
Estimating Biases for Regional Methane Fluxes
Employing Temporally Varying Random-Field Representations of Biases

Introduction
•Top-down estimates of regional CH4 emissions in the San Francisco Bay area are highly uncertain.

•Mismatch between measured and modeled receptor concentrations using inventories for CH4 can vary

greatly during an individual month

•Potential sources of model bias include inadequacies or errors in the atmospheric transport modeling

and in the emissions inventory.

•Here we infer the model bias as time-varying parameter to improve estimates and help diagnose the

sources of mismatch between measurements and our expectation based on an emissions inventory.

Site Information
O Location: Livermore, CA, -150 m above sea level,

64 km south-east of San Francisco

Prevailing westerly winds provide frequent Pacific Ocean background

O Tower: Inlet height: 27 m above ground level

O Instrumentation:
•Climate-controlled 30-ft mobile laboratory

•Cavity ringdown spectrometer for CH4, CO2, H20 (Picarro, Inc.)

•Various other instruments are available but were not used in this study

Example time series in Livermore
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U Release point: -121.71, 37.67 (Livermore)

U 500 particles, released hourly UTC 1900 hrs - 0300 hrs

D Simulation period 7 days backward in time

Transport Models
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Threshold for (Footprint) X (Emissions Inventory) > 0.1% of peak

•In the maps (right) red areas indicate land

influence above threshold

•Regional air districts and state border shown

•Retain only footprints with >80% marine

boundary layer (mbl) influence prior to landfall to

select times with an identifiable mbl background.
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CI Traditional representation

for mixing ratio at time i, Xl

x(t) = b(t)

Bayesian Inference
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CI New representation for mixing ratio at time i, Xi
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Bias Emissions Background Discrepancy terms

• Use Karhunen-Loève Expansion to capture time dependence of the bias, assuming square
exponential covariance:
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are the Karhunen-Loève Expansion functions, and ck are the coefficients to be inferred

KLE basis sets: correlation length = 12 hrs
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• Employ Bayes formula and Adaptive-Metropolis Markov Chain Monte Carlo sampling to explore
the posterior

POI gmy P (TA, 6b, Tcly) p(y A, 6b, gm, Tc)P(Al T A)P(P,A)13(0 40-4(a m)P(6b)

• Construct posterior probability for model bias, il(t) and compare to constant bias assumption:
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Comparing Assumptions for Model -;iat

D Compute the model calibrated to observations (posterior predictive) and compare model

assuming constant bias with model using 48 KLE modes:
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Conclusions and Next Steps
• Employing a temporally varying bias improves representativeness of the posterior predictive model

• Uncertainty in the posterior model may increase in certain cases and may indicate other model inadequacies

• Inversions will be performed on additional months to examine an entire year.

• Temporal structure will be analyzed to diagnose the source of the variations

• Alternative emissions inventories to EDGAR will be analyzed
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