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Android Malware is a problem (still!??)
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Loops are interesting

• Runtime-optimization techniques focus on loops.

• Previous work CLAPP (FSE 2015) from Yanick et.al shows that loops can

encompass interesting behaviors about the apps.
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Loops are interesting

• Runtime-optimization techniques focus on loops.

• Previous work CLAPP (FSE 2015) from Yanick et.al shows that loops can

encompass interesting behaviors about the apps.

• ls the behavior captured by loops enough to detect malware?
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LoopMC

• Using Loops for Malware Classification.

• Conservative mapping provides resilience against feature-unaware (or blind)

perturbations.



rEclsab

LoopMC: Overview
Android APKs
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LoopMC: Semantic Labels

• Semantic label to each of the Android API methods (Manually!!).

• Semantic labels capture the end-result of a method on the system.

• java.io.FileOutputStream! !write has the same label as

android.media.ExifInterface! ! saveAttributes i.e., ioWrite 
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LoopMC: Semantic Tags

• Set of Semantic Labels.

• Set of labels of all the API methods "reachable" from within a loop.

• Class Hierarchy Analysis (CHA) to handle dynamic dispatch.
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LoopMC: Semantic Tag Example

do f

obj = ite.next();

if(!obj.exists()) f

break;

1

if(obj.isFile()) f...1

1 while(ite.hasNext())



LoopMC: Semantic Tag Example

do { ,
iterator

obj = ite.next();

if(!obj.exists())

break;

1

, GenericFileOp ,

GenericFileOp
if(obj.isFile()) {...}

1 while(ite.hasNext()): iterator '
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LoopMC: Semantic Tag Example

do { ,
iterator

obj = ite.next();

if(!obj.exists())

break;

1

, GenericFileOp ,

GenericFileOp
if(obj.isFile()) {...}

1 while(ite.hasNext()): iterator '

Semantic Tag: {iterator, GenericFileOp}
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LoopMC: Semantic Tag Example

while(ite.hasNext()) f

obj = ite.next();

if(obj.canRead()) {...}

1



LoopMC: Semantic Tag Example
iterator

while(ite.hasNext()) f

iterator
obj = ite.next();

if(obj.canRead()) {...}
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GenericFileOp ,



LoopMC: Semantic Tag Example
iterator

while(ite.hasNext()) f

iterator
obj = ite.next();

if(obj.canRead()) {...}
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GenericFileOp ,

Semantic Tag:{iterator, GenericFileOp}



LoopMC: Semantic Tag Examples
iterator

do { while(ite.hasNext()) f

iterator
obj = ite.next();

if(!obj.exists())

break;

GenericFileOp 

GenericFileOp
if(obj.isFile()) {...}

1 while(ite.hasNext()) iterator 

iterator
obj = ite.next();

if(obj.canRead()) {...}
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GenericFileOp ,

Semantic Tag: {iterator, GenericFileOp} Semantic Tag:{iterator, GenericFileOp}
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LoopMC: Feature Vector

• Number of loops of each known semantic tag.

SemTagl SemTag2 SemTag3 SemTagN-1 SemTagN

appl 12 1 0 32 19

app2 1 0 31 1 0

appX 0 11 12 4 2
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LoopMC: Model Training

• Decision trees: Random forest.

• Known to perform well for a large feature space, without much tuning.

• Accuracy: 99.3% (Genome) and 99.1% (VirusTotal)
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LoopMC: Iterative Feature Pruning

• Many semantic tags, not all of them are important.

• Iteratively remove tags that have zero importance (based on the underlying

model).

• Useful for conservative mapping.
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LoopMC: Feature Vector

• Number of loops of each known semantic tag.

SemTagl SemTag2 SemTag3 SemTagN-1 SemTagN

appl 12 1 0 32 19

app2 1 0 31 1 0

appX 0 11 12 4 2
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LoopMC: Conservative Mapping

• Technique to handle unseen semantic tags.

• Map an unseen semantic tag to the closest known semantic tag.

• Resolving ties: Higher Malware Importance (MI).



LoopMC: Malware Importance (MI)

• Value indicating a semantic tag ability to classify an app as malware.

samples = 50
value = [ B: 0 M: 1 ]

X[24] <= 12
samples = 1000

X[6] <= 2
samples = 300

True False

X[12] <= 4
samples = 700

True False True

•

samples = 250
value = [ B:1 M: 0 ]

samples = 300
value = [ B: 0 M: 1 ]

False

X[8] <= 9
samples = 400

True \False

samples = 320
value = [ B: 0 M: 1 ]

samples = 80
value = [ B: 1 M: 0]
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LoopMC: Malware Importance (MI)

• Value indicating a semantic tag ability to classify an app as malware.

Ml(semantic_tag) =

{  (MS(tc)-MS(fc))

0

Nroot

If MS(tc) > MS(fc)

otherwise

rEctob

MS(tc) => Malware samples having the semantic tag value higher or equal to that of the threshold.

MS(fc) => Malware samples having the semantic tag value lower than the threshold.



LoopMC: Evaluation

• Dataset: Malware Genome and VirusShare.

System

LoopMC

DroidAPlMiner

Drebin

Malware Genome

99.3%

99%

94%

VirusShare

99.1%

97.4%
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LoopMC: Iterative Feature Pruning on Malware Genome
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LoopMC: Iterative Feature Pruning on VirusShare
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Accuracy remains almost
constant as we prune the
features.
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LoopMC: Are semantic labels the secret sauce?

• Using semantic tags for DroidAPlMiner resulted in accuracy of only 53.37%

(almost random)

• Using APIs reachable only from loops for DroidAPlMiner resulted in 96.15%

accu racy.
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LoopMC: Are semantic labels the secret sauce?

• Using semantic tags for DroidAPlMiner resulted in accuracy of only 53.37%

(almost random)

Semantic tags alone doesn't help. Looks
like it is the combination of loops and

semantic tags that helps.
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Feature-unaware perturbations

• Evasion attempts unaware of the details of the underlying model.

o CFG Obfuscation: Spurious and Infeasible loops

o Reflection



CFG Obfuscation

• We used the ADAM tool to obfuscate all the apps.

Dataset True Positive False Positive

Malware Genome 99.99% 2.01%

1
VirusShare 99.79% 5.45%
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Reflection

• Replaced aIl API calls with reflection: LoopMC classified all the samples as

malware but DroidAPlMiner classified them as benign.

• Replaced only SMS related API calls with reflection:

System

LoopMC

DroidAPlMiner

Accuracy (on VirusShare)

92.47% (44.63%)

83.54% (413.86%)
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Hardened feature vector

• Hard to affect the feature vector (without knowing the exact semantic tags).

• Brute-force techniques are impractical.
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Limitations

• Static analysis evasion.

• Interactions with Android framework not modelled (yet!!).

• No loops malware.

• Splitting and Stitching the loops.
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Conclusions

• Android malware detection using semantics of loops.

• Semantic labelling.

• Resilient to blind perturbations.

• Will be available at: https://qithub.com/ucsb-seclab/LoopMC
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