replicated
tests available/affordable to address physical system variability, and limited spatial sensor data to
approximately reconstruct spatial field boundary conditions. Challenges of solution verification
to estimate model discretization related solution uncertainty were also involved, as was added
uncertainty from using response-surface surrogate models to reduce the number of physics model
simulations for uncertainty propagation.

The RS methodology also implements approaches for dealing with the following strategic
difficulties.



e Model accuracy characterization—deciding on the formulation or metric for
characterizing the discrepancy between model and experiment results.

e Model adequacy characterization—deciding on the threshold or criterion for model
adequacy (acceptable agreement with reality).

e Dealing with extrapolation of model validation information/results/ products—deciding
how to use information from the validation assessments to best qualify or improve model
predictions at conditions different from the validation setting. (This is not part of model
validation, but is an essential consideration in the formulation of a workable validation
paradigm.)

These items are considered to be strongly interdependent. It is reasoned that only by considering
them together can a comprehensive, workable, and relevant model validation framework be
formulated to support end-to-end UQ in realistic industrial-scale problems.

The RS validation method quantifies model prediction bias of selected output quantities of
engineering interest (QOIs) in terms of directional bias error and any uncertainty thereof.
Information in this form facilitates potential extrapolation of any model-form related bias
corrections to those QOIs when predicted at other conditions beyond the validation setting. The
“Predictor-Corrector” (PC) extrapolation approach explained and demonstrated in this paper
maps a QOI-specific bias correction and related uncertainty into perturbation of one or more
model parameters selected for most robust extrapolation of that QOI’s bias correction to the new
prediction conditions. Such corrections are QOI dependent and not legitimate corrections or fixes
to the physics model itself, so extrapolation of the bias correction to the prediction conditions is
not expected to be perfect. Therefore, PC extrapolation employs both the perturbed and un-
perturbed models to estimate upper and lower bounds to the QOI correction that are scaled with
extrapolation distance as measured by magnitude of change of the predicted QOI. An optional
factor of safety on the uncertainty estimate for the predicted QOI also scales with the
extrapolation. Complementary “Discrete-Direct” model calibration [7] and simple and effective
sparse-data UQ methods ([35], [36]) feed into the RS and PC methods and round out a pragmatic
and versatile systems approach to end-to-end UQ.

Many important challenges encountered in real problems are featured in a Sandia-developed
Cantilever Beam End-to-End UQ problem [37]. The problem emphasizes difficult paradigm and
strategy issues while being computationally trivial so that approaches and methodologies can be
focused on. The next section presents some model validation and extrapolative prediction related
aspects of the Beam E2E problem. Section 3 summarizes the RS model validation approach and
its application to the Beam problem. Section 4 summarizes the PC approach to extrapolative
prediction, and its application to the Beam problem. Section 5 provides some closing remarks.

II. Cantilever Beam Problem Set-Up

This section summarizes the pertinent set-up information for the validation and extrapolation
demonstrations in the next two sections. From Part C of the Cantilever Beam E2E UQ problem
statement [37], a large population of cantilever beams is considered where the rectangular beams
have dimensions given in Table 1.



Table 1 — Dimensions of Beams in Validation Experiments (negligible dimensional
variability and measurement errors)

L W H

2.20 0.09292 0.18580

Only two replicate tests can be afforded to get an indication of response variability in a large full
population of beams (asymptotically ©°) that will be put into service in the tested loading
configuration, but at a moderately higher temperature. Accordingly, two tests are performed with
vertical downward loading on the end of the cantilever beams as shown in Figure 1. The beams
have zero deflection (D=0) and zero slope (dD/dx = 0) where they horizontally protrude from a
rigid vertical wall. Beam height is measured upwards from the bottom of the beam as shown. Beam
width is measured perpendicular to the height and length directions. The beam is made of a
homogeneous isotropic material that has strength parameter E which is suspected to be a function
of temperature, E(T). The physical and modeled beams are spatially uniform in temperature. The
validation tests take place at a temperature Tval = 60C.

Figure 1 — Cantilever Beams in validation and prediction scenarios

Table 2 presents the measured deflections and end loads in the validation experiments. Small load
control variations occur about the experimental target of Po = 7.5ES.

The deflection measurements include possible errors, where
measurement error = measured value — true value. (D)

The problem statement explains that potential “systematic” error associated with beam deflection
measurement is expected to lie within the following range, with “high” confidence.

Uldefl_err_sys] = I[-2%, 0%] of measurement value 2)

Systematic errors and associated uncertainties are perfectly or fully correlated from test to test, per
the problem statement. U[-] in Eqn. 2 signifies that the quantity within the brackets is uncertain.
I[-] signifies an interval type uncertainty over the range specified in the brackets.



Table 2 — Beam deflection and end-load measurements, which include possible random

and systematic measurement errors as described in the text.

deflection D
(includes possible
systematic and
random meas.
errors in these

end load P
(includes possible
systematic and
random meas.
errors in these

results) results)
ValTest B.1 0.3880 7.769E5
ValTest B.2 0.3840 7.390E5

The deflection measurements in Table 1 further include a component of measurement error that
varies randomly from test to test. The problem statement gives the following probabilistic
uncertainty information for these.

U[defl_err_rand] = Normal(mean=0%, stdev=0.5%) of deflection measurement (3)

Similarly, potential random and systematic measurement errors and uncertainties in the measured
load data in Table 2 are:

Ulload_err_rand] = Normal(mean = 0%, stdev=1%) of load measurement. (4)
Ulload_err_sys] = I[-2%, +2%] of load measurement %)
An ordinary differential equation (ODE) for beam deflection derived from a balance of forces and
moments in the classical beam problem we are considering is ([38]):

dx?\ 12 dx?

d (iWHSEd—ZD(x)> = q(x) = PS(x—L). 6)

Here x is a horizontal coordinate that starts at the wall (x=0) and runs along the length of the beam
to its free end at x=L as indicated in Figure 1. E is the beam’s modulus of elasticity, an effective
stiffness/strength property of the material. The model is written for beams with isotropic and
spatially uniform modulus E. The generalized loading case involves a distributed load g(x) on the
beam. The point load P in Figure 1 is represented by g(x) being a delta function §(x — L)-P that
mathematically recovers the point load P at x=L (see [38]).

Equation 6 together with the relevant geometry and material property values and boundary
conditions constitute the model for beam deflection behavior. An analytic solution to the governing
equations and parameter variables of the ODE model is ([38]):

D = 4PL¥/(EWH?). (7)



To add a source of error/uncertainty resembling discretization-related solution error to the
problem, the following is specified in [37]. Consider the hypothetical situation where solutions of
the model ODE are performed computationally with a discretized finite-element model. Let the
discretization effects in the calculations performed to validate the model have tip deflection
solutions that are biased to a smaller computed deflection than a mesh-converged model would
predict. Let the bias be 3% such that instead of working with the mesh-converged solution Eqn. 7
the analyst obtains solution results from

D =0.97 * 4PL*/(EWH?). (8)

Note that the magnitude of discretization related error, which is the deflection result from Eqn. 8
minus the exact solution Eqn. 7, varies over the uncertainty ranges (uncertainty space) of the model
input variables P, L, E, W, H. Let a solution verification analysis at a mean point® in this
uncertainty space provide an estimate that the asymptotic mesh-converged tip deflection is greater
than computed deflections from Eqn. 8 with the following range of uncertainty, to a proclaimed
high degree of belief.

mesh-converged deflection = [102%, 105%] of Eqn. 8 working-mesh deflection (9)

The material strength property (modulus E) varies randomly from beam to beam in the population.
The probability density function (PDF) governing the material property variation is unknown to
the analyst. Accordingly, a parameter calibration/estimation activity is set up in Part B of the E2E
problem. For parameter estimation data, four test beams from the same batch of material and
nominally 10% shorter than the validation beams are tested with a target end-load magnitude of
Po = 7.5E5. The estimation of modulus E variation from the test data and a calibration inversion
of'the solution equation (7) of the ODE model is somewhat muddied by the following uncertainties.

The four beams have slightly different length, width, and height dimensions. The dimensions are
machined from three different types of machines. Control accuracy variations are independent
among the three machines. Dimension measurement errors/uncertainties are also independent for
each dimension. The measurement errors/uncertainties have random and systematic components
specified in [37]. The point end-loads are slightly different in each test as listed in [37], varying
about the target testing load Po=750,000 by significantly more than explainable by possible
random and systematic measurement errors defined in [37]. The measured deflections for each
beam are also subject to random and systematic measurement errors defined in [37]. The
calibration tests take place at a temperature Tcal = 20C. The physical and modeled beams are
spatially uniform in temperature.

A novel “Discrete-Direct” model calibration and uncertainty propagation approach demonstrated
in [7] addresses all the uncertainties mentioned, including accounting for the fact that only four
samples of the material property random variability are available with which to estimate or bound

3 The analyst is asked to comment on whether the supplied discretization bias information is sufficient and how it
can best be used in view of the fact that discretization bias is a function of location in the uncertainty space of the
inputs P, L, E, W, H. The analyst is asked whether discretization refinement studies should be run at alternative
locations in the uncertainty space and where these should be and how the results would be used. Some strategies in
this general area are demonstrated in [39] on some application problems. The present paper ignores the Beam
problem’s discretization-bias variation over the uncertainty space.



the material variability over the whole population. This is accomplished by performing a separate
calibration to each experiment, yielding a value E_i for the ith beam tested (i = 1 to 4), or rather,
a set of possible values E_i,k for each beam according to 1000 possible values/realizations (k =1
to 1000) of beam i’s true experimental dimensions, load magnitude, and deflection within the
prescribed experimental errors/uncertainties. Discretization related solution error for the ODE
model is also specified in [37] and adds a source of systematic error/uncertainty for the four beam
calibrations (as might error associated with the use of response-surface surrogate models if
employed for the calibrations), but these are ignored in [7] and therefore in the present calibration
results. Sample values of E_ik from [7] are presented in Figure 2. The calibrations are
accomplished with standard EXCEL spreadsheet functions, given the compact expression Eqn. 8
for beam deflection and the relative simplicity of the DD methodology even when accounting for
all the said sources and types of uncertainty in the calibrations.
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Calibration results

Test/Beam 1 Test/Beam 2
uncer, uncer.
realizations realizations
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experimental experimental
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6 | 1 1.928E+11  1.971E+11  2.070E#11  2.125E+11

7 2 1.945E+11 2.075E+11 2.135E+11 2.157E+11
1004 | 999 1.893E+11 2.014E+11 2.062E+11 2.154E+11
1005 1000 1.801E+11 1.896E+11 1.961E+11 2.028E+11
'I[}U‘Er:
1007
1008 mean = 1.923E+11 2.024E+11 2.090E+11 2.148E+11
1009 max = 2.064E+11 2.188E+11 2.203E+11 2.336E+11
1010 min = 1.762E+11 1.877E+11 1.949E+11 1.993E+11
1011 stdev= 4.971E+09 5.192E+09 5.453EH)9 5.706EHD)9

Figure 2. Realizations of possible effective material strength calibration parameter values
Eix for the four beams tested.

The DD calibration and uncertainty propagation approach straightforwardly accommodates many
sources and types of heterogeneous uncertainties as previously mentioned. The methodology
straightforwardly accommodates problems with many calibration parameters or just one as in the
Beam problem. The approach appears to have several advantages over Bayesian and other



calibration approaches for capturing and utilizing the information obtained from the typically small
number of experiments in model calibration situations. In particular, the DD methodology better
preserves the fundamental information from the experimental data in a way that enables model
predictions to be more directly traced back to the supporting experimental data. The approach is
also presently more viable for calibration involving sparse realizations of random function data
(e.g. stress-strain curves) and random field data. The DD methodology is conceptually simpler
than Bayesian calibration approaches and is straightforward to implement.

The validation assessment in the next section uses the models, parameter values, and uncertainties
presented in this section to predict the variability of beam deflections in an asymptotically large
population under the loading specified.

III. Real-Space Model Validation Assessment Methodology and Results

In this section, predicted variability of beam deflections in an asymptotically large population
under the specified loading are compared against estimated quantities from two replicate validation
tests involving two beams drawn at random from the population. The Real Space validation
methodology used for the model validation assessment is introduced next.

II1.A. Introduction to the Real Space (RS) Model Validation Approach

The high-level paradigm that underlies the Real Space model validation approach is summarized
as follows.

e Presume the model is imperfect but potentially useful for predictions and analysis
informed by the model validation activity.

e Quantify the prediction error for engineering-relevant QOIs and to a resolution level
allowed by the magnitude of uncertainty in the validation experiments, simulations, and
UQ procedures.

e Assess whether predicted QOIs bound or envelope reality in a useful way for an
anticipated model use, where “reality” is inferred from well-designed and targeted
experiments and inference procedures appropriate for the anticipated model use/purpose
and for the nature of credibility statements sought about model predictions.

The RS method quantifies model prediction bias of selected output scalar or derived scalar
quantities of engineering interest (QOls, see bullets below) in terms of directional bias error and
any uncertainty thereof. Information in this form facilitates potential extrapolation of any model-
form related prediction-bias corrections to those QOIs when predicted at other conditions beyond
the validation setting (e.g. section IV).

Examples of scalar QOIs admissible for RS validation and PC extrapolation are:
e velocity, pressure, strain, stress, temperature, etc. at a given time and/or spatial location;

e statistics such as mean, variance, and selected percentiles of the above quantities if the
model validation activity involves multiple replicate experiments and associated modeling
involving random variability of the tested systems and/or test conditions and/or
measurement errors on measured inputs and outputs of the tests. (This bullet applies to this
paper’s Beam problem.)



The last bullet contrasts with some model validation methods and metrics that compare whole
distributions of experimental and model-predicted response variability (aleatory variability) when
stochastically varying systems are involved. These approaches arrive at a global measure of
difference/discrepancy/disagreement between the experimental and predicted response
distributions. However, such global discrepancy metrics (like Kolmogorov—Smirnov “distance”
between two distribution curves) yield numerical values that seem to lack a high degree of
validation interpretability, decision-making utility, or usability for engineering purposes. Non-
uniqueness further contributes to a degree of arbitrariness of numerical values from such metrics.

The RS methodology is presently configured for point evaluation of model prediction error “point
validation”) from comparing experimental and simulation results of engineering importance at the
same specified input “scenario” conditions (here, at the same end-load magnitude Po=750,000).
The larger paradigm is to point-validate a model at one or more relevant points in the scenario
space and map a bias correction into the model at each validation point and then predict at the new
scenario conditions, weighting the prediction results according to how close the validation scenario
points are to the prediction conditions. The set of predictions then define a scale of model-form
related uncertainty at the new conditions. This may be preferable to approaches that would attempt
to validate the model over multiple points (sets of conditions) simultaneously. Much more research
on validation-to-extrapolation methodology must be conducted to assess this. (An example
calibration analogue for the latter validation approach is the Bayesian approach illustrated in [27]
involving multiple calibration scenario points.)

The RS uncertainty accounting and comparison system transforms all experimental and simulation
input uncertainties into equivalent effects on oufput response uncertainty and then combines these
with any existing output uncertainties. Treatment of the uncertainties is done according to their
natures—probabilistic, interval, epistemic, aleatory, correlated, uncorrelated, traveling, and non-
traveling. Population statistics such as response mean, variance, and percentiles of response
quantities are compared when significant stochastic experimental and simulated behavior exists in
the system of interest, as in the present validation problem. Tail percentiles of the distributions are
preferred here because they reflect uncertainties in both the mean and variance of the distributions.
Moreover, comparing tail percentiles of experimental and predicted response is particularly useful
for validating models anticipated to be used in the analysis of performance and safety margins,
which is one objective in the beam problem.

Figure 3 depicts uncertainty regarding the true PDF of aleatory uncertainty or variability of
experimental response (i.e., variability of deflections in the population of beams in the current
problem). Several factors cause this uncertainty, including experimental control and measurement
uncertainties, and sparse (only a few) test replicates that sample the variability of the physical
systems. The depicted uncertainty in the model-predicted PDF of response variability is, in the
current problem, due to propagation of the material strength variability and uncertainty information
residing in the calibration values of E in Figure 2. (Figure 3 is a generic figure for illustrative
purposes. Its aleatory-epistemic uncertainty representation of the simulation results applies when
the epistemic uncertainty in the simulation problem is defined and propagated parametrically,
having a systematic character. If a random component of epistemic uncertainty exists in the
simulation problem, as it does in the Beam problem through uncorrelated measurement



error/uncertainty contributions to the discretely represented calibration parameter realizations in
Figure 2, then the simulation aleatory-epistemic uncertainty is more properly represented in the
manner at left in Figure 3 for the experimental uncertainty. This will become apparent in sections
II1.B and II1.C.)

experiments simulations
A _ Aleatory
L% 7 uncertainty
Aleatory & e.g. compare :‘\\ :
Epistemic 5th percentile of ﬂ—\;fl Epistemic
uncertainty L ¢y v uncertainty

O/ response \Q, 4
%

Figure 3. Real Space comparison approach for experimental and simulation results and
uncertainties when stochastic behavior exists in the system and response of interest (as in
this paper’s Beam problem).

II1.B. Processing and Roll Up of Experimental Uncertainties for Model Validation Comparisons

Here we demonstrate the specific manner in which the experimental data is processed for Real
Space validation comparison to the simulation results. An “apples-to-apples” comparison basis
must be established between predicted and experimentally derived percentiles of deflection.
Consequently, we normalize the experimental data to the following reference conditions input to
the simulations in section I11.C.

* nominal service load of Po = 7.5e5 point end-load downward
* beam dimensions specified in Table 1

We also account for inference uncertainty on estimated percentiles of response from small numbers
of replicate tests.

The problem statement says the beam dimensions in Table 1 are tightly controlled experimentally
such that they exist for both test beams. However, if the beams are loaded the same, their
deflections will differ according to material strength variations among the beams. This unit-unit
stochastic variability effect is to be assessed by replicate testing of two beams randomly drawn
from the larger population. Reflective of many real testing situations, the target load of Po=7.5e5
applied in the validation simulations is not exactly produced in the two “replicate” validation tests,
per Table 2. Accordingly, in the following we normalize the experimental displacements in Table
2 to values that are much more consistent with the target load Po used in the simulations. In doing
so, we also account for the fact that the table’s values of measured load and deflection may differ
from the true or actual experimental loads and deflections by the random and systematic
measurement errors/uncertainties defined by equations 1 to 5.

We start by writing an identity for the ith test and beam, where i=1 corresponds to beam/test B.1
and 1=2 corresponds to beam/test B.2 per the designations in Table 2.
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Dbeam_i(Po) = Dbeam_i(Pi,true)
+ [Dbeam_i(Pi,meas) - Dbeam_i(Pi,true)] (1 O)

+ [Dbeam_i(PO) - Dbeam_i(Pi,meas)]

The ‘meas’ subscript in this equation signifies the measurement result (which is usually different
from the true value) for the quantity being measured.

The term on the left-hand side (LHS) of Eqn. 10 represents the sought deflection of beam 1 if
loaded with the target end-load Po=7.5¢e5. The quantity in the top row of the equation’s right-
hand side (RHS) represents the true deflection of beam 1 under its actual or true downward end-
load of magnitude Pi,true in the test. This quantity is equal to the RHS of the following equation
via application of a rearranged form of the measurement error equation, Eqn. 1.

Dbeam_i(Pi,true) = Dbeam_i,meas(Pi,true) - Dbeam_i,measErr (1 1)

Whereas the RHS term Dpeam_i,meas(Pi.true) 1 the fixed nominal measured deflection given in

Table 2 for beam 1, the measurement-error term Dpeam_i.measErr 18 Uncertain per Eqns. 2 and 3.
Therefore, also uncertain is the LHS term (which is also the RHS term in the first row of Eqn.
10). These uncertainties will be figured-in later.

The third row of Eqn. 10 represents the difference in beam 1’s deflection that would exist if the
beam is subjected to the target load Po and then to an actual or true load equal to the nominal
measurement value stated in Table 2. The model is used to approximate this difference as
follows, by simulating at these two loads.

Dbeam_i(PO) - Dbeam_i(Pi,meas) = Dbeam_i_model(PO) - Dbeam_i_model(P i,meas) (12)

The simulation model is used as the best available mechanism for estimating how behaviors
would change in reality under these different input conditions. The model does not have to be
accurate in an absolute sense, but it must be sufficiently accurate in a relative sense of providing
reasonable trend information, such that accounting for this term improves the validation analysis.
In practice, uncertainty can be added to the result according to judgment of the physics modelers
and VVUQ analysts in the project. No such uncertainty is applied in the following, but it is easy
to do so in the related column of the data processing spreadsheet introduced later (Figure 4).

The second row of Eqn. 10 represents the difference in beam i’s deflection between its actual and
nominal measured (Table 2) experimental loads. The model is used for evaluating this difference
as well. However, Dpeam_i(Pi true) in the second row is uncertain due to measurement-related
uncertainty regarding what the true experimental load P; e 15, and this load uncertainty 1s
sampled 1000 or more times in the RS validation-UQ approach (illustrated below). So model
approximations are employed to avoid running the (often expensive) physics model at each of
the sampled possible true values of the experimental inputs.
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The easiest model approximation approach comes from a first-order Taylor Series approximation
expanded about the nominal measured values of the uncertain experimental input factors and

conditions. For the single uncertainty here, load magnitude P; trye:

a(D beam_i)

Dbeam_i(P i,meas) - Dbeam_i(Pi,true)] = a(P) ‘Pi,meas

*(Pi,meas — Pi true)- (13)
The difference in parenthesis at right in the above equation is replaced using a relevant form of
the measurement error equation, Eqn. 1.

a(D beam_i)

Dbeam_i(Pi,meas) - Dbeam_i(Pi,true)] = a(P) |Pi,meas

° Pi,measErr~ (1 4)

The two model results on the RHS of Eqn. 12 could be used to approximate the derivative in
Eqn. 14 by finite differencing (FD). Normally, large-perturbation FD is preferred, with a relevant
step size indicative of the extent of the input uncertainty relative to its nominal value. If the
model evaluation at Po on the RHS of Eqn. 12 is not suitable in these terms, then an added
simulation could be performed at an appropriate load value P* to use with the result
Dream_i_model(Pi,meas) from the RHS of Eqn. 12 for FD derivative approximation. (These
considerations presume an expensive physics model, which is not the case here, but the
consideration of economy here is generally important in real problems.) In the following, an
analytic derivative of Eqn. 8, with mesh effect adjustment, is used in Eqn. 14 for expediency.

Note that derivatives as in Eqn. 14 can be evaluated from appropriate experimental trend
information from testing as in [28]. Real problems usually involve multiple experimental inputs
that are significantly uncertain, so a multivariate Taylor Series approximation would be used, as
in [28]. Higher-order Taylor Series approximations could be used as well. Indeed, multi-variate
linear and quadratic polynomial response-surface approximation analogues to Taylor Series
approximations, including dimension- and order- adaptive mixed linear-quadratic response
surfaces with estimation of associated error/uncertainty have been used in [34]. Insignificant
differences were found between linear and quadratic results, so the simple linear Taylor Series
approximation is used in the present analysis.

Eqns. 11, 12, and 14 are substituted into Eqn. 10, imparting an approximate equivalence =
between left and right sides of the equation, and giving a general form that applies for any
particular realization (signified by added index k in the following) of possible values of the
uncertain quantities discussed above.

Dbeam_i,k(PO) = Dbeam_i,meas(Pi,true) - Dbeam_i,measErr_k

a(D beam_i)

a(pP) |Pi,meas. Pi,measErr_k ( 1 5)

+ [Dbeam_i_model(PO) = Dbeam_i_model(Pi,meas)]

The spreadsheet in Figure 4 evaluates this equation for various uncertainty realizations of its k
subscripted variables for Beam/test B.1 (i=1). Column AX holds the value of the nominal

measured deflection in the test, designated Dpeam_i,meas(Pi.true) In Eqn. 15.

12



Figure 4. Beam/Test B.1 (i=1) spreadsheet of MC samples of possible random and systematic measurement

errors on experimental inputs and outputs + other adjustments to normalize beam displacement to load Po.
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Columns AR and AU hold realizations of possible systematic and random displacement
measurement error percentages randomly sampled from interval uncertainty ranges Eqns. 2 and
3. These error percentages are converted into displacement error quantities (terms T2 and T4
respectively) in columns AY and BA. These systematic and random error contributions add
vectorially (i.e., sign is crucial) into a realization of possible total displacement-measurement

related uncertainty designated Dpeam_i,measErr_k 1n Eqn. 15. Thus, in column BD, terms T2 and T4
are subtracted from the terms T1, T3, TS5, T6 associated with the other RHS members of Eqn. 15.

Similarly, columns AS and AV hold realizations of possible systematic and random load
measurement error percentages randomly sampled from interval uncertainty ranges in Eqns. 5
and 4 respectively (see Footnote 4). These error percentages are converted into displacement
error quantities (terms T3 and TS5 respectively) in columns AZ and BB. These systematic and
random error contributions add vectorially into a realization of possible total load-measurement
related uncertainty equivalent to the middle row in Eqn. 15. Thus, these terms are added to the
sum in column BD.

Columns with yellow headers signify that the uncertainties are treated as fully correlated or
“systematic” from test to test as asserted in the problem statement and echoed in section II. The
sample values in columns AQ — AS are the same in an analogous spreadsheet for Beam/test B.2
(i=2). That spreadsheet’s columns AY and AZ have similar values to those in Figure 4’s columns
AY and AZ, but are slightly different because of each spreadsheet’s different base measurement
values in column AX that the measurement error percentages in columns AR and AS multiply.
Nonetheless, though slightly different values exist between columns AY in the two spreadsheets,
the values in the two columns are perfectly correlated. Similar statements apply to column AZ
values in the two spreadsheets.

d S . :
Column AQ holds the value of %, which is constant in the present treatment but could in general

be treated as uncertain. In this case, different realizations (numerical values) would exist in the
oD
ap
principle these could be different, for example if the beams’ dimensions were slightly different

rows of the column. The present treatment uses the same — value for both test beams. In

. . . . a
or uncertain, then the model solution Eqn. 8 used to approximate the derivate a—L; by FD, or the

equation’s analytic derivative as used here, would give slightly shifted numerical values for
different beams. In some real problems the systematic approximation error of the calculated
derivative(s) would dominate the unit-to-unit related differences in the calculated derivatives.
The approximation uncertainty would then be sampled, with the various realizations in the
derivative column (here column AQ) applying across test units, so the column would be colored
yellow and have the same set of realizations in each test’s spreadsheet.

4 Interval ranges for the probabilistically described measurement uncertainty distributions in equations (3) and (4)
are taken as the central 95% confidence range defined by the mean + 2 standard deviations of the Normal
distributions specified. From the description in [37] of the origins and definition of these measurement uncertainties,
this conversion from probability distribution uncertainty treatment to an interval treatment based on a 95%
confidence interval draws from the classical measurement uncertainty paper [40].
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Columns with green headers have uncertainties treated as uncorrelated or “randomly varying”
from test to test. Analogous green columns with the same prescribed uncertainty ranges appear in
the spreadsheet for Beam/test B.2, but the sample values will be different because different initial
seeds are used for the random-number generator (‘RNG’ in the spreadsheet).

The summary statistics on the lower half of the figure show that the maximum, minimum, mean,
and standard deviation of the samples in each column are not meaningfully different when
increasing from 5k to 10k samples, so sufficient sampling exists here.

For brevity in illustrating the methodology going forward, only the first one thousand (1K)
results from column BD’s possible realizations of adjusted (normalized) deflection for Beam B.1
will be utilized. There are presented in Figure 5 in column BX. The first 1K results for
normalized deflection of Beam B.2 are presented in column BY. Each row of data from these
two columns represents a pair of plausible deflections of beams B.1 and B.2 under load Po.

Each pair of results is processed according to reliable sparse-data UQ techniques described and
tested in [35], [36]. We start by forming 95%_coverage/90%_confidence Tolerance Intervals
(95/90 TIs). These give a fairly reliable conservative but not overly conservative bounding
estimate of the central 95% range between the actual population’s 2.5 and 97.5 percentiles for a
large variety of PDF shapes (e.g. 89% of the 144 PDFs tested in [35], [36]). The central 95%
range is useful for model validation as discussed above. The TI method is an easy and
economical way to obtain such bounding estimates. Their construction is explained next.

For each row or pair of plausible beams’ deflections, a mean p and standard deviation ¢ are
calculated. These are given in columns CA and CB. For a 95/90 TI and two samples, /=18.8 is
the value of the factor that multiplies the calculated standard deviation ¢ to create a T of total
length 2fG . This value of f comes from a look-up table in [41] reproduced from [42]. The
interval is centered about the calculated mean pt of the samples, so the interval’s top and bottom
ends are defined by i +6.37c .

The top and bottom ends of 95/90 TIs created for each row of deflections in Figure 5 are listed in
columns CD and CI. For the 1000 TIs created, the uncertainty range of the top ends of the TIs
(that is, the range of 1000 possibilities below which the 97.5 percentile of deflection lies with
~90% confidence, for an asymptotically large beam population from which the two test beams
were drawn) is given by the max and min values in cells CD1009 and CD1010. Cells CI1009 and
CI1010 give the uncertainty range for the bottom ends of the 1000 TIs (that is, the range of
possibilities above which the 2.5 percentile of deflection lies with ~90% confidence). These min-
to-max ranges of the conservatively estimated 2.5 and 97.5 percentiles are plotted at left in
Figure 7 in section IIL.D.
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Figure 5. Normalized deflection possibilities of experimental beams B.1 and B.2 if loaded at the reference
load Po. Associated 90% confident tolerance interval realizations are presented of central 95% deflection
response of an asymptotically large population of similar beams under the reference load Po input to the
validation simulations.

BW BX BY BZ CA CB € CcD CE CF CG Cl Cl CK

3 N=2 samples -> 95/90 |l tag 18.8

Normalized Normalized
deflection  deflection
for for
validation  validation
Beam1/Test Beam2,/Test

4 1 2 W, Ntestso, Mtests Tltopend, p+TI _factor*c Tl bot. end, u- Tl_factor*c
5 n ’ scending ‘ ’
3 1 0.3826 0.3971 0.3899 = 0.0103 0.5828 0.3828 0.1969 = 0.0693
7 2 0.3813 0.3888 0.3851 = 0.0053 0.4844  0.3879 0.2857 = 0.0697

1004 999 0.3875 0.3963 0.3919 | 0.0062 0.5087 0.6921 0.2752  0.3902

1005 1000 0.3927 0.4039 0.3983 = 0.0080 0.5479  0.7014 0.2487  0.3903

1006

1007 pstats  ostats stats on 97.5%ile stats on 2.5%ile

1008 mean 0.387  0.0071 0.5206 0.2534

1009 max 0.401  0.0168 0.7014 0.3903

1010 min  0.374  0.0000 0.3828 0.0693

II1.C Model Predictions for Validation Comparisons

The variability of the material strength property (modulus E) to be used in the predictions of beam
population deflection variability under loading Po is given in “discrete-direct” form in Table 2 as
determined from calibration to four sample beams of similar material and applied loading but
different dimensions as summarized in Section II. Note that the beam loading in the calibration
experiments need not be the same as in the validation experiments. This is an artifact of the
challenge problem [37] to allow some particular investigations and comparisons to be made. Note
also that the temperature of the calibration beams is Tcal = 20C whereas the temperature of the
validation beams is Tval = 60C and that the model does not have a mechanism to account for
temperature effects on material strength.

The 1K data rows in Table 2 each contain four plausible sample values for the stochastically
varying material strength property E, with which to estimate or bound the material variability over
the whole population of beams. For each data row in the table, the four plausible random variations
E_i (i =1 to 4) are used in the prediction model Eqn. 8 with a discretization related correction
factor within the uncertainty range in Eqn. 9 to predict deflection under the reference conditions
stated in the bullets at the start of section III.B. Four corresponding deflection predictions are
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presented per data row in Figure 6, in columns [ — L. The results in this figure are for the minimum
value 1.02 of the discretization correction factor, per cell O3.

For each row’s set of four predicted plausible beams deflections in Figure 6, a mean & and
standard deviation ¢ are calculated. These are given in columns P and Q. For a 95/90 TI and
four samples, /=4.943 is the value of the factor that multiplies the calculated standard deviation
o . This value of f comes from a look-up table in [41] reproduced from [42].

The top and bottom ends of 95/90 TIs created for each row of deflections are listed in columns S
and X in Figure 6. For the 1000 TIs created, the uncertainty range of the top ends of the TIs (the
range of 1000 possibilities below which the 97.5 percentile of deflection lies with ~90%
confidence) is given by the max and min values in cells S1009 and S1010. Cells X1009 and
X1010 give the uncertainty range for the bottom ends of the 1000 TIs (the range of possibilities
above which the 2.5 percentile of deflection lies with ~90% confidence). These min-to-max
ranges of the conservatively estimated 2.5 and 97.5 percentiles are plotted at right in Figure 7
with the designation ‘Mesh-UQ Lower Extreme’. Analogous results obtained with Eqn. 9’s
maximum value 1.05 of the discretization correction factor are also plotted.
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II1.D. Validation Comparisons and Interpretation of Experimental and Simulated Deflections

Figure 7 shows some example results comparing the 2.5 and 97.5 percentiles of experimental and
simulated deflections. The predicted deflection percentiles are generally to the low side of the
corresponding experimental percentiles. This is attributed to the experimental beams experiencing
material softening and strength loss (thus higher deflections for a given load) at the higher
validation temperatures (60C) than what the prediction model accounts for with the calibrated
material properties from the beam tests at 20C. There is also a much larger potential range between
the experimental 2.5 and 97.5 percentiles than between the predicted percentiles.

Within the present uncertainties, the experimental population of deflections could have
significantly higher or lower variance than the predicted population. That is, predicted variability
as signified by the central 95% of response between the 2.5 and 97.5 percentiles does not bound
the potential extent of central 95% variability of experimental deflections conservatively estimated
from the experimental sample data. In this way, the validation assessment does not establish that
the model is a conservative predictor; it could significantly under-predict the true variability. Thus,
it may not be a suitable tool for design and safety analysis purposes. Such purposes would usually
not be well served by a model that significantly under-predicts system and response variability.
This finding stands for either extreme of mesh-related prediction uncertainty treatment.

For the 97.5 percentile of response, the experimental uncertainty bar (0.383 to 0.701) constructed
from the experimental sample data and its uncertainty comes with ~90% confidence that the true
experimental 97.5 percentile of deflections does not lie above the top of the uncertainty bar. The
model-predicted uncertainty bars in the figure are calibration projections of nominal 90%
confidence that the experimental 97.5 percentile of response will not lie above the predicted
uncertainty bars. But the experimental uncertainty bar lies above the predicted uncertainty bars, so
the predictions are not demonstrably conservative. The experimental uncertainty bar establishes
that a 90% confidence limit on the true 97.5 percentile of deflection can be as high as 0.701. The
predicted uncertainty bars only project upper values about half as high: 0.362 and 0.372 for the
lower and upper extremes of potential mesh related prediction error. Thus, the model is not
established to be a conservative predictor for the larger potential deflections in the beam population
that this upper percentile of response (97.5) coincides with. Since design and safety related
performance targets for the beams would most likely be assessed against the larger potential
deflections in the population, the validation-assessed model as it presently stands may not be a
suitable prediction tool for design and safety analysis purposes. Indeed, the true 97.5 percentile is
plotted in the figure for comparison and has a value of ~0.41 and is higher than the tops of the
prediction uncertainty bars.
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Figure 7. Model validation comparisons of similarly conservatively estimated 2.5 and 97.5
percentiles of experimental and simulated deflections. An uncertainty range exists for each
percentile value because of the epistemic uncertainty sources in the validation assessment.

For the 2.5 percentile of response, the experimental uncertainty bar (0.069 to 0.390) indicates with
~90% confidence that the true experimental 2.5 percentile of deflections does not lie below the
bottom of uncertainty bar. The bottom of the model-predicted uncertainty bars with either extreme
of mesh-related prediction uncertainty treatment do not lie below the bottom of experimental 2.5
percentile uncertainty bar. Therefore, the model predictions do not necessarily bound from below.
However, is may not be useful to establish a lower-bound for a deflection type quantity, so there
may be little significance to this validation finding.

IV. Predictor-Corrector Extrapolative Prediction Methodology and Results
The Predictor-Corrector extrapolation approach uses a dual model prediction approach as

mentioned in the Introduction and illustrated in Figure 8. The methodology is explained and
demonstrated below.
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Figure 8. Predictor-Corrector extrapolation paradigm with extrapolation-scaled UQ and
Safety Factor.

Figure 9 shows results of the approach applied to predict the 97.5 percentile of the deflection
distribution for beams with the service dimensions validated at (Table 1) and the same end-load
P0=750,000 but 20C higher temperature. The figure also shows the actual material-strength
weakening function vs. temperature for the physical beams and plots the large temperature effect
on the centering and spread of deflection behavior in an asymptotically large population of
beams. The physical nonlinearities and magnitude of effects on the particular QOIs in this
problem are substantial.

The Predictor-Corrector (PC) extrapolation method starts from a Real-Space validation
comparison as shown in Figure 7. A validation finding of relevance was that the experimental
uncertainty bar establishes a ~90% confidence limit on the true 97.5 percentile of response that
can be as high as 0.701. The predicted uncertainty bars only project upper values about half as
high: 0.362 and 0.372 for the lower and upper extremes of potential mesh related prediction
error. In general it would be desirable to enact a bias correction that corresponds to a mesh-
converged prediction so that the bias correction has no mesh dependency. Then mesh effects are
ostensibly lessened when the bias correction is extrapolated to other conditions. However,
solution convergence is rarely achievable in practice, so a prudent approach is to make the bias
correction large enough to be conservative with respect to mesh effects. Here this means
enacting a bias-correction for the mesh-UQ low-extreme case. Then the correction will be
sufficiently large no matter what the converged solution result is.
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An ideal correction would translate upwards the top end of the said prediction uncertainty bar at
0.362 in Figure 9 to be even with the top end of the experimental uncertainty bar at 0.701 in the
figure. This would be a target translation of 0.339 deflection units. The top end of the said
prediction uncertainty bar is set by the 95/90 TI from the 127 row of realizations in the
spreadsheet in Figure 6. This TI is based on the variability in the four deflection predictions that
incorporate the four realizations of material property strength parameter E_i (i =1 to 4) in 127™
row of realizations in the calibration data spreadsheet in Figure 2. The four values E_i in this row
are all shifted by the same trial value AE, where the value AE is iterated to find the value that
brings the top of the corresponding 95/90 TI° to the top end of the experimental uncertainty bar
(0.701) or just above this. A shift AE=-7.8e-10 is found that brings the top of the said TI to
0.707 as indicated in the figure. This deflection shift is 0.345 as indicated in the figure.

Thus, a model bias correction is enacted that yields an upper-bound on a ~90% confidence limit
for the 97.5 percentile of response that is just slightly more conservative than the experimentally
inferred upper-bound ~90% confidence limit at the validation conditions. The model has been
tuned for this QOI agreement and nothing else explicitly, so agreement with other statistical
measures of response such as the central 95% of response may be not good even at the validation
conditions—much less the extrapolative prediction conditions. This is particularly true for other
statistical QOIs such as central 95% of response that were substantially mis-predicted with the
original model in the validation assessment. More research must be conducted on the prospect of
enacting one or more model adjustments to satisfactorily bias-correct multiple QOIs for
extrapolative prediction. These could include multiple statistical QOIs such as 97.5 percentile of
response and central 95% of response, potentially for multiple physical outputs such as
displacement at multiple points on the beam and/or displacement and strain quantities (that are
measurable for the validation comparisons).

Because the QOI-specific correction applied here not baing a general fix to the physics model,
extrapolation of the bias correction is not expected to be perfect, either. Therefore, PC
extrapolation employs both the bias-corrected model and a reasonable “model basis” lower-limit
to the correction, in order to estimate upper and lower bounds to the QOI correction at the
extrapolation conditions. As indicated in Figure 8, an optional factor-of-safety on the uncertainty
estimate for the predicted QOI may be defined (by judgment from subject matter experts) that
also scales with the extrapolation. However, this is not done in the current demonstration.

In the current problem the corrective shift AE=-7.8e-10 applied to the selected 20C calibration
data E_1127 (=1 to 4) achieved an appropriate predictive correction for the 60C validation
conditions for the said QOI. The extrapolation prediction conditions are at 20C higher, or 80C.
Thus, the corrective shift AE=-7.8e-10 is ratio-ed to the new prediction conditions by
multiplying AE by 1.5. (The original shift AE for a 40C temperature change from 20C to 60C
becomes 1.5AE for an additional temperature change of 20C to get to 80C. Then the total
temperature change from calibration conditions is 60C, which is 50% larger than the original
40C change from the calibration conditions to the validation conditions.) Using 1.5AE in the
model, the predicted QOI (upper-bound on a ~90% confidence limit for the 97.5 percentile of

5 Here the model inputs are the reference values from the validation analysis (i.e., the two bullets just below the start
of section III.B). Normalizing the experimental data to a single reference set of experimental inputs facilitates the
prediction bias correction procedure.
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response) takes a value of 1.278 as indicated in the figure. This is a deflection shift of 0.571 as
noted in the figure. This shift for a 20C increment from validation to extrapolation conditions is
much larger than the 0.345 deflection shift corresponding to the original 1.0AE correction for a
40C increment in temperature. This illustrates a nonlinear correction to the model prediction
even though the corrective variable itself has a linear adjustment function based on the two input
scenario points at calibration the validation conditions.
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Figure 9. Results of Predictor-Corrector extrapolation in temperature (QOI is 97.5
percentile of deflection response), with no added factor of safety for this extrapolation.

If a submodel for temperature effect existed in the beam model, then the multiplier 1.5 would not
be used because the submodel would be an explicit function of temperature so would pick up that
the extrapolation involves a temperature change. The model would react to the temperature
change, even if the submodel is not perfect. The current model has no such submodel that would
be aware of or react to temperature change, so the need to actively set the multiplier (to 1.5 in
this case) to account for the known temperature change at the prediction conditions.

The original mapped correction AE is surmised to be relatively robust if the extrapolation does
not involve a temperature change, but instead involves different geometry or loading at the same
temperature conditions. An initial indication of such robustness for a related beam problem is
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found in [3] and [4]. Additive or multiplicative corrections to predicted response values under
different geometry and loadings do not appear to be as robust in this way.

A reasonable lower-limit to the extrapolated correction is needed to size the extrapolation
uncertainty in the PC method. Here the validation-sized 1.0AE corrective model is used. It does
not have the 1.5AE correction for temperature extrapolation, so will estimate significantly
smaller deflections at the extrapolation conditions and is a reasonable model-basis lower-bound
limit to an appropriate correction at the extrapolation conditions. The predicted QOI remains
unchanged (0.707) at the extrapolation conditions as shown in the figure.

A projected upper limit to the extrapolated correction is here simply taken as an upside-reflected
version of the downside uncertainty just described (see the figure). This presents a somewhat
arbitrary but seemingly reasonable scale of uncertainty for an upper limit to the extrapolated bias
correction.

The farthest-right uncertainty bar in the figure gives the total uncertainty estimate for
extrapolative prediction of an upper-bound on a 90% confidence limit on the 97.5 percentile of
response at 80C. Even though everything but temperature is the same as in the validation setting,
the extrapolation uncertainty bar is relatively large. If a somewhat inaccurate but reasonable
submodel for temperature effect existed in the beam model, then the extrapolation uncertainty
bar would be smaller by the construction approach used. It turns out that the current uncertainty
bar’s upper limit easily bounds the true (beam population’s) 97.5 percentile of response (~0.8)
indicated by the red star.

Planned future work is to extrapolate in both temperature (parametric extrapolation) and loading
configuration (non-parametric extrapolation, e.g. switch to uniform distributed load in the 80C
prediction conditions). A strength of the PC method is that it applies to extrapolation for both
parametric and non-parametric changes to prediction conditions. It will also be illuminating to
explore various imperfect submodels for temperature effects on beam material strength.

As discussed and illustrated here, model prediction bias-correction and extrapolation thereof is a
difficult and challenging prospect. This is an area ripe for future research with the proposed PC
method and others in the literature.
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V. Closing Remarks

A novel set of coordinated methods comprising a systems approach to experimental data UQ and
model calibration, validation, and extrapolation has been introduced and illustrated. The DD
calibration and propagation, RS validation, PC extrapolation, and sparse-data UQ methods were
developed on industrial-scale application problems, where practical relevance and feasibility have
been demonstrated. Their quantitative performance in terms of robustness, reliability, and
efficiency in being “conservative but not overly conservative” is being assessed with specialized
performance metrics [43] over many random trials on various test problems.

The Sandia Cantilever Beam End-to-End UQ problem is a one such test problem with scalar inputs
and outputs. It has many UQ features reflective of real experimental data and model calibration,
validation, and extrapolative prediction problems. It provides a useful test bed for evaluating the
applicability and performance of proposed end-to-end UQ methodologies and frameworks. A full
characterization of the DD, RS, PC and sparse-data methods’ performance on the beam problem
will require testing and evaluation in many trials involving random draws of the slightly varying
calibration and validation beams from their populations, and how these and the draws from
experimental load control variability in the tests, and random and systematic measurement errors
on test inputs and outputs, affect the performance success of the methods.

The DD, RS, PC, and sparse-data methods are relatively simple and straightforward as applied to
the Cantilever Beam problem. All have been applied with standard functions in EXCEL
spreadsheets. Initial examination and application of more elaborate methods tried from the
literature have not shown better success or promise under the conditions of the Beam problem. In
fact, they have exhibited debilitating difficulties on some aspects of the beam problem in testing
so far. Nonetheless, a tremendous amount of further testing is needed with other methods and test
problems so that even better hybrid techniques can be developed and appropriately characterized
in terms of expected performance on real problems.

References

[1][25] Romero, V.J., “A Paradigm of Model Validation and Validated Models for Best-Estimate-Plus-
Uncertainty Predictions in Systems Engineering,” paper 2007-01-1746 for Soc. Automotive Engineers
2007 World Congress April 16-20, Detroit, Michigan.

[2] Romero, V.J., “Validated Model? Not So Fast. The Need for Model ‘Conditioning’ as an Essential
Addendum to Model Validation,” paper AIAA-2007-1953, 9th Non-Deterministic Approaches
Conference, Honolulu, HI, April 23-26, 2007.

[3] Romero, V.J., “Type X and Y Errors and Data & Model Conditioning for Systematic Uncertainty in
Model Calibration, Validation, and Extrapolation,” SAE paper 2008-01-1368 for Society of Automotive
Engineers 2008 World Congress, April 14-17, 2008, Detroit, MI.

[4] Romero, V.J., “Comparison of Several Model Validation Conceptions against a "Real Space" End-to-

End Approach,” Soc. Automotive Engrs. Intn’l. J. of Materials and Manufacturing, article 2011-01-0238,
vol.4 (no 1), 2011, pp. 396-420, doi:10.4271/2011-01-0238.

25



[5] Romero, V.J., “Elements of a Pragmatic Approach for dealing with Bias and Uncertainty in
Experiments through Predictions: *Data and Model Conditioning; *“Real Space” Model Validation and
Conditioning; *Hierarchical Modeling and Extrapolative Prediction,” Sandia National Laboratories report
SAND2011-7342, Nov. 2011.

[6] Romero, V.J., “Uncertainty Quantification and Sensitivity Analysis—Some Fundamental Concepts,
Terminology, Definitions, and Relationships,” Chapter 5 of Joint Army/Navy/NASA/Air Force
(JANNAF) e-book: Simulation Credibility—Advances in Verification, Validation, and Uncertainty
Quantification, U. Mehta (Ed.), D. Eklund, V. Romero, J. Pearce, N. Keim, document NASA/TP-2016-
219422 and JANNAF/GL-2016-0001, Nov. 2016.

[7] Romero, V., “Discrete-Direct Model Calibration and Propagation Approach addressing Sparse
Replicate Tests and Material, Geometric, and Measurement Uncertainties,” Soc. Auto. Engrs. 2018 World
Congress (WCX18) paper 2018-01-1101 (doi:10.4271/2018-01-1101), April 10-12, Detroit, ML

[8]. Department of Defense Instruction 5000.61: Modeling and Simulation Verification, Validation, &
Accreditation (VV&A), Defense Modeling and Simulation Office, Office of the Director of Defense
Research and Engineering, dated April 29, 1996.

[9] American Institute of Aeronautics and Astronautics (AIAA) Guide for the Verification and Validation
of Computational Fluid Dynamics Simulations, AIAA-G-077-1998, Reston, VA.

[10] Department of Energy — Defense Programs, Accelerated Strategic Computing Initiative Program
Plan, 2000, DOE/DP-99-000010592 American Society of Mechanical Engineers (ASME), Guide for
Verification and Validation in Computational Solid Mechanics, ASME V&V 10-2006.

[11] NASA, Technical Standard for Models and Simulations, report NASA-STD-7009, July 11, 2008.

[12] American Society of Mechanical Engineers document V&V 20-2009, Standard for Verification and
Validation in Computational Fluid Dynamics and Heat Transfer.

[13] American Society of Mechanical Engineers document V&V 10.1-2012, An [llustration of the
Concepts of Verification and Validation in Computational Solid Mechanics.

[14] Coleman, H. W., and Stern, F., “Uncertainties in CFD Code Validation,” Journal of Fluids
Engineering, Dec. 1997, vol. 119, pp. 795-803.

[15] Roache, P. J., Verification and Validation in Computational Science and Engineering, Hermosa
Publishing, 1998.

[16] Anderson, M. G., and Bates, P. D., editors, Model Validation—Perspectives in Hydrological Science,
Wiley, 2001.

[17] Trucano, T. G., M. Pilch, and W. L. Oberkampf, “General Concepts for Experimental Validation of
ASCI Code Applications,” Sandia National Laboratories Report SAND2002-0341, March 2002.

[18] Chen, W., Y. Xiong, K-L. Tsui, S. Wang, “Some Metrics and a Bayesian Procedure for Validating
Predictive Models in Engineering Design,” ASME Design Technical Conference, Design Automation
Conf., Philadelphia, PA, Sept. 10-13, 2006.

[19] Bayarri, M., Berger, J., Rui, P., Sacks, J., Cafeo, J., Cavendish, J., Lin, C-H., and Tu, J. “A Frame-
work for Validation of Computer Models,” Technometrics, May 2007, Vol. 49, no. 2, pp. 138 — 154.

26



[20] Babuska, I., F. Nobile, R. Tempone, “Reliability of Computational Science,” Num. Methods in
Partial Differential Equations, (2007) Vol. 23, pp. 753-784.

[21] Rebba, R, and S. Mahadevan, “Computational methods for model reliability assessment,” Reliability
Engineering and System Safety, Vol. 93 (2008), pp. 1197-1207.

[22] Ferson, S., W. L. Oberkampf, L. Ginzburg, “Model Validation and Predictive Capability for the
Thermal Challenge Problem,” Comput. Methods in Applied Mechanics and Engrng., Vol. 197, 2009, pp.
2408-2430.

[23] Liu, Y., W. Chen, P. Arendt, H-Z Huang, “Towards a Better Understanding of Model Validation
Metrics,” paper AIAA-2010-9240, 13th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, Sept. 12-15, 2010, Fort Worth, TX.

[24] Romero, V.J., A. Luketa, M. Sherman, “Application of a Versatile "Real Space" Validation
Methodology to a Fire Model” AI44 J. of Thermophysics and Heat Transfer, Vol. 24, No. 4, Oct. — Dec.
2010, pp. 730-744.

[25] Oberkampf, W.L., and Roy, C.J., Verification and Validation in Scientific Computing, Cambridge
University Press, 2010.

[26] Roy, C.J., and W.L. Oberkampf, "A comprehensive framework for verification, validation, and
uncertainty quantification in scientific computing." Computer Methods in Applied Mechanics and
Engineering, 200.25-28 (2011): 2131-2144.

[27] National Research Council, Assessing the reliability of complex models: The mathematical and
statistical foundations of verification, validation, and uncertainty quantification, 2012,

[28] Romero, V., F. Dempsey, B. Antoun, G. Wellman, M. Sherman, “Handling Bias and Uncertainty in
Model Verification and Validation associated with Heated Pipes Pressurized to Failure,” paper
AIAA2014-0811, 16th AIAA Non-Deterministic Approaches Conference, AIAA SciTech 2014, Jan 13-
16, 2014, National Harbor, MD.

[29] Mullins, J., and S. Mahadevan, "Bayesian uncertainty integration for model calibration, validation,
and prediction." Journal of Verification, Validation and Uncertainty Quantification 1.1 (2016): 011006.

[30] Romero, V., A. Black, N. Breivik, G. Orient, J. Suo-Anttila, B. Antoun, A. Dodd, “Advanced UQ
and V&V Procedures applied to Thermal-Mechanical Response and Weld Failure in Heated Pressurizing
Canisters,” Sandia National Laboratories document SAND2015-3005C presented at Soc. Auto. Engrs.
2015 World Congress, April 21-23, 2015, Detroit, M1.

[31] Romero, V.J., Shelton, J.W., and Sherman, M.P., “Modeling Boundary Conditions and
Thermocouple Response in a Thermal Experiment,” 2006 ASME Int’l. Mechanical Engineering Congress
and Exposition, Nov. 5-10, 2006, Chicago, IL.

[32] McFarland, J., S. Mahadevan, V. Romero, L. Swiler, “Calibration and Uncertainty Analysis for
Expensive Computer Simulations with Multivariate Output,” AIAA Journal, vol. 46, no. 5, May 2008, pp.
1253-65.

[33] Jamison, R., V. Romero, M. Stavig, T. Buchheit, C. Newton, “Experimental Data Uncertainty,
Calibration, and Validation of a Viscoelastic Potential Energy Clock Model for Inorganic Sealing Glasses,”
Sandia National Laboratories document SAND2016-4635C presented at ASME Verification & Validation
Symposium, May 18-20, 2016, Las Vegas, NV.

27



[34] Romero, V.J., M.P. Sherman, J.F. Dempsey, J.D. Johnson, L.R. Edwards, K.C. Chen, R.V. Baron,
C.F. King, "Development and Validation of a Component Failure Model," paper AIAA-2005-2141, 45th
AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, April 18-21,
2005, Austin, TX.

[35] Romero, V., B. Schroeder, J.F. Dempsey, N. Breivik, G. Orient, B. Antoun, J.R. Lewis, J. Winokur,
“Simple Effective Conservative Treatment of Uncertainty from Sparse Samples of Random Variables and
Functions,” ASCE-ASME Journal of Uncertainty and Risk in Engineering Systems: Part B. Mechanical
Engineering, DOI 10.1115/1.4039558, April 30, 2018 (online), Dec. 2018, vol. 4 (print) pp. 041006-1 —
041006-17.

[36] Romero, V., M. Bonney, B. Schroeder, V.G. Weirs, “Evaluation of a Class of Simple and Effective
Uncertainty Methods for Sparse Samples of Random Variables and Functions,” Sandia National
Laboratories report SAND2017-12349, Nov. 2017.

[37] Romero, V., B. Schroeder, M. Glickman, “Cantilever Beam End-to-End UQ Test Problem: Handling
Experimental and Simulation Uncertainties in Model Calibration, Model Validation, Extrapolative
Prediction, and Risk Assessment,” Sandia National Laboratories document SAND2017-4689 O, version
BeamTestProblem-33.docx, 2017.

[38] Byars, E.F., R.D. Snyder, H.L. Plants, “Engineering Mechanics of Deformable Bodies,” 4th ed.
(1983), Harper & Row, New York.

[39] Romero, V.J., "Model-Discretization Sizing and Calculation Verification for Multipoint Simulations
over Large Parameter Spaces," paper AIAA2007-1953, 9th AIAA Non-Deterministic Methods
Conference, April 23 - 26, 2007, Honolulu, HI.

[40] Kline, S., and McClintock, F., “Describing Uncertainties in Single-Sample Experiments,”
Mechanical Engineering, Vol. 75, 1953. pp. 3-8.

[41] Coleman, H.W., and Steele, Jr., W.G., Experimentation and Uncertainty Analysis for Engineers, 2nd
Edition, John Wiley & Sons, New York, NY, 1999.

[42] Montgomery, D.C., and Runger, G.C., Applied Statistics and Probability for Engineers, Wiley &
Sons, 1994,

[43] Romero, V., B. Schroeder, M. Glickman, J. Winokur, “Cantilever Beam End-to-End UQ Test
Problem and Evaluation Criteria for UQ Methods Performance Assessment,” Sandia National
Laboratories document SAND2017-4592 C, presented at ASME Verification & Validation Symposium,
May 3-5, 2017, Las Vegas, NV.

28



