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Analog quantum simulation

• Emulate one quantum system by engineering another to mimic it

• Feynman's original idea for quantum supremacy
Feynman, Int. J. Theor. Phys. 21, 467 (1982)

• Already an experimental reality:
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Quantum simulation of antiferromagnetic
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Greiner Lab, Harvard

I FTTERS

Quantum simulation of frustrated lsing spins with
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New Journal of Physics
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Simulation of many-body systems

Many-body lattice system
0 0 0 0

0 0 0 0
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0 0 0 0

Engineered Hamiltonian

H

How do we prepare a thermal state at temperature T? p(13)
e- 0 H

3

The apparatus has a physical temperature, but this is not always relevant.

The errors/noise on the logical degrees of freedom may be non-equilibrating.

e.g. Spin lattice, and independent depolarizing channel on each spin
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Need to engineer thermalization also



How to thermalize?
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How to thermalize?

0
Many-body lattice system

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

Engineered Hamiltonian

H

Engineered dissipative evolution

p (t) = £ p (t)

But what kind of evolution will result in a thermal state?

Only general characterization known [e.g. Breuer & Petruccione, The theory of open quantum systems]:

Born-Markov master equation + ergodicity + KMS conditions => thermal steady state



How to thermalize?

Born-Markov master equation + ergodicity + KMS conditions => thermal steady state

o

Environment

• Weak coupling to many
degrees of freedom

• Fast relaxing environment
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Bath induced fluctuations and
dissipation satisfy detailed

balance

dp .

dt = —4H' p] + 7a0 (A)) (AO (w)PAa (A)) — {-Ace(w)A(A))1)
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A constructive approach to thermalization for
stabilizer models

e.g. toric code

HTC = — e

v

K. Young, M.S. et al. J. Phys. B, 45, 154012 (2012)
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0 0 0 —0

0 0

Optically pumped A-atom

A number of special properties of stabilizer Hamiltonians
make this work:

1. Easily predicted equidistant spectra => we can choose
the energies of few ancilla to achieve resonant energy

exchange

2. Local perturbations create energy excitations => so local
couplings to ancilla move one up and down between

eigenstates (ergodicity easy)



A generalization to arbitrary models
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dependent energy
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We assume ergodicity is
satisfied by the system-

ancilla couplings

This mimics a macroscopic bath over some longer timescale
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A generalization to arbitrary models
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ancilla couplings

This mimics a macroscopic bath over some longer timescale

4+

Ancillas will be resonant with different energy
transitions in the system at different times, so as
long as we maintain Boltzmann populations in the
ancilla at all time, we will induce transitions that

thermalize the system.



Spin lattice example
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Optically pumped A-atom with time-

dependent energy
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Spin lattice example
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H T (t) =

den (t)
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We require the parameter regime

dQm, (t)
  < Fm <1111sysIll Vrn,t

dt

In this regime we can derive a reduced master equation for the system alone
that describes its evolution when the ancilla dynamics is averaged over.



Removing the ancilla DOF

We require the parameter regime

I 

AL, (t)

 « gm (-1 FM « 1 1 Hsys 1 1 ) VM, t
dt

In this regime we can derive a reduced master equation for the system alone
that describes its evolution when the ancilla dynamics is averaged over.
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A reduced master equation describes system evolution
when the ancilla dynamics is averaged over

4 Operator on System
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Thermalization from four random initial states
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Examining the fixed point of dynamics

Frobenius Norm

I I Pth - P*I I

-10g10(iipth-pm)

Total Variation Distance
in system's eigenbasis
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Detailed balance

The regimes of poor thermalization are marked by a breakdown of detailed
balance in the engineered reservoir
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Ongoing work

1. Bounds on thermalization time of this protocol

2. Discrete-time (gate-based version of the protocol
1. Can derive strong bounds on performance in this case
2. Useful for comparison to other discrete-time (gate-based)

thermalization protocols (e.g. quantum Metropolis)
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