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Challenges & Objectives

• Challenges: Precursor(s) to the induced seismicity from existing fracture
systems - linking mechanical discontinuities, fracture mechanics, pore
pressures/stress to the geophysical signatures - is key, yet remains
elusive as a result of the heterogeneity and resulting scale dependence

• Objectives: An ambitious integration of seismic imaging experiments
coupled with micro-CT imaging, modeling of fracture initiation and
propagation, and full waveform inversion will allow us to

(1) delineate crack initiation, propagation and failure using both active and
passive seismic/ultrasonic monitoring techniques

(2) determine the mechanical failure mechanisms that lead to induced
seismicity from crack propagation and the best seismic imaging modality
& precursors to the slip

(3) develop and implement automatic identification and interpretation of
(micro-)seismic wave fields using machine-learning techniques that
automate phase selection in spatial-temporal datasets and yields
statistical information on the properties of data

Fracturing Testing and

Seismic Signal Acquisition
• Testing specimens for three point bending (3PB, top) and unconfined compressive

strength tests (UCS, bottom) were created using a powder based 3D printing technique
(see MR33A-06 14:55 - 15:10 (Jiang et al.) for the details)
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Original microCT image (left), segmented image of crack
(WEKA in Fiji), and reconstructed 3D segmented image (right)
for UCS tested sample

Acoustic Emission Signal Processing

• Wavelet scale covariance analysis of P- and S-waves arrivals
(Rinehart et al., 2016)
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• Combine wavelet-based de-noising with filtered metrics based on the covariance
of the continuous wavelet transform (b) of the signal (a)

• An edge-preserving rectilinity function captures the variance and rate of decay of
eigenvalues of the covariance matrices (c).

• P- and S-wave arrivals are found sequentially by thresholding (d)
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(Rinehart et al., 2016)
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Examples of different event traces with P-wave arrival time
(dashed) and S-wave arrival times from fracture toughness tests
in aluminum (a-c) and Cranfield caprock failure tests (d-f).

• High success rate in automated picking for P- and S-waves
• Not so good for low-magnitude "rumbling events" and with high electrical noise
• Low amplitude long term events could be discerned by further thresholding in

amplitude

Numerical simulations of Crack Propagation
and Acoustic Emission
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• Crack propagation with cohesive element model & XFEM (ABAQUS)
• Acoustic emission with XFEM (ABAQUS)
• FFT/STFT to create spectrogram (Cuadra, 2015)
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associated spectrogram during 3PB (ABAQUS simulation result)

Proposed ML approaches

• Architecture and parameters of the DNN

• Deep convolution neural networks was adopted to develop the GANs in this study.
• Fully convolutional nature of GANs allows the stable training and the generation

of large samples that contains the similar properties with computational efficiency
(Radford et al., 2016).

Open source ConvNetQuake (Perol et al., 2018)
Processed data from ISGS will be used to train models
Efficiency and interpretability will be compared with
FAST and template matching
Trained model will be used to validate again the
remaining dataset to develop real-time recognition of
events and locations

Input
windowed
waveform

111•••••••••••••••••••• ,1000 samples
••••••••••••••••••• III• / 3 channels

Conv. / 1
layer 1 _

layer 2 1Z2

Cony.

Cony. layers
3 to 8

Flatten fling
(reshape)

Fully connected
layer

No Cluster
event 1

111(8
4 features

4_ _ _ 411, 32 channels

Z_
  -0

Cluster
6

'5C10 features
It/ 32 channels

/ 7\ Padding

,1112 50 features
32 channels

128 features

ConvNetQuake CNN Architecture
Perol et al. (2018, SciAdv 2018)

• Seismic Phase Identification with a Merged Deep Neural Network J
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(Top) Examples of amplitude and frequency of AE signals
obtained during unconfined compressive strength
testing of 3D printed specimen.

(Draelos et al., 2018)
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(Rigth) Example merged DNN for Phase ID. Si (input signal), Sh i (horizontal slowness),
Ti (time since the previous detection), Ampi (amplitude of the detection), SNRi (signal
to noise ratio), Sei (seismogram),and Sp; (spectrogram) of the waveform.

Goal: Combination of well controlled lab and simulated data with field data will
enhance the data analytics using advanced machine learning algorithms to detect
arrival times of body waves, converted modes and guided-modes, the relative
amplitudes (energy partitioning) among these different wave components, and
the frequency/dispersive properties of these waves
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