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Introduction
Multiphase flow in clay-bearing sandstones of the Pennsylvannian Morrow
Sandstone governs the efficiency of CO2 storage and enhanced oil recovery at
the Farnsworth Unit, West Texas, USA. This formation is the target for
enhanced oil recovery and injection of one million metric ton of
anthropogenically-sourced 002. The sandstone hosts eight major hydrologic
flow units (HFUs) that exhibit distinct microstructural characteristics due to
diagenesis, including: "clean" macro-porosity; quartz overgrowths constricting
some pores; ghost grains; intergranular porosity filled by microporous
authigenic clay; and feldspar dissolution. We examine the microstructural
controls on macroscale (core scale) relative permeability and capillary pressure
behavior through mercury porosimetry, petrography, X-ray computed
tomography,imaging, and relative permeability and capillary pressure in the
laboratory using CO2 and brine at reservoir pressure and effective stress
conditions. The combined data sets inform links between patterns of diagenesis
and multiphase flow. These data support multiphase reservoir simulation and
performance assessment by the Southwest Regional Partnership on Carbon
Sequestration (SWP).

Background
The FWU is undergoing CO2 enhance
oil recovery (EOR) using 100%
anthropogenically-sourced 002. Th
SWP is cuurently monitoring the jection
of 1 million metric tons of anthr• •ogenic
002.
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Units within the Morrow-B Sandstone
serve as the reservoir with overlying
(caprock) and underlying Morrow shales
forming the seals. Analysis of caprock
integrity is discussed by Trujillo et al. (this
conference)

Fundin for this project is provided by the U.S. Department of Energy's National
Energy Technology Laboratory through the Southwest Regional Partnership on
Carbon Sequestration (SWP) under Award No. DE-FC26-05NT42591. Sandia
National Laboratories is a multi-mission laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy's National Nuclear Security Administration
under contract DE-AC04-94AL85000. Thanks to site operator Chaparral Energy,
L.L.C., Schlumberger Carbon Services, TerraTek core labs, Wagner
Petrographic, and Steve Cather at the NM Bureau of Geology, for invaluable
contributions. This project could not have been done without help from Sandians
Eric Bower (micro-CT), Charles Choens (sample jacketing), and Michelle

LV!Iliams (He-porosity and image processing).

Rose-Coss et al. (2016) used the Winland R35
method to distinguish HFUs in the Morrow B. Shown
below are f-k correlations for Morrow B lithologies (51
wells): Woiland R35 Derived Hydraulic Flow Zones
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Hydrologic Flow Units & MICP
13-10A HFUs
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kaolinite-filled pore & bitumen sphaerosiderite cement

Mercury porosimetry of end butts and small plugs of
13-10A samples show capillary pressure-saturation
curves with higher numbered HFU's exhibiting lower
entry pressures. Extrapolating wettability to other
phases lowers entry pressures relative to Hg.
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MICP with Dean-Stark cleaned plugs suggest presence of bitumen within
finer pores (microporosity associated with clay, e.g kaolinite, filling. This is
validated with epifluorescence microscopy.
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r Micro-CT Imaging of HFUs

Sample 14
7691.1'
HFU8

Fairly unimodal
and moderately
well sorted, well
connected pore

topology
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(Right) FIB-
SEM recon
of kaolinite
books in

macropores
(-16 x 12 x
13 microns)
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Macropore medial axes (green)
show largely isolated pore bodies
compared to clay-filled pores (blue)
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Sample 18
7698.1'
HFU7

11 micron
resolution

Sub-plug sample (top) and (bottom)
pores and frit used in relative
permeability experiments
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Sample 2
7670.55"
HFU3-4

Cross-laminae with
little porosity serve
as flow barriers
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Core and Pore Reconstructions
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Clay-filled
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dominant pore type
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Imaging of core plugs and end-butts of plugs was performed using a
North Star Imaging Inc. Micro-CT. Resolutions range from 11 to 16

L
microns. FIB/SEM serial sectioning and imaging was performed using A
an FEI Helios 600 Nanolab Dual Beam instrument

Experimental Methods
• Horizontal plugs 1.5' in diameter and -3' in length were prepared by Terra

Tek and SNL. Plug ends were used for thin section prep and MICP.
• Samples were jacketed in hybrid nickel foil-teflon-UV-cured polyurethane

coating with wire wraps. End pieces were composed of titanium, and 3mm
thick porous hastelloy frits were placed between end piece and jacket to
mitigate end effects. And distribute flow. Samples were flushed with CO2(g)
and then vacuum impregnated with pore solution prior to pressurizing.

• Tests were conducted in a HIP pressure vessel, using hastelloy plumbing.
• Fluid pressure and metering were performed with Teledyne-ISCO syringe

pumps with hastelloy cylinders.
• All tests were run at - 76°C, -27.6 MPa pore pressure and 55.2 MPa

confining pressure with 4000 mg/L NaCI solutions to simulate in situ
conditions. Pore solutions and scCO2 were pre-equilibrated by circulating in
a high pressure "bubble!' prior to injection.

TWo-Phase HPHT Core
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I. Demon, 04 00914
Minar 9, 2015
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Relative Permeability Results
Testing procedure included 1. Single phase permeability as a function of effective
pressure; 2. flushing sample with mixtures of H20 /002 at increasing ratios at
flow rates up to 20 ml/min; 3. CO2 flow near irreducible water saturations (Sw, ir)
was done at multiple flow rates using the method of Pini and Benson (2014). 4.
Imbibition water floods were performed to measure residual 002. 5. A 2nd

drainage was performed to obtain w also measured on core by evaporation in
an oven.
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Conclusions
• 8 HFUs are recognizable in the Morrow-B on basis of porosity

and perm at surface conditions (Rose-Coss et al., 2016) and on
the basis of MICP and CT-imaging.

• Authigenic clays and cements have a first order control on single
and 2-phase permeability of HFUs.

• HFUs exhibit mixed-wettability, and bitumen was recovered
during testing from CO2 effluent. Lower value HFUs contain
most of the residual oil. Higher HFUs represent "fast paths" that
may thwart efforts at broad sweep efficiency for EOR.

• Residual (trapped) CO2 amounts range of saturation values of 10
to 15% in the tested HFUs.
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