This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2018-13921C

LoopMC: Using Loops for Malware
Classification Resilient to Feature-
aware Perturbations

Aravind Machiry, Nilo Redini, Eric Gustafson, Yanick Fratantonio,
Yung Ryn Choe, Christopher Kruegel, and Giovanni Vigna

Sandia
Jeclab EURECOM P Natonat

..................

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
idi i Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Android Malware is a problem (still!??)

New Android malware samples
L‘@ L 3,500,000
e
%,240.284 3,002,482 (Forecast)

2,338 Tl

1,548,129

15192035
214 8210 .

2012 2013 2014 2015 2016 2017 2018

Used from: https://www.gdata.fr/news/2018/08/30994-menaces-sul

JeclQb

r-android-etat-des-lieux-pour-le-1er-semestre-2018

JeclQb

Loops are interesting

e Runtime-optimization techniques focus on loops.

e Previous work CLAPP (FSE 2015) from Yanick et.al shows that loops can
encompass interesting behaviors about the apps.

JeclQb

Loops are interesting

e Runtime-optimization techniques focus on loops.

e Previous work CLAPP (FSE 2015) from Yanick et.al shows that loops can
encompass interesting behaviors about the apps.

e s the behavior captured by loops enough to detect malware?

JeclQb

Are we lucky?

—— Malicious
100
80 |
§ o0f
®
9
a
Q
=
e 40}
x I
I
I
]
I
200
0 L 1 L 1
0 500 1000 1500 2000 2500

Maximum # of Loops

JSeadlQb
Are we lucky? NO

- - Benign — Malicious

r
/’
-
/
7/

100

The distribution of the number of loops is
the same in both benign and malicious
samples.

0 500 1000 1500 2000 2500
Maximum # of Loops

secdlQb
LoopMC

e Using Loops for Malware Classification.

e Conservative mapping provides resilience against feature-unaware (or blind)
perturbations.

JeclQb

LoopMC: Overview

Android APKs

Anh

l'l

APK
5 3
: Y 1
1 N : :
\| Loop !
'| Extraction | Model : .
: Trainer : !

|

: ! :
: Feature i
: — Vector : Feature : :

emantic : o
\| Labels builder - : Pruning | | !
IN | 1 I 1
: : Semantic Conservative : iterative Faat : !
| | Tags Manpirsg ! lterative Feature | 1
I LOOpMC LR I Pruning L 5
1

seclab
LoopMC: Semantic Labels

e Semantic label to each of the Android APl methods (Manually!!).

e Semantic labels capture the end-result of a method on the system.

e Jjava.io.FileOutputStream! !'write has the same label as
android.media.ExifInterface!!saveAttributes i.e., ioWrite

seclQbd
LoopMC: Semantic Tags

e Set of Semantic Labels.

e Set of labels of all the API methods “reachable” from within a loop.

e Class Hierarchy Analysis (CHA) to handle dynamic dispatch.

Jseclab
LoopMC: Semantic Tag Example

do {
obj = ite.next();
if(lobj.exists ()) {
break;
}
if (obj.isFile()) {...}

} while (ite.hasNext ())

Jseclab
LoopMC: Semantic Tag Example

do {

obj = ite.next();

if (lobj.exists()) [GenericFiIeOp]

break;

}

[GenericFileOp]

if (obj.isFile()) {...}

} while (ite.haswext ()) | iterator

LoopMC: Semantic Tag Example

do {

obj = ite.next();

if (lobj.exists()) [GenericFiIeOp]

break;

}

[GenericFileOp]

if (obj.isFile()) {...}

} while (ite.hasNext ()) iterator

Semantic Tag: {iterator, GenericFileOp}

JeClab

Jseclab
LoopMC: Semantic Tag Example

while (ite.hasNext ()) {
obj = ite.next();

if (obj.canRead()) {...}

JeclQb

LoopMC: Semantic Tag Example

while (ite.hasNext ()) {
iterator

obj = ite.next();

JeClab

LoopMC: Semantic Tag Example

while (ite.hasNext ()) {
iterator

obj = ite.next();

Semantic Tag:{iterator, GenericFileOp}

JeClab

LoopMC: Semantic Tag Examples

do { while (ite.hasNext ()) {
iterator iterator
obj = ite.next(); obj = ite.next();
break; }

}

[GenericFileOp]

if (obj.isFile()) {...}

} while (ite.hasNext ()) iterator

Semantic Tag: {iterator, GenericFileOp} Semantic Tag:{iterator, GenericFileOp}

LoopMC: Feature Vector

e Number of loops of each known semantic tag.

app1

app2

appX

SemTag1

12
1

SemTag2

11

SemTag3

31

12

JeclQb

SemTagN-1 SemTagN

32 19
1 0
4 2

Jseclab
LoopMC: Model Training

e Decision trees: Random forest.

e Known to perform well for a large feature space, without much tuning.

e Accuracy: 99.3% (Genome) and 99.1% (VirusTotal)

JeclQb

LoopMC: Iterative Feature Pruning

e Many semantic tags, not all of them are important.

e lteratively remove tags that have zero importance (based on the underlying
model).

e Useful for conservative mapping.

LoopMC: Feature Vector

e Number of loops of each known semantic tag.

app1

app2

appX

SemTag1

12
1

SemTag2

11

SemTag3

31

12

JeclQb

SemTagN-1 SemTagN

32 19
1 0
4 2

seclQbd
LoopMC: Conservative Mapping

e Technique to handle unseen semantic tags.

e Map an unseen semantic tag to the closest known semantic tag.

e Resolving ties: Higher Malware Importance (Ml).

Jseclab
LoopMC: Malware Importance (MI)

e Value indicating a semantic tag ability to classify an app as malware.

X[24] <= 12
samples = 1000
/ue X:lse
X[6] <=2 X[12]<=4
samples = 300 samples = 700
‘% }alse lﬁuc False
samples = 50 samples = 250 samples = 300 X[8]1<=9

value=[B: 0 M: 1] value = [B:1 M: 0] value=[B: 0 M: 1] samples = 400

/ue \lec

samples = 320 samples = 80
value=[B: 0 M: 1] value = [B: 1 M: 0]

Jseclab
LoopMC: Malware Importance (Ml)

e Value indicating a semantic tag ability to classify an app as malware.

(MS(tc)-MS(fc)) If MS(tc) > MS(fc)

Ml(semantic_tag) = N

root

otherwise
0

MS(tc) => Malware samples having the semantic tag value higher or equal to that of the threshold.

MS(fc) => Malware samples having the semantic tag value lower than the threshold.

LoopMC: Evaluation

e Dataset: Malware Genome and VirusShare.

System Malware Genome
LoopMC 99.3%
DroidAPIMiner 99%

Drebin 94%

JeclQb

VirusShare
99.1%

97.4%

JeclQb

LoopMC: lterative Feature Pruning on Malware Genome

50000 - - 100
— # of features - = % Accuracy (10-fold CV)
499
40000 |-
R Accuracy remains almost 6
1° 3 constant as we prune the \ast/
30000 |- ° |
8 2 features.
g g
..8 197 %
B g
20000 | 3
o6 %
10000 |
495
0 L ‘ : I — o4
0 1 2 3 B 5 6

Iteration Number

JeclQb

LoopMC: lterative Feature Pruning on VirusShare

140000 - - 100
— # of features - - % Accuracy (10-fold CV)
120000 AT it S e P TR R G 199
100000 Accuracy remains almost %6
1% 3 constant as we prune the sty
2 80000 S features.
= o
§ 497 S;
S 60000} 2
<
496 S
40000 |
20000 |
0 A
4 5 6 V& 8 9

Iteration Number

JeclQb

LoopMC: Are semantic labels the secret sauce?

e Using semantic tags for DroidAPIMiner resulted in accuracy of only 53.37%
(almost random)

e Using APIls reachable only from loops for DroidAPIMiner resulted in 96.15%
accuracy.

JeClab

LoopMC: Are semantic labels the secret sauce?

e Using semantic tags for DroidAPIMiner resulted in accuracy of only 53.37%
(almost random)

Semantic tags alone doesn’t help. Looks
like it is the combination of loops and
semantic tags that helps.

JeclQb

Feature-unaware perturbations

e Evasion attempts unaware of the details of the underlying model.

o CFG Obfuscation: Spurious and Infeasible loops

o Reflection

JeclQb
CFG Obfuscation

e \We used the ADAM tool to obfuscate all the apps.

Dataset True Positive False Positive
Malware Genome 99.99% 2.01%

VirusShare 99.79% 5.45%

Reflection

JeclQb

e Replaced all API calls with reflection: LoopMC classified all the samples as
malware but DroidAPIMiner classified them as benign.

e Replaced only SMS related API calls with reflection:

System

Accuracy (on VirusShare)

LoopMC

92.47% (U4.63%)

DroidAPIMiner

83.54% (U13.86%)

JeclQb
Hardened feature vector

e Hard to affect the feature vector (without knowing the exact semantic tags).

e Brute-force techniques are impractical.

Jeclabd
Limitations

e Static analysis evasion.

e Interactions with Android framework not modelled (yet!!).

e No loops malware.

e Splitting and Stitching the loops.

Jeclabd
Conclusions

e Android malware detection using semantics of loops.

e Semantic labelling.

e Resilient to blind perturbations.

e Will be available at: https://github.com/ucsb-seclab/LoopMC

JeclQb
Thank You

Got
Questions

