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Sandia is the home of Z, the world's largest pulsed power
facility, and its adjacent multi-kJ Z-Beamlet and Z-PW lasers
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Using two HED facilities, we have demonstrated the scaling jrn kiaartIdoil

Lea 

of magneto-inertial fusion over factors of 1000x in energy 
Laboratories
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Our fusion yields have been increasing as expected with
increased fuel preheating and magnetization
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Progress since 1st MagLIF in 2014 
• Improved laser energy coupling

from —0.3 kJ to 1.4 kJ
• Demonstrated 6x improvement

in fusion performance, reaching
2.5 kJ DT-equivalent in 2018
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Demonstrated platform on Omega 
• Improved magnetic field

strength from 9 T to 27 T
• Achieved record MIF yields on

Omega of 5x109 DD in 2018
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We believe that Z is capable of producing a fusion yield of Sandia
Nationl

ru1.00 kJ DT-equivalent with MagLIF, though doing it with DT LaborataoNes

would exceed our safety thresholds for both T inventory & yield 

• 2D simulations indicate a
22+ MA and 25+ T with
6 kJ of preheat could
produce -100 kJ

• Presently, we cannot
produce these inputs
simultaneously.
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The Z facility is applied to a wide range of plasma science
today, and further opportunities exist going forward
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The co-location of both laser and pulsed power facilities has
been an enabling factor in our ability to do plasma science
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Over the next year, we will begin installing booster amps to bring Z-Beamlet to 6 kJ



Today Z is routinely used to study a wide range of
multi-Mbar material science questions—pulsed power
can drive large samples at relevant strain rates

• Key physics questions
• Role of microstructure

• Kinetics and phase transitions

• Strength

• Transport properties

• Radiation shock
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Phase diagram of lithium showing a number of

solid phases with a large degree of uncertainty

100 120

Image from electron backscattering diagnostic of grains

in an additively-manufactured stainless steel. The
different colors represent different grain orientations.
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Image of Z explosive containment system used to

contain debris from experiments with hazardous
materials such as plutonium
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Sandia and Lawrence Livermore National Laboratories are
collaborating to produce record levels of >10 keV x rays
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These x-ray sources are being used to
study physics models for matter exposed
to rapid, intense doses of x rays

e.g., Studies of high-rate thermal
degradation of polyethylene, where -3
keV x-rays can heat -100 microns of
material at -1012 K/s.
Lane & Moore, Phys. Chem. A 122 (2018).

D.J. Ampleford et al., Phys. Plasmas 21, 056708 (2014).



Future high yield fusion facilities could provide even
more powerful sources of 10-100 keV x rays
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Some Z researchers use powerful soft x-ray sources to
radiatively heat samples placed around the z-pinch up to Te-200
eV, allowing multiple simultaneous experiments on a Z shot
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Our radiation and materials platforms are heavily
used by academic partners as part of Sandia's Z
Fundamental Science Program

Time (millions of years)
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• Scientists at Sandia partner with
academic researchers to study
cutting-edge high energy
density science

• Competitive proposal process

• NNSA provides experimental
time on Z, academic partners
provide their own support and
some equipment

• Has resulted in great science
that benefits both academic and
applied research efforts on Z!



Five major discoveries in Astrophysics and Planetarynb etti

Science within the Z Fundamental Science Program 
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shocked iron

A higher-than-predicted measurement of iron opacity
at solar interior temperatures
Jim Bailey, et. al., Nature 517, 14048 (2015)

Benchmark Experiment for Photoionized Plasma
Emission from Accretion-Powered X-Ray Sources
G. P. Loisel, J. E. Bailey, et. al., Physical Review Letters 119,
075001 (2017)

Laboratory Measurements of White Dwarf
Photospheric Lines: HB
Ross Falcon, et. al., The Astrophysical Journal 806 (2015)

Direct observation of an abrupt insulator-to-metal
transition in dense liquid deuterium
Marcus D. Knudson, Michael Desjarlais, et. al., Science 348,
1455 (2015).

Impact vaporization of planetesimal cores in the

late stages of planet formation
Richard D. Kraus, Seth Root, et. al., Nature Geoscience,
DOl:10.1038/NGE02369 (2015)



We are exploring a modular architecture that might scale Sandia
National
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to 300-1000 TW and is twice as electrically efficient as Z 

Brick — "quantum" of the next gen systems
Single step pulse compression to 100 ns

5.2 GW/800 J per brick

Module — multiple cavities in series

Linear Transformer Driver (LTD)

liiiilliiiiiiiibilibilOOS*001111000100011000110111141

100 kV per cavity

Cavity — multiple bricks in parallel

50 kA
per brick

Machine — multiple modules and
levels in parallel

—5 TW per module

Next-gen machines: 20,000-200,000 bricks, 33-60 cavities/module, and 65-800 modules!

W.A. Stygar et al., PRSTAB (2007); W.A. Stygar et al., PRSTAB (2015); W.A. Stygar et al., Proc. IEEE PPC (2017).



Bricks are a basis for other driver architectures, e.g., 
/ifil National

Laboratories

multi-MA arbitrary waveform generators for material science 
Thor-72 (0.5 Mbar)

Thor-240 (1.2 TW, 2 Mbar)

Brick

A

10-stage Impedance
Matched Marx

Generator (IMG)

Reisman et al., PRSTAB 18 (2015).

4 MA, 200 ns 7 MA, 200 ns

4,800 IMGs Neptune (50 TW, 20 MBar)

48,000 bricks
800 Towers

•

Styg e al. PRSTAB 19 (2016).

23 MA, 750 ns



We have developed an extremely flexible pulsed power
driver for materials science using cable pulser technology
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■ Up to 72 transit-time-isolated,
independently triggered pulsed
energy sources create unique
pulse shapes at the load (today)

■ 150-600 kbar pressures in mm-
scale material samples (today)

■ Recently signed a memorandum
for collaborative research with
UNM using this facility



LTD Cavity: We demonstrated >4000 shots over 6 months at
full voltage (100 kV) with no major configuration change or
component failure
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We are also starting to investigate driver-target coupling
physics, which is an uncertainty in going to larger machines
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A terawatt-class power pulse generates plasmas Sandia
National
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within a vacuum transmission line Improvements to modeling
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New experimental platforms
& diagnostic developments



We are exploring the idea of a next-generation pulsed
power facility to address multiple scientific opportunities

• Opportunities: A Z-Next facility capable of coupling
—10 MJ to targets could address key physics gaps

• Achieve —30 MJ yield; demonstrate scaling to >100 MJ

• Provide combined neutron and x-ray environments 
1000

at record fluences on test objects
100

• Achieve higher-pressure capabilities for actinide 
(73

10

dynamic material properties

• Address critical nuclear weapon primary and ca 0 1
cc

secondary physics issues 0.01
• To realize these opportunities, we are making a

number of investments through 2025

• Demonstrating key target physics and scaling

Seek to increase the shot rate of Z

Improving our diagnostic capabilities on Z

• Demonstrating driver technology options

• Understanding driver-target coupling and scaling

Advanced models and simulations

1

NNSA
HED Facilities
Z and NIF
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We are halfway through a full-aperture upgrade to Z-PW

Z-Petawatt optics before upgrade
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Z-Petawatt after full-aperture upgrade
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Design: Spare parts from ZBL were assembled into a 2-pass • Full-aperture HEPW (1 -2kY 1 054nm/500fs to 200ps)
main amplifier cavity with a sub-apertured 15cm round beam • High x-ray energies (> 15keV) for backlighting and diffraction
• Reduced the cost and infrastructure at the time • Full-aperture co-injection (1.5-2.5kJ/527nm/2ns)
• Modest beam energy/size and grating technology matched • Lower x-ray energies (< 15keV) for backlighting and diffraction
• Only top half of the 2x I amplifiers used (as with ZBL) • Additional energy for heating with ZBL on MagLIF 22


