

# Dynamic Analysis of Executables to Detect and Characterized Malware



SAND2018-13752C

PRESENTED BY

Michael R. Smith

## Story to Tell

Malware and cyber attacks are occurring at an increasing rate

- Heartbleed
- Ransomware
- Attacks on power systems

A common thread is that something has to be executed on the host system

- Signature based malware detection susceptible to obfuscation attacks
  - Add null operators changes hashes
  - Cannot detect novel variants of executables
  - Brittle
- Current ML approaches
  - Static or Dynamic

Dynamic analysis monitors the system calls (calls from an executable to underlying OS API)

# Prevalence of Malware and Cyber Attacks

## New Linux malware mines cryptocurrency and steals your password

### Amazon hit with major data breach days before Black Friday

Customers' names and email addresses posted on website, tech giant confirms

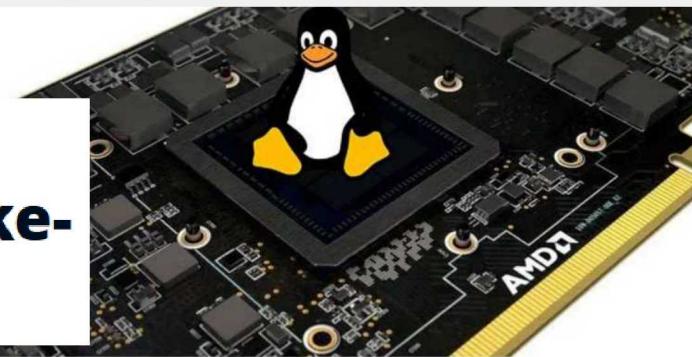


### Nasty New Linux Crypto Malware Compromises Root, Launches DDoS Attacks

With the value of [Bitcoin](#) once again experiencing a big drop this past week, you may begin to think that [malware](#) developers would begin shifting focus elsewhere. Unfortunately, that's far from being the case. Even if crypto seems to have modest value, that value becomes substantial when you multiply it

### Ukraine detects new Pterodo backdoor malware, warns of Russian cyberattack

Revived Gamaredon threat group just part of wave of new attacks tied to Russia's FSB.



### Cybersecurity Firm Detects Cryptojacking Malware on Make-A-Wish Foundation Website

### Emotet malware runs on a dual infrastructure to avoid downtime and takedowns

Researchers spot unique design in the server infrastructure propping up the Emotet malware.

### Google removes 13 malware apps from its Play Store

The 13 malware apps have been downloaded over 5,60,000 times from the Play Store

# Current Antivirus Techniques

## Signature Matching

- Easiest to defeat
- Trivially modify with non-used code

## Heuristics-based Detection

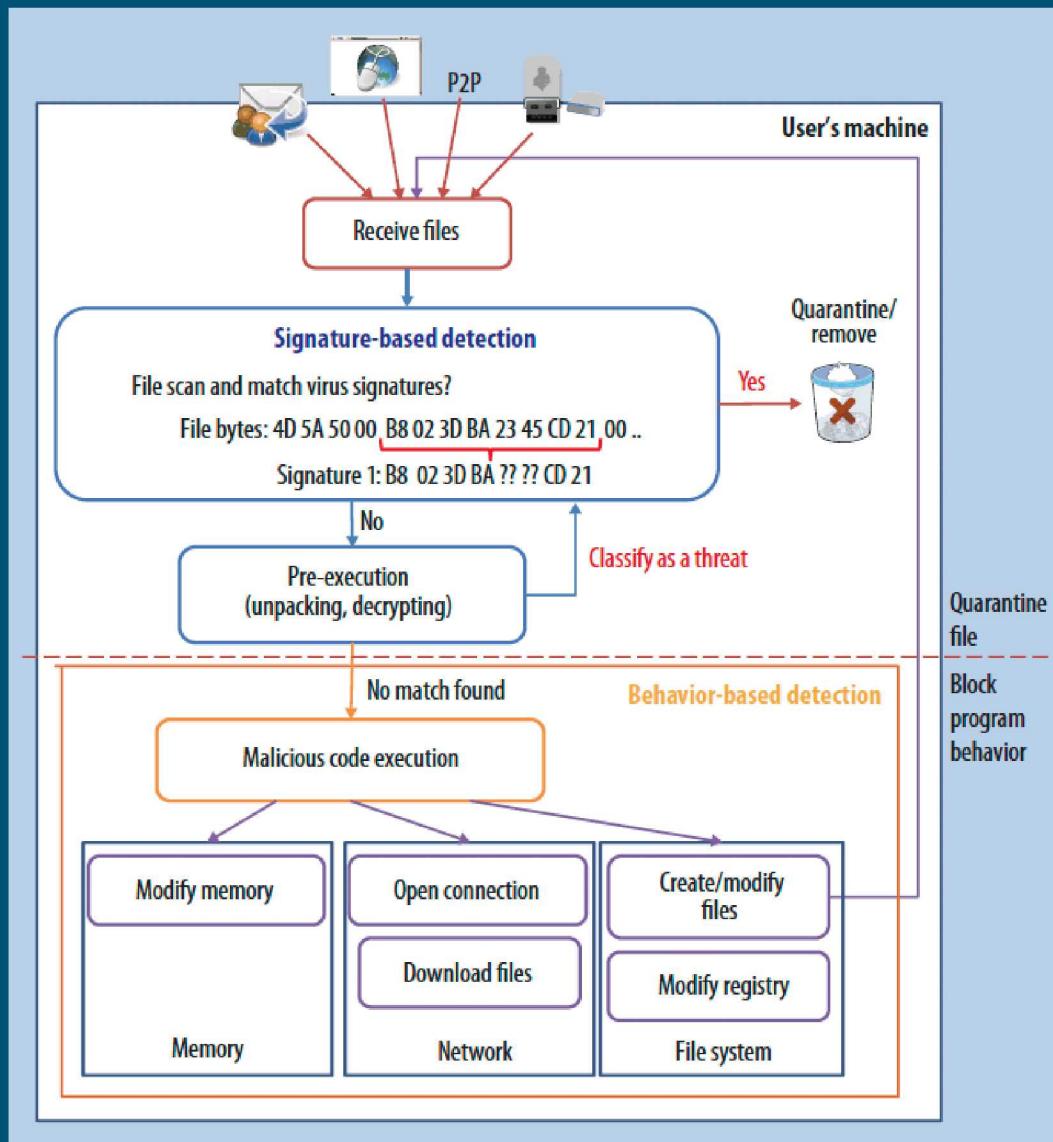
- Look for generic characteristics
  - Specific, rare, operations
  - Specific registry modifications

## Behavioral Detection

- Run the executable in a sandbox
- Observe behavior

Each is vulnerable to minor changes in the code

- Not able to adapt to new changes



# Thwarting Anti-Virus

Code packing and encryption

Code mutation

Polymorphic code

Stealth techniques

- Process injection
- Process hiding

Turning off anti-virus

Adding noop

**Solution: Use machine learning to monitor system calls**

- ML can generalize away from static signatures
- System calls are the base level for interacting with the operating system

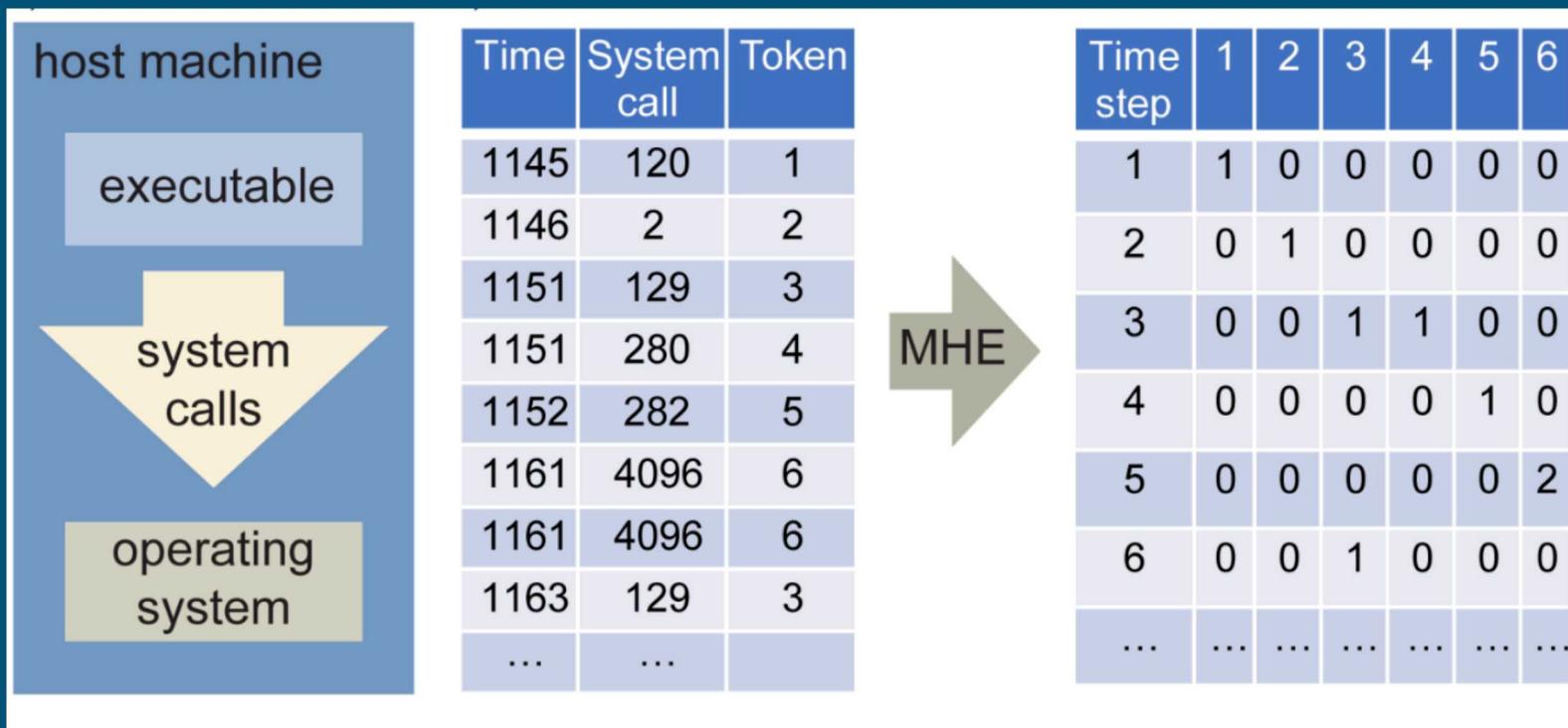


# Collecting System Call Data



Executables collected from a corporate gateway 2012

- Assumed benign if when ran through several anti-virus engines none were alerted
- Malware was collected from Arbor Networks daily feeds
- Windows 32-bit executables
- 14,483 samples: 6,197 benign and 8,286 malicious



# Machine Learning in Detecting Malware



## Static Analysis

- Extracts features from the executable without running it
  - Statistics and meta-features
  - List of DLLs
  - Byte n-gram
- Vulnerable to obfuscation techniques

## Dynamic Analysis

- Runs an executable to extract features
  - List of system calls
  - Libraries loaded
  - Writing to registries

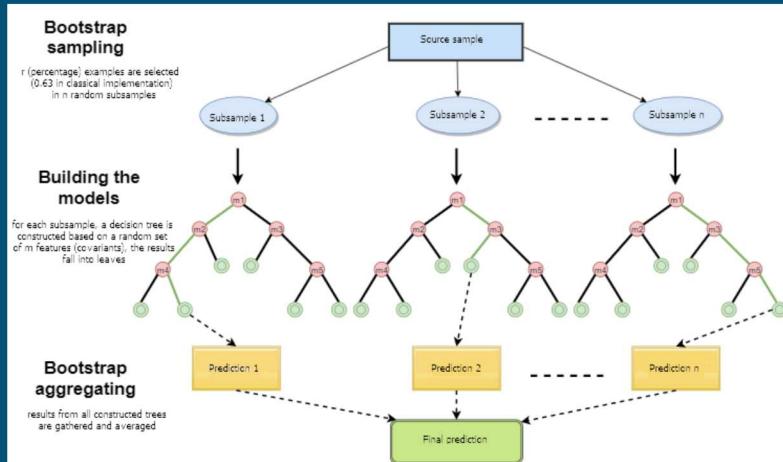
Previous work generally reports 96-98% classification accuracy

- Several caveats:
  - Generally cross-fold validation (what about concept drift)
  - Class imbalance is generally not studied (a small percentage of executables are malware)

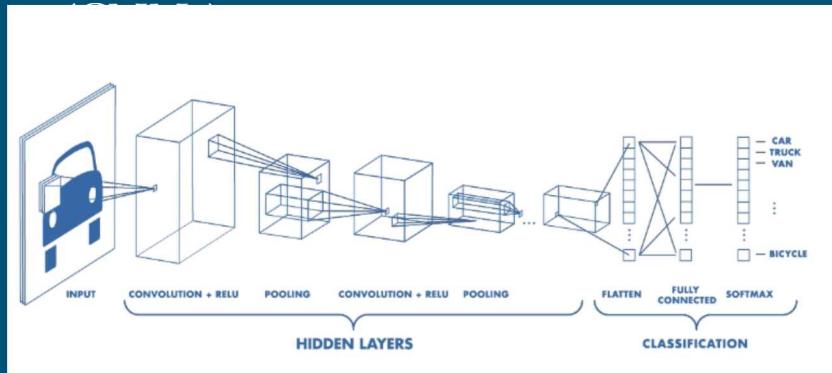
**How well would deep learning methods in detecting malware using dynamic analysis?**

# Examined Learning Algorithms

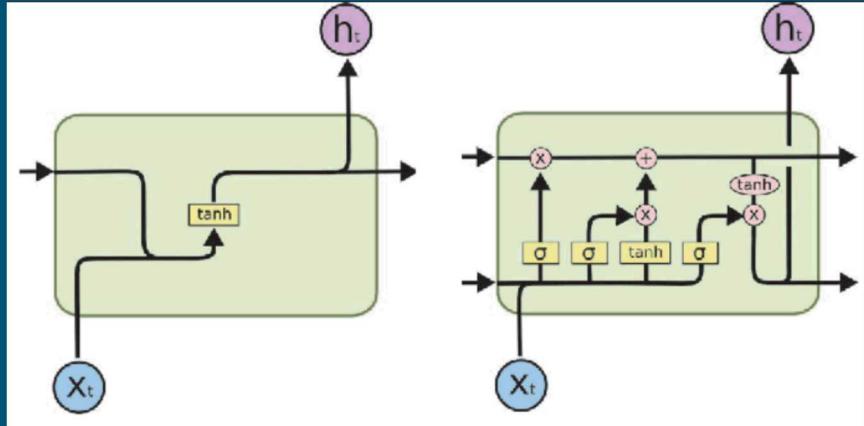
## Histograms with Random Forests



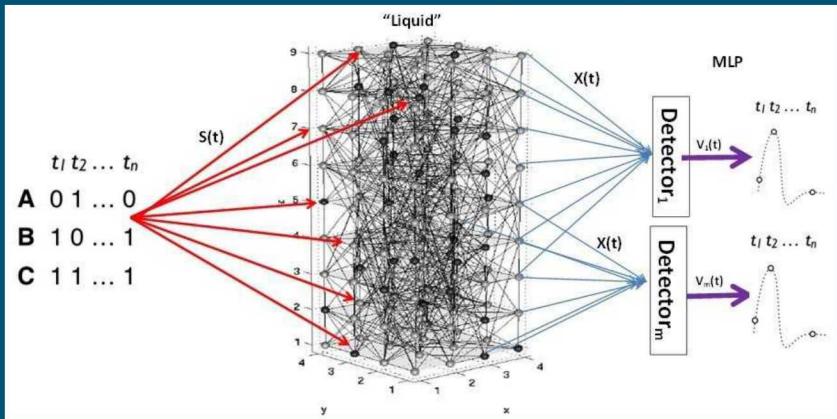
## Convolutional Neural Networks



## Long Short-Term Memory Recurrent Neural Networks (LSTM)



## Liquid State Machines (LSMs)



## Combined CNN and LSTM (CNN+LSTM)

# Results

1000 time steps sequence length

Each method achieves a class averaged accuracy greater than 90%

Random Forests out perform the deep learning approaches

- Statistical significance over the LSTM

Ensemble statistically significantly outperforms all other approaches

| Alg      | Acc         | CAA         | MPr          | MRe          |
|----------|-------------|-------------|--------------|--------------|
| Hist+RF  | <b>95.3</b> | 94.7        | 0.953        | <b>0.926</b> |
| CNN      | 94.0        | 93.2        | 0.946        | 0.896        |
| LSTM     | 91.3        | 90.0        | 0.926        | 0.843        |
| CNN+LSTM | 94.5        | 93.7        | 0.956        | 0.901        |
| LSM      | 90.7        | 89.8        | 0.856        | 0.856        |
| Ensemble | <b>95.3</b> | <b>95.5</b> | <b>0.962</b> | 0.917        |

|          | Hist+<br>RF | CNN | LSTM | CNN+<br>LSTM | LSM |
|----------|-------------|-----|------|--------------|-----|
| Ensemble | YES         | YES | YES  | YES          | YES |
| Hist+RF  | -           | NO  | YES  | NO           | NO  |
| CNN      | NO          | -   | YES  | NO           | NO  |
| LSTM     | YES         | YES | -    | YES          | NO  |
| CNN+LSTM | NO          | NO  | YES  | -            | YES |
| LSM      | NO          | NO  | NO   | YES          | -   |

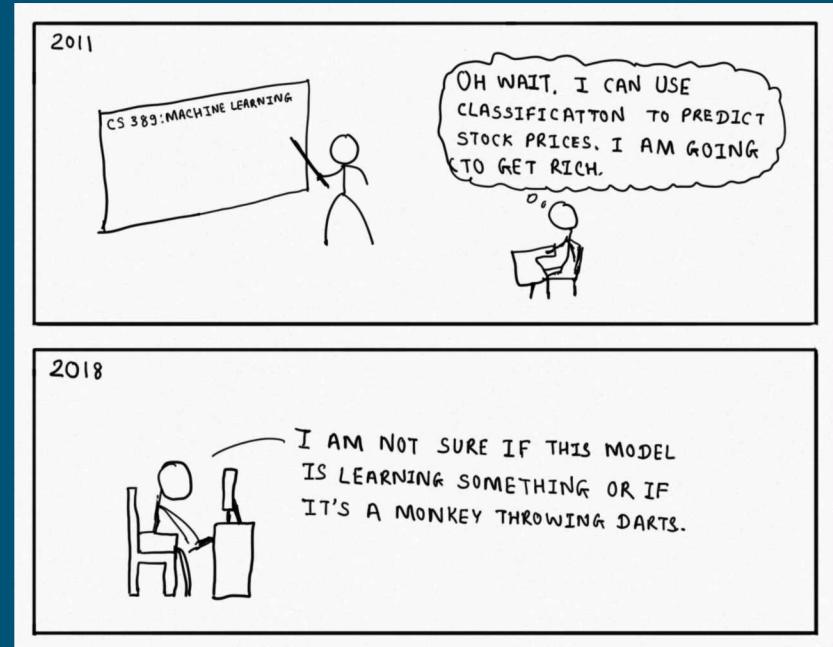
# Why did deep learning not significantly out perform other methods?

A major problem in using ML in information security:

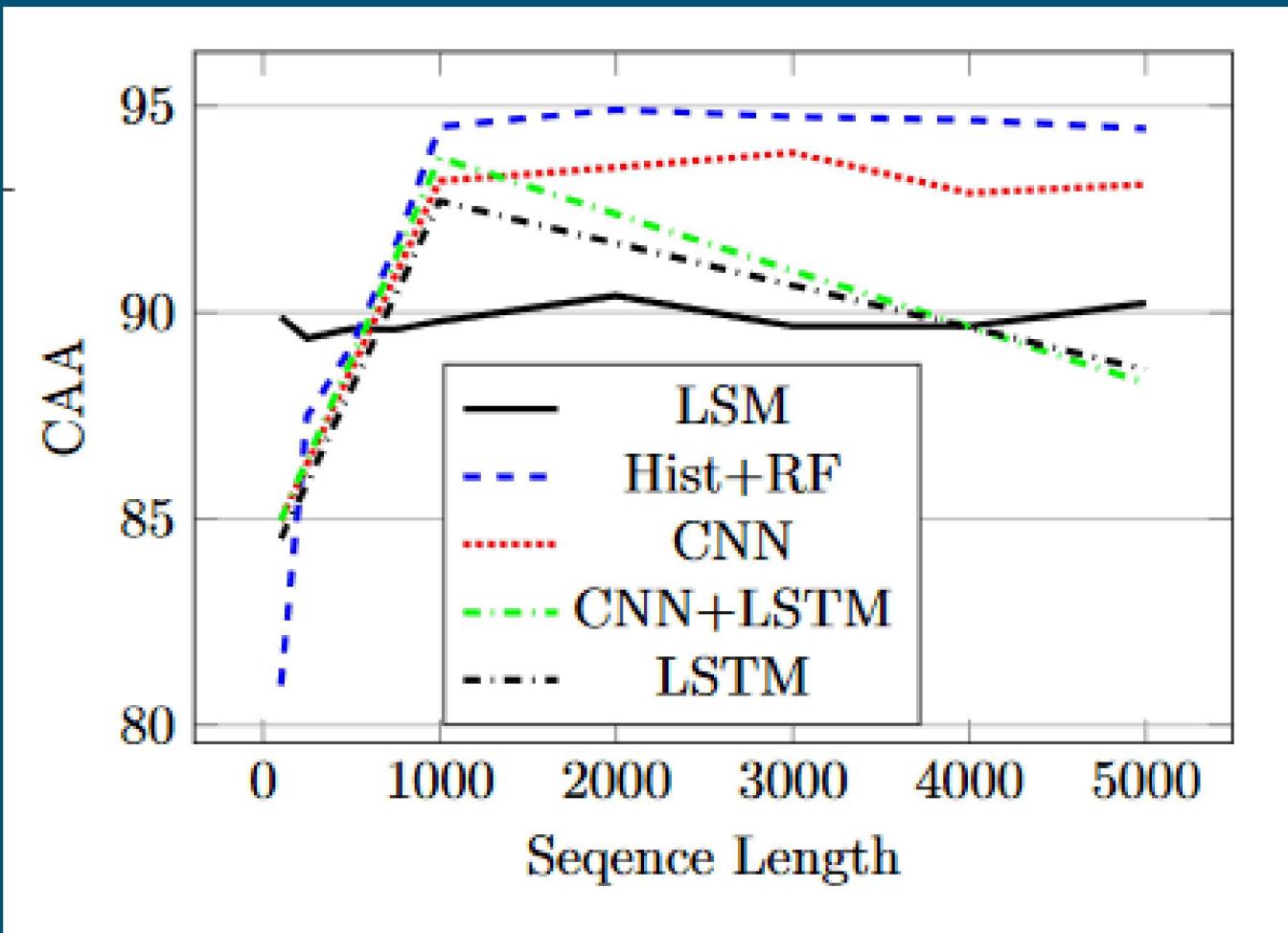
- Lack of knowledge of the domain (most users are experts in object detection)
- Space is prohibitively large and dynamic
- Environment is inherently adversarial
- Lack of labelled data

Many previous works have simply applied deep learning approached (including us)

- Need to specialize to info security domain (similar to CNNs for image processing)



# Sequence Length



# Various Learning Scenarios

Sorted: data set with roughly balanced benign and malicious

CV: 10-fold cross validation on balanced data set

Dist: a data set with significant class skew

**Key take away: CV and balanced data sets can give overly optimistic expectations**

**We should expect significantly lower precision**

|          | Goodware    |        |
|----------|-------------|--------|
|          | Distributed | Sorted |
| Training | 11757       | 13265  |
| Testing  | 4728        | 3220   |
| Malware  |             |        |
| Training | 11091       | 9092   |
| Testing  | 45          | 2044   |

| Alg      | Data | CAA         | Acc         | MPr          | MRe          |
|----------|------|-------------|-------------|--------------|--------------|
| Hist+RF  | Sort | 95.3        | 94.7        | 0.953        | 0.926        |
|          | CV   | <b>96.3</b> | 96.0        | <b>0.965</b> | 0.942        |
|          | Dist | 95.9        | <b>97.3</b> | 0.187        | <b>1.000</b> |
| CNN      | Sort | 94.0        | 93.2        | 0.946        | 0.896        |
|          | CV   | 95.5        | 95.1        | <b>0.959</b> | 0.928        |
|          | Dist | <b>97.0</b> | <b>98.5</b> | 0.242        | <b>1.000</b> |
| LSTM     | Sort | 91.3        | 90.0        | <b>0.926</b> | 0.843        |
|          | CV   | 90.9        | 90.0        | 0.850        | 0.919        |
|          | Dist | <b>92.4</b> | <b>94.0</b> | 0.107        | <b>0.956</b> |
| CNN+LSTM | Sort | 94.5        | 93.7        | <b>0.956</b> | 0.901        |
|          | CV   | 94.8        | 94.2        | 0.955        | 0.914        |
|          | Dist | <b>95.0</b> | <b>96.4</b> | 0.157        | <b>0.978</b> |
| LSM      | Sort | 90.7        | 89.8        | 0.856        | 0.856        |
|          | CV   | <b>93.1</b> | 92.6        | <b>0.926</b> | 0.901        |
|          | Dist | 91.3        | <b>95.6</b> | 0.098        | <b>1.000</b> |

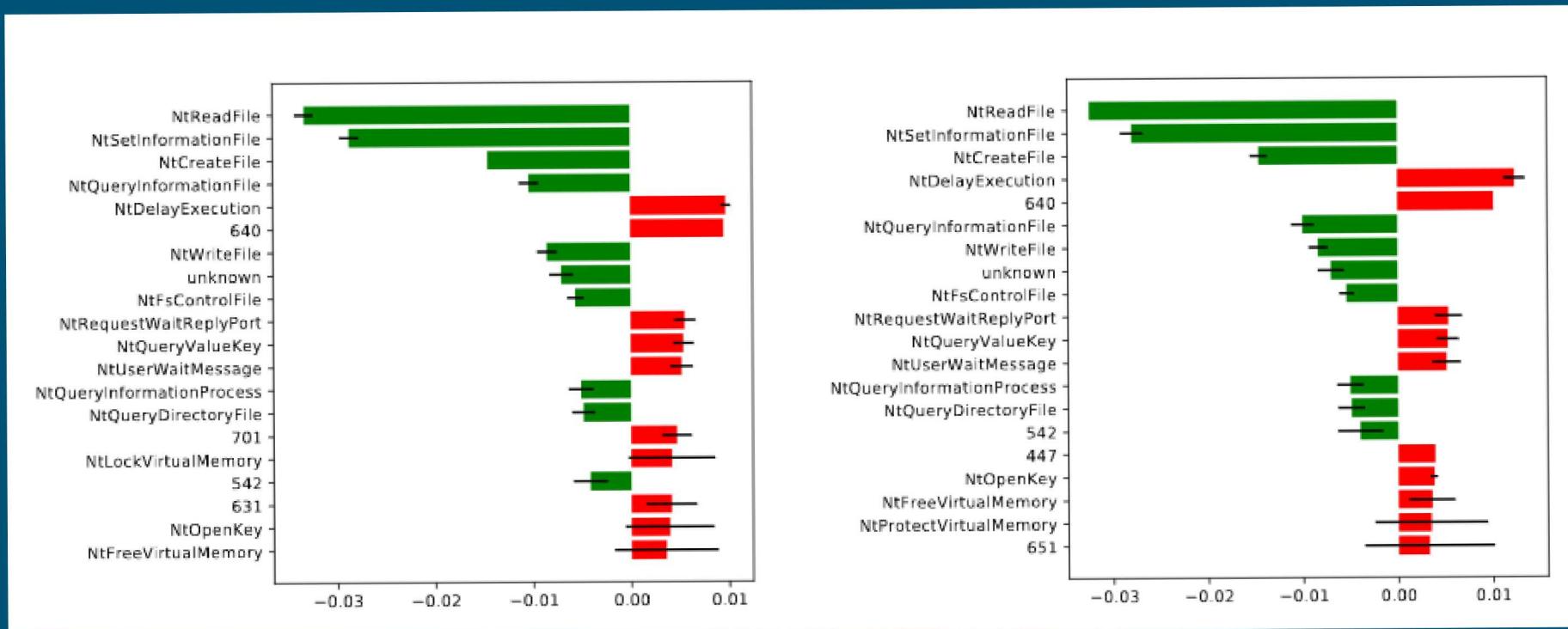
# Most Important/Discriminatory Features

These are often used in a decision making process

- Need to be able to explain
- Build trust
- Build context

| Feature                   | Goodware | Malware |
|---------------------------|----------|---------|
| NtAllocateVirtualMemory   |          | X       |
| NtClose                   | X        | -       |
| NtCreateEvent             | -        | -       |
| NtCreateFile              | X        | -       |
| NtCreateSection           | -        | -       |
| NtFreeVirtualMemory       |          | X       |
| NtFsControlFile           |          | X       |
| NtMapViewOfSection        |          | X       |
| NtOpenKey                 | X        | -       |
| NtOpenSection             |          | X       |
| NtQueryAttributesFile     | -        | -       |
| NtQueryInformationFile    | X        | -       |
| NtQueryInformationProcess | X        | -       |
| NtQueryInformationToken   | X        | -       |
| NtQuerySection            |          | X       |
| NtQuerySystemInformation  |          | X       |
| NtQueryValueKey           | X        | -       |
| NtReadFile                | X        | -       |
| NtRequestWaitReplyPort    |          | X       |
| NtSetInformationFile      | X        | -       |

# Most Important Features



Most important features for a prediction of an individual data point

- Left: Correctly classified malware samples
- Right: Misclassified malware samples
- Green: For malware
- Red: for goodware

NTDelayExecution seems to flip the classification

## Conclusions

Machine learning is a viable solution for malware detection

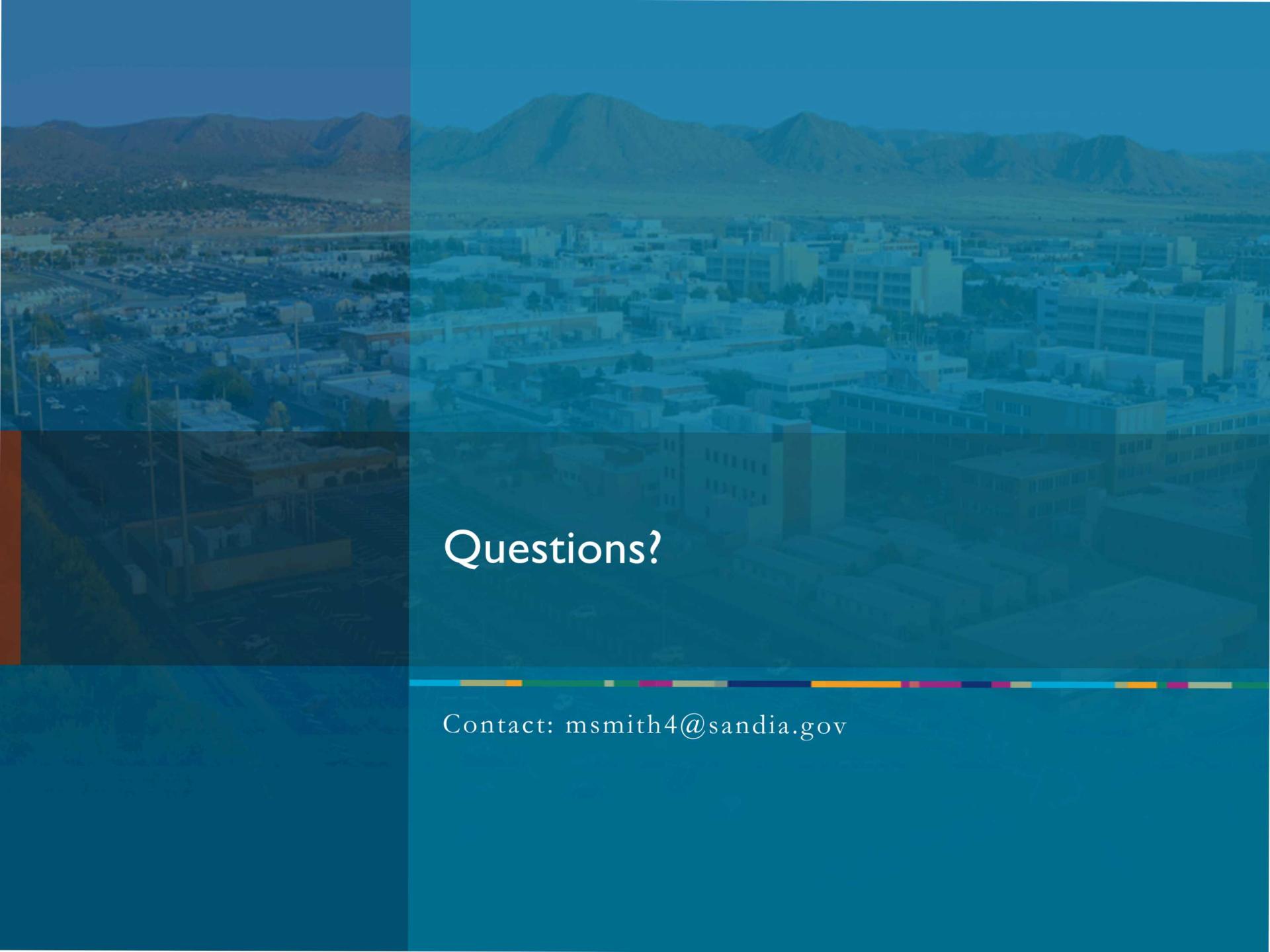
- Random Forests empirically have the best performance
- More complex algorithms are not necessarily better
- Deep learning for automatic feature extraction is still lagging in information security

Cross-validation can give overly optimistic results, especially in precision

- More realistic results come from testing on a distribution with class skew

Results need to interpreted by an analyst

- Explainability approaches are key to taking action, building trust, and improving the model
- Can help with forensics and where to put defenses



Questions?

---

Contact: [msmith4@sandia.gov](mailto:msmith4@sandia.gov)