
LoopMC: Using Loops for Malware
Classification Resilient to Feature-

aware Perturbations
Aravind Machiry, Nilo Redini, Eric Gustafson, Yanick Fratantonio,

Yung Ryn Choe, Christopher Kruegel, and Giovanni Vigna

rECla EURECOM
Sandia
National
Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energys National Nuclear Security Administration under contract DE-NA0003525.

SAND2018-13921C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

rEclsab

Android Malware is a problem (still!??)

214,327
1

2012

New Android malware samples

(per year)

1,192,035

hi
1,548,129

2,333,777

1
3,246 284

3,500,000
' 3,002,482 (Forecast)

2,040,293
(H1)

2013 2014 2015 2016 2017 2018

Used from: https://www.gdata.fr/news/2018/08/30994-menaces-sur-android-etat-des-lieux-pour-le-1er-semestre-2018

rEclsab

Loops are interesting

• Runtime-optimization techniques focus on loops.

• Previous work CLAPP (FSE 2015) from Yanick et.al shows that loops can

encompass interesting behaviors about the apps.

rEclsab

Loops are interesting

• Runtime-optimization techniques focus on loops.

• Previous work CLAPP (FSE 2015) from Yanick et.al shows that loops can

encompass interesting behaviors about the apps.

• ls the behavior captured by loops enough to detect malware?

Are we lucky?
%
 of

 A
pp
li
ca
ti
on
s

100

so

so

20

- Benign — Malicious

o
o

e

500 1000 1500 2000 2500
Maximum # of Loops

rEcLab

Are we lucky? NO

100

- Benign — Malicious

rEcLab

The distribution of the number of loops is
the same in both benign and malicious

samples.
20

o
o 500 1000 1500

Maximum # of Loops
2000 2500

rEcLab

LoopMC

• Using Loops for Malware Classification.

• Conservative mapping provides resilience against feature-unaware (or blind)

perturbations.

rEclsab

LoopMC: Overview
Android APKs
 NN

I.---'
101

APK

I
\

Loop
Extraction

1
i
1
1
ir1
1
1
1..
1
1
1
1 LoopMC1

Semantic
411.

Labels

Feature
Vector
builder

1
i Semantic

I Tags
1

i
i

Model

1
1
i
1

Model i
1 Features

Trainer i
i
i

docheck

i A— 1

Conservative
Mapping

'.\

Feature
Pruning

Iterative Feature
Pruning

rEctob

LoopMC: Semantic Labels

• Semantic label to each of the Android API methods (Manually!!).

• Semantic labels capture the end-result of a method on the system.

• java.io.FileOutputStream! !write has the same label as

android.media.ExifInterface! ! saveAttributes i.e., ioWrite

rEclsab

LoopMC: Semantic Tags

• Set of Semantic Labels.

• Set of labels of all the API methods "reachable" from within a loop.

• Class Hierarchy Analysis (CHA) to handle dynamic dispatch.

rEclsab

LoopMC: Semantic Tag Example

do f

obj = ite.next();

if(!obj.exists()) f

break;

1

if(obj.isFile()) f...1

1 while(ite.hasNext())

LoopMC: Semantic Tag Example

do { ,
iterator

obj = ite.next();

if(!obj.exists())

break;

1

, GenericFileOp ,

GenericFileOp
if(obj.isFile()) {...}

1 while(ite.hasNext()): iterator '

rEclsab

rEclsab

LoopMC: Semantic Tag Example

do { ,
iterator

obj = ite.next();

if(!obj.exists())

break;

1

, GenericFileOp ,

GenericFileOp
if(obj.isFile()) {...}

1 while(ite.hasNext()): iterator '

Semantic Tag: {iterator, GenericFileOp}

rEclsab

LoopMC: Semantic Tag Example

while(ite.hasNext()) f

obj = ite.next();

if(obj.canRead()) {...}

1

LoopMC: Semantic Tag Example
iterator

while(ite.hasNext()) f

iterator
obj = ite.next();

if(obj.canRead()) {...}

rEclsab

GenericFileOp ,

LoopMC: Semantic Tag Example
iterator

while(ite.hasNext()) f

iterator
obj = ite.next();

if(obj.canRead()) {...}

rEclsab

GenericFileOp ,

Semantic Tag:{iterator, GenericFileOp}

LoopMC: Semantic Tag Examples
iterator

do { while(ite.hasNext()) f

iterator
obj = ite.next();

if(!obj.exists())

break;

GenericFileOp

GenericFileOp
if(obj.isFile()) {...}

1 while(ite.hasNext()) iterator

iterator
obj = ite.next();

if(obj.canRead()) {...}

rEclsab

GenericFileOp ,

Semantic Tag: {iterator, GenericFileOp} Semantic Tag:{iterator, GenericFileOp}

rEclsab

LoopMC: Feature Vector

• Number of loops of each known semantic tag.

SemTagl SemTag2 SemTag3 SemTagN-1 SemTagN

appl 12 1 0 32 19

app2 1 0 31 1 0

appX 0 11 12 4 2

rEclsab

LoopMC: Model Training

• Decision trees: Random forest.

• Known to perform well for a large feature space, without much tuning.

• Accuracy: 99.3% (Genome) and 99.1% (VirusTotal)

rEctob

LoopMC: Iterative Feature Pruning

• Many semantic tags, not all of them are important.

• Iteratively remove tags that have zero importance (based on the underlying

model).

• Useful for conservative mapping.

rEclsab

LoopMC: Feature Vector

• Number of loops of each known semantic tag.

SemTagl SemTag2 SemTag3 SemTagN-1 SemTagN

appl 12 1 0 32 19

app2 1 0 31 1 0

appX 0 11 12 4 2

rEctob

LoopMC: Conservative Mapping

• Technique to handle unseen semantic tags.

• Map an unseen semantic tag to the closest known semantic tag.

• Resolving ties: Higher Malware Importance (MI).

LoopMC: Malware Importance (MI)

• Value indicating a semantic tag ability to classify an app as malware.

samples = 50
value = [B: 0 M: 1]

X[24] <= 12
samples = 1000

X[6] <= 2
samples = 300

True False

X[12] <= 4
samples = 700

True False True

•

samples = 250
value = [B:1 M: 0]

samples = 300
value = [B: 0 M: 1]

False

X[8] <= 9
samples = 400

True \False

samples = 320
value = [B: 0 M: 1]

samples = 80
value = [B: 1 M: 0]

rEcLab

LoopMC: Malware Importance (MI)

• Value indicating a semantic tag ability to classify an app as malware.

Ml(semantic_tag) =

{ (MS(tc)-MS(fc))

0

Nroot

If MS(tc) > MS(fc)

otherwise

rEctob

MS(tc) => Malware samples having the semantic tag value higher or equal to that of the threshold.

MS(fc) => Malware samples having the semantic tag value lower than the threshold.

LoopMC: Evaluation

• Dataset: Malware Genome and VirusShare.

System

LoopMC

DroidAPlMiner

Drebin

Malware Genome

99.3%

99%

94%

VirusShare

99.1%

97.4%

rEclsab

rEcl_ab

LoopMC: Iterative Feature Pruning on Malware Genome

50000

40000

co 30000

z

20000

10000

— # of features

o
o

% Accuracy (10-fold CV)
100

- es

- 98

- 97

- 96

2 3
Iteration Number

4 5 6

95

94

%
 Ac
cu
ra
cy
 (
10
-f
ol
d
C
V
)
 Accuracy remains almost

constant as we prune the
features.

LoopMC: Iterative Feature Pruning on VirusShare

#
 of

 f
ea
tu
re
s

140000

120000

100000

80000

60000

40000

20000

— # of features % Accuracy (10-fold CV)
100

- 98

- 97

- 96

95

0l 94
0 1 2 3 4 5 6 7 8 9

Iteration Number

%
 Ac
cu
ra
cy
 (
10
-f
ol
d
C
V
)

rEclsab

Accuracy remains almost
constant as we prune the
features.

rEctob

LoopMC: Are semantic labels the secret sauce?

• Using semantic tags for DroidAPlMiner resulted in accuracy of only 53.37%

(almost random)

• Using APIs reachable only from loops for DroidAPlMiner resulted in 96.15%

accu racy.

rEctob

LoopMC: Are semantic labels the secret sauce?

• Using semantic tags for DroidAPlMiner resulted in accuracy of only 53.37%

(almost random)

Semantic tags alone doesn't help. Looks
like it is the combination of loops and

semantic tags that helps.

rEctob

Feature-unaware perturbations

• Evasion attempts unaware of the details of the underlying model.

o CFG Obfuscation: Spurious and Infeasible loops

o Reflection

CFG Obfuscation

• We used the ADAM tool to obfuscate all the apps.

Dataset True Positive False Positive

Malware Genome 99.99% 2.01%

1
VirusShare 99.79% 5.45%

rEctob

rEclsab

Reflection

• Replaced aIl API calls with reflection: LoopMC classified all the samples as

malware but DroidAPlMiner classified them as benign.

• Replaced only SMS related API calls with reflection:

System

LoopMC

DroidAPlMiner

Accuracy (on VirusShare)

92.47% (44.63%)

83.54% (413.86%)

rEctob

Hardened feature vector

• Hard to affect the feature vector (without knowing the exact semantic tags).

• Brute-force techniques are impractical.

rEclsab

Limitations

• Static analysis evasion.

• Interactions with Android framework not modelled (yet!!).

• No loops malware.

• Splitting and Stitching the loops.

rEcLab

Conclusions

• Android malware detection using semantics of loops.

• Semantic labelling.

• Resilient to blind perturbations.

• Will be available at: https://qithub.com/ucsb-seclab/LoopMC

Thank You

Got
NIM Questions

rEcLab

