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Android Malware is a problem (still!??)

New Android malware samples
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Loops are interesting

e Runtime-optimization techniques focus on loops.

e Previous work CLAPP (FSE 2015) from Yanick et.al shows that loops can
encompass interesting behaviors about the apps.
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Loops are interesting

e Runtime-optimization techniques focus on loops.

e Previous work CLAPP (FSE 2015) from Yanick et.al shows that loops can
encompass interesting behaviors about the apps.

e s the behavior captured by loops enough to detect malware?
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Are we lucky?
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Are we lucky? NO
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LoopMC

e Using Loops for Malware Classification.

e Conservative mapping provides resilience against feature-unaware (or blind)
perturbations.
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LoopMC: Overview

Android APKs
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LoopMC: Semantic Labels

e Semantic label to each of the Android APl methods (Manually!!).

e Semantic labels capture the end-result of a method on the system.

e Jjava.io.FileOutputStream! !'write has the same label as
android.media.ExifInterface!!saveAttributes i.e., ioWrite
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LoopMC: Semantic Tags

e Set of Semantic Labels.

e Set of labels of all the API methods “reachable” from within a loop.

e Class Hierarchy Analysis (CHA) to handle dynamic dispatch.
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LoopMC: Semantic Tag Example

do {
obj = ite.next();
if(lobj.exists ()) {
break;
}
if (obj.isFile()) {...}

} while (ite.hasNext ())
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LoopMC: Semantic Tag Example

do {

obj = ite.next();

if (lobj.exists()) [GenericFiIeOp ]

break;

}

[ GenericFileOp ]

if (obj.isFile()) {...}

} while (ite.haswext ()) | iterator




LoopMC: Semantic Tag Example

do {

obj = ite.next();

if (lobj.exists()) [GenericFiIeOp ]

break;

}

[ GenericFileOp ]

if (obj.isFile()) {...}

} while (ite.hasNext ()) iterator

Semantic Tag: {iterator, GenericFileOp}
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LoopMC: Semantic Tag Example

while (ite.hasNext ()) {
obj = ite.next();

if (obj.canRead()) {...}
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LoopMC: Semantic Tag Example

while (ite.hasNext ()) {
iterator

obj = ite.next();
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LoopMC: Semantic Tag Example

while (ite.hasNext ()) {
iterator

obj = ite.next();

Semantic Tag:{iterator, GenericFileOp}
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LoopMC: Semantic Tag Examples

do { while (ite.hasNext ()) {
iterator iterator
obj = ite.next(); obj = ite.next();
break; }

}

[ GenericFileOp ]

if (obj.isFile()) {...}

} while (ite.hasNext ()) iterator

Semantic Tag: {iterator, GenericFileOp} Semantic Tag:{iterator, GenericFileOp}



LoopMC: Feature Vector

e Number of loops of each known semantic tag.
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LoopMC: Model Training

e Decision trees: Random forest.

e Known to perform well for a large feature space, without much tuning.

e Accuracy: 99.3% (Genome) and 99.1% (VirusTotal)
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LoopMC: Iterative Feature Pruning

e Many semantic tags, not all of them are important.

e lteratively remove tags that have zero importance (based on the underlying
model).

e Useful for conservative mapping.



LoopMC: Feature Vector

e Number of loops of each known semantic tag.
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LoopMC: Conservative Mapping

e Technique to handle unseen semantic tags.

e Map an unseen semantic tag to the closest known semantic tag.

e Resolving ties: Higher Malware Importance (Ml).
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LoopMC: Malware Importance (MI)

e Value indicating a semantic tag ability to classify an app as malware.
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LoopMC: Malware Importance (Ml)

e Value indicating a semantic tag ability to classify an app as malware.

(MS(tc)-MS(fc)) If MS(tc) > MS(fc)

Ml(semantic_tag) = N

root

otherwise
0

MS(tc) => Malware samples having the semantic tag value higher or equal to that of the threshold.

MS(fc) => Malware samples having the semantic tag value lower than the threshold.



LoopMC: Evaluation

e Dataset: Malware Genome and VirusShare.

System Malware Genome
LoopMC 99.3%
DroidAPIMiner 99%

Drebin 94%
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VirusShare
99.1%

97.4%
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LoopMC: lterative Feature Pruning on Malware Genome
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LoopMC: lterative Feature Pruning on VirusShare
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LoopMC: Are semantic labels the secret sauce?

e Using semantic tags for DroidAPIMiner resulted in accuracy of only 53.37%
(almost random)

e Using APIls reachable only from loops for DroidAPIMiner resulted in 96.15%
accuracy.
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LoopMC: Are semantic labels the secret sauce?

e Using semantic tags for DroidAPIMiner resulted in accuracy of only 53.37%
(almost random)

Semantic tags alone doesn’t help. Looks
like it is the combination of loops and
semantic tags that helps.
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Feature-unaware perturbations

e Evasion attempts unaware of the details of the underlying model.

o CFG Obfuscation: Spurious and Infeasible loops

o Reflection
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CFG Obfuscation

e \We used the ADAM tool to obfuscate all the apps.

Dataset True Positive False Positive
Malware Genome 99.99% 2.01%

VirusShare 99.79% 5.45%



Reflection
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e Replaced all API calls with reflection: LoopMC classified all the samples as
malware but DroidAPIMiner classified them as benign.

e Replaced only SMS related API calls with reflection:

System

Accuracy (on VirusShare)

LoopMC

92.47% (U4.63%)

DroidAPIMiner

83.54% (U13.86%)
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Hardened feature vector

e Hard to affect the feature vector (without knowing the exact semantic tags).

e Brute-force techniques are impractical.
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Limitations

e Static analysis evasion.

e Interactions with Android framework not modelled (yet!!).

e No loops malware.

e Splitting and Stitching the loops.
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Conclusions

e Android malware detection using semantics of loops.

e Semantic labelling.

e Resilient to blind perturbations.

e Will be available at: https://github.com/ucsb-seclab/LoopMC
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Thank You

Got
Questions




