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NONLOCAL MODELS AND

NON-STANDARD NEIGHBORHOODS



NONLOCAL DIFFUSION MODELS

main feature: interactions can occur at distance, whitout contact

every point x in a domain interacts with a neighborhood

our interest: nonlocal diffusion operators
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NONLOCAL DIFFUSION MODELS

main feature: interactions can occur at distance, whitout contact

every point x in a domain interacts with a neighborhood

our interest: nonlocal diffusion operators

nonlocal models for continuum mechanics

• stochastic jump processes

nonlocal heat conduction

• subsurface flow/porous media

• image processing
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NONLOCAL DIFFUSION OPERATORS

how do they look like?

Lu(x) = 11 (u(y) — u(x)) ry(x, y) dy
RTh

what do we want to solve?

Lu = f

+ volume contraints
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NONLOCAL DIFFUSION OPERATORS

how do they look like?

Lu(x) = (u(y) — u(x)) (x , y) dy
RTh

what do we want to solve?

Lu = f

+ volume contraints

"standard" model
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FACTS

a recently developed theoretical and numerical analysis allows us to study
nonlocal problems similarly to the local (classical) counterpart

we have numerical convergence results for finite element approximations

challenges: the numerical solution rnight be prohibitively expensive
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BALLS AND MESHES

Challenge: matrix assembling using FEM in 2D and 3D simulations

• figure out intersections

• computing integrals of round domains
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BALLS AND MESHES

Challenge: matrix assembling using FEM in 2D and 3D simulations

• figure out intersections

• computing integrals of round domains

/
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CURRENT STRATEGIES

triangles: • triangulation of caps (Xu, Google Inc., Stoyanov, ORNL)

approximation of the ball with a polygon (Bond, SNL)

inclusion of partial triangles based on barycenters (Borthagaray, U. Maryland)

squares: • oct-tree mesh refinement at the ball boundaries (Foster, UT Austin)
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CURRENT STRATEGIES

triangles: • triangulation of caps (Xu, Google Inc., Stoyanov, ORNL)

1 approximation of the ball with a polygon (Bond, SNL)

inclusion of partial triangles based on barycenters (Borthagaray, U. Maryland)

squares: • oct-tree mesh refinement at the ball boundaries (Foster, UT Austin)

these may be unnecessary, inaccurate or inefficient!
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USING DIFFERENT BALLS

what if we consider a different ball?

> triangulation w/o geometry errors

much easier re-triangulation!
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USING DIFFERENT BALLS

what if we consider a different ball?

triangulation w/o geometry errors

much easier re-triangulation!

this can be a modeling choice!

• when even round balls
are not required by physics

• when the nature of the
problem calls for square balls
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USING DIFFERENT BALLS

IMPORTANT QUESTIONS

O. does the nonlocal vector calculus still apply?

1. do we recover local operators as 6 0?

2. do we recover fractional operators as 6 co?

3. are there applications for which these are models in their own right?
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OUTLINE

• Background: a Nonlocal Vector Calculus

• Non-standard neighborhoods

1. formulation and analysis

2. numerical tests

3. applications
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A NONLOCAL VECTOR CALCULUS

— M. Gunzburger, R. Lehoucq, A nonlocal vector calculus with application to nonlocal boundary

value problems, Multiscale Modeling & Simulation, 8, 1581-1598, 2010

— Q. Du, M. Gunzburger, R. Lehoucq, and K. Zhou, Analysis and approximation of nonlocal

diffusion problems with volume constraints. SIAM Review, 54, 667-696, 2012

— Q. Du, M. Gunzburger, R. Lehoucq, and K. Zhou, A nonlocal vector calculus, nonlocal volume-

constrained problems, and nonlocal balance laws. Math. Model. Meth. Appl. Sci, 23, 493-540, 2013



NONLOCAL VECTOR CALCULUS

generalization of the classical vector calculus to nonlocal operators

allows us to study nonlocal diffusion similarly to the classical, local, counterpart

based on the concept of nonlocal fluxes
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NONLOCAL VECTOR CALCULUS

generalization of the classical vector calculus to nonlocal operators

- allows us to study nonlocal diffusion similarly to the classical, local, counterpart

- based on the concept of nonlocal fluxes

q • ni dA

OQ12

M. D'Elia — mdelia@sandia.gov 0 Sandia National Laboratories



NONLOCAL VECTOR CALCULUS

• generalization of the classical vector calculus to nonlocal operators

• allows us to study nonlocal diffusion similarly to the classical, local, counterpart

• based on the concept of nonlocal fluxes

Nonlocal operators acting on u(x) : d and v (x , y): d X \\ --D d

• divergence of v: D (v) (x) = Li (v (x , y) + v (y , x)) • cx(x , y) dy

• gradient of u: g (u)(x, y) = (u(y) - u(x))a(x, y)

nonlocal diffusion of u: Lu(x) = D(g u(x))

Lu(x) = 2 Pu(y) — u(x)) a(x , y) • a (x , y) dy

d
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NONLOCAL VECTOR CALCULUS

generalization of the classical vector calculus to nonlocal operators

- allows us to study nonlocal diffusion similarly to the classical, local, counterpart

• based on the concept of nonlocal fluxes

Nonlocal operators acting on u(x): d and v (x , y): d X \\ --D d

• divergence of v: D (v) (x) = fRri (v (x , y) + v(y, x)) • cx(x , y) dy

• gradient of u: g (u)(x, y) = (u(y) — u(x))a(x, y)

• nonlocal diffusion of u: Lu(x) = D(g u(x))

Lu(x) = 2 Pu(y) — u(x)) da(x , y) • a (x , y) dy

Lu(x) = 2 Pu(y) — u(x)) 7 (x , y) dy

d
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NONLOCAL VECTOR CALCULUS

Interaction domain of an open bounded region Q E Rd

QI={YE d \C2: a(x, y) 1 0, x E S2},

6: interaction length, interaction radius
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A NEW CONCEPT OF BALLS

- C. Vollman, M. D'Elia, M. Gunzburger, V. Schulz, Formulation and analysis

of fast discretization methods for nonlocal FEM by using non-standard nonlocal

neighborhoods, in progress.



INTERACTION SETS

• Non-degeneracy: 6 > 0 such that

Vx (Q U Q/), /36,2(x) c S(x)

with B6,2(x) := {y E — Y12 < (51

X
•

-"•• .......

• Symmetry: V (x, y) E (Q U

y E S(x) if and only if x E S(y)

> (x, y) H Xs(x)(y) is symmetric in (x, y)

S(x)
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KERNELS

assumptions: ] Pyo > 0 s.t. V x E (Q U S-2/)

{ 

7(x, y) > 0 V y E S(x)

7(x, y) 7o > O V y E B6,2(x)

7(x, y) = 0 V y e ---e' \ S(x)

.... S(x)

•.
''.• ............ •••
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KERNELS

assumptions: ] -yo > 0 s.t. V x E (S2 U S-2/)

{ 

7(x, y) > 0 V y E S(x)

7(x, y) 7o > O V y E B6,2(x)

-y(x, y) = 0 V y E --r \ S(x)

kernel expression:

7(x, y) = 0(x, y)Xs(x)(y)

where cb(x, y) is referred to as kernel function

. ............... S(x)

•.
''.• ............ •••
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KERNELS

kernel expression:

PY(x, y) = 0(x, y)Xs(x)(y)

examples:

S(x) := {y E n : TO, y) < 01 for a symmetric T1 (x , y)

standard interaction set: 77(x, y) = Ilx — Y112 — 6

S(x) is the Euclidean ball 136,2(x)

6: horizon.

.............. ... S (x)
so ...•

x 6. 

•• *.
'' ................ 0*
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KERNELS

kernel expression: ..•• ***** •••• S(x)
••••a••

••

/**

/

PY(x, y) = 04, y)Xs(X) (y) x 6 

••*.

' ................ 0*

examples:

S(x) := {y E n : 7/(xl y) < 0} for a symmetric Ti(x, y)

standard interaction set: 77(x, y) = Ilx — y112 — 6

---> S(x) is the Euclidean ball 136,2(x)

6: horizon.

general interaction sets: ri(x, y) = Ilx — yll• — 6, for an arbitrary norm 11 • Il•

  S(x) are balls Bs,e(X) := fy C --e : Ilx — MI* < 61.
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WEAK FORM AND WELL-POSEDNESS

bilinear form: A(u, v) = (u(y) — u(x))(v(y) — v(x))-y(x,y) dydx
I 2uQI LQ1

energy seminorm: illuIll = VA(u, u)

unconstrained and constrained energy space:

V(Q U C2i) = {u E L2(Q U Qi) : Ilullv(Qus2i) := 11141 + IMIL2(c2uc2I) < 00}

17,(C2 U Q/) = tu e V(C/ U C21-) : u 0 a.e. on C21-1
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WEAK FORM AND WELL-POSEDNESS

bilinear form: A(u, v) = (u(y) — u(x))(v(y) — v(x))-y(x,y) dydx
I 2uQI fc2uS2/

energy seminorm: Illu111 = -VA(u, u)

unconstrained and constrained energy space:

V(C2 U Cb-) = {u E L2(S2 U c2i) : 111-11117(QuC2i) := 114 + 1114L2(S2uS2I) < 00}

17,(C2 U C21-) = fu E V(C2 U C2i) : u 0 a.e. on C2/1

weak form:

given f e VAQ) and g E 17' (C21), find u e V(S2 U S21-)

such that uc2, = g and A(u, v) f fy dx b v E Ve(Q b-U C)
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WEAK FORM AND WELL-POSEDNESS

bilinear form: A(u, v) = (u(y) — u(x))(v(y) — v(x))-y(x,y) dydx
I 2uQI fc2uS2/

energy seminorm: Illu111 = -VA(u,u) norm in V,

unconstrained and constrained energy space:

V(C2 U C2i) = {u E L2(S2 U C2i) : Ilrally(Qus2i) := illuill + 1114L2(s2uc2,) < col

17,(C2 U C2/) = {u E V(C2 U C2i) : u 0 a.e. on Sb-}

weak form:

given f e VAQ) and g E 17' (C21), find u e V(S2 U S21-)

such that uc2, = g and A(u, v) f fy dx b v E Ve(Q b-U C)

well-posed by the Riesz
representation theorem
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KERNELS

KERNEL 1

for s E (0,1), ] 0 < c* < c* < oo s.t. for anyxEC2C

c* < ty i(x, y)lly — x 11 2-F2s < c* Vy E S(x)

S(x): any set with non-degeneracy and symmetry properties

lk
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KERNELS

KERNEL 1

for s E (0,1), ] 0 < c* < c* < oo s.t. for anyxEC2C

c* < ty i(x,y)lly — x 11 2-F2s < c* V y E S(x)

S(x): any set with non-degeneracy and symmetry properties

lk

properties

• the corresponding energy norm satisfies a Poincare inequality

• the corresponding unconstrained and constrained energy spaces

are equivalent to HS (S2 U S2i) and I-Is (S2 U S2/)
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KERNELS

KERNEL 1

for s E (0,1), ] 0 < c* < c* < oo s.t. for anyxEC2C

c* < ty i(x,y)lly — x 11 2-F2s < c* V y E S(x)

S(x): any set with non-degeneracy and symmetry properties

lk

properties

• the corresponding energy norm satisfies a Poincare inequality

• the corresponding unconstrained and constrained energy spaces

are equivalent to HS (CZ U C2i) and I-Is (C2 U C2i)  > 11 714118(Qus2/) CVIH--8(QuQ/)
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KERNELS

KERNEL 1

for s E (0, 1), ] 0 < c* < c* < oo s.t. for anyxEC2C

c* < tyi(x, y)lly — xlIc-F2s < c* V y E S(x)

S(x): any set with non-degeneracy and symmetry properties

lk

properties

• the corresponding energy norm satisfies a Poincare inequality

• the corresponding unconstrained and constrained energy spaces

are equivalent to HS (CZ U C2i) and I-Is (C2 U C2i)

example: ryi (x7 y) 
=

a(x, y)  x (y)xs(
IlY — XIcj+28 

) 

Ilull Hs (QuQ,) cll fllii-s(Quc2i)
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KERNELS

xEQUQI ( fQUQI)nS(x)

KERNEL 2

] 0 < k* < k* < Do s.t. for any xEQC

k* < inf f 72(x, y) dy
æe° S (x)

sup 2
72 (x, y) dy < k*2

ri

S (x): any set with non-degeneracy and symmetry properties
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KERNELS

KERNEL 2

] 0 < 1.c),, < k* < oo s.t. for any xEQC

lc* < inf f fy2(x, y) dy
xEc2 s(x)

sup 2
)/2 (x, y) dy k

*2

,xEQUQI ( /QU Qi) n S ( æ )

ri

S(x): any set with non-degeneracy and symmetry properties

properties

c the corresponding energy norm satisfies a Poincare inequality

• the corresponding unconstrained and constrained energy spaces

are equivalent to L2(S2 U C2/) and Lc2(Q U Qi) IluIlL2(Quc2,) ClIfIlL2(Quci,-)
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CONVERGENCE TO FRACTIONAL OPERATORS



TRUNCATED FRACTIONAL KERNE.LS

interaction sets: balls wrt a norm 11' Il• > S(x) = 136,.(x)

assumption: 6 > diam(Q) = max Ily — x. > S-2 c S(x) for all x E S-2
x,yES2
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TRUNCATED FRACTIONAL KERNELS

interaction sets: balls wrt a norm 11 • Il• > S(x) = 136,.(x)

assumption: 6 > diam(Q) = max Ily — x.
x,yES2

S2 C S(x) for all x E S-2

kernels of type 1: -y(x,y) =  
cn,s 

XB6.(x)(Y) for 0 < s < 1
211x — Yllr±2s2' 

truncated fractional Laplacian L.u(x) = cn,, 
u(x) — u(y) 

dyn+2s
lE3.5,. 1X — Y112
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TRUNCATED FRACTIONAL KERNELS

interaction sets: balls wrt a norm 11 • Il• > S (x) = 13 6 ,.(x)

assumption: 6 > diam(Q) = max Ily — x.
x,yES2

S2 C S (x) for all x E S-2

kernels of type 1: -y(x , y) =  
cn,s 

XB6.(x)(Y) for 0 < s < 1
211x — Y112'+25

truncated fractional Laplacian L .u(x) = cn,s 
u(x) — u(y) 

dyn+2s
lE3.5,. 1X — Y112

fractional Laplacian Lu = (— A)s u = cn,s 
u(x) — u(y)  

dyLnlly_x1121+2s
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TRUNCATED FRACTIONAL KERNE.LS

want to compare
{—Lu= f in

u = 0 in Vi \

well studied for S(x) = 1 3 (5 ,2 (X) , see [1]

and
{—.C.u.= f in

u. = 0 in

[1] M.D., M. Gunzburger, The fractional Laplacian operator on bounded domains as a special case of
the nonlocal diffusion operator, Computers and Mathematics with applications, 66, 12451260, 2013
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TRUNCATED FRACTIONAL KERNELS

want to compare
{— Lu = f in

u = 0 in Vi\

well studied for S (x) = B (5 ,2 (X) , see [1]

result:

11711 — Uoll Hs (S2US 2 _T) C. u  L2 (R79,15 2s

1171 - 71.111,2(QuQi) C.Cp ML (N
6- 2s

and
{ —Lou. = f in

7/. = 0 in

[1] M.D., M. Gunzburger, The fractional Laplacian operator on bounded domains as a special case of
the nonlocal diffusion operator, Computers and Mathematics with applications, 66, 12451260, 2013
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TRUNCATED FRACTIONAL KERNELS

numerical test

S.(x) = 138,„(x) s.t. Q c B6,0„(x) Vx E Q

Q = [0,1]2, uniformly discretized with h = 2-8

s = 0.4, and 62 = 2260, i = 4,5, ... , 8, with 60 1.5

6 117-1-11.111,2 rate 1ln — u. H, rate
24 60
25 60
26 60
27 60
28 60

0.019
0.011
0.006
0.003
0.002

0.825
0.815
0.809
0.807
0.804

0.027
0.015
0.009
0.005
0.003

0.826
0.814
0.808
0.804
0.802
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TRUNCATED FRACTIONAL KERNELS

numerical test

S.(x) = 138,„(x) s.t. Q c B6,0„(x) Vx E Q

Q = [0,1]2, uniformly discretized with h = 2-8

s = 0.4, and öi = Töo, i = 4,5, ... , 8, with 80 1.5

6 1171, — 11.11,2
24 60 0.019
25 60 0.011
26 60 0.006
27 60 0.003
28 60 0.002

rate II Hu — u. Ims '77e.
0.027
0.015
0.009
0.005
0.003

0.825
0.815
0.809
0.807
0.804

0.826
0.814
0.808
0.804

, 0.802)

2s 2s
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APPLICATIONS



FINITE INTERACTION RADIUS - APPLICATIONS

Mechanics: some thoughts

• f2 balls make sense only in case of anisotropy  > we can use any ball combined
with an influence function that determines the area of interactions

• t" balls can be used in combination with mollifiers when their purpose is to
approximate f2 balls
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FINITE INTERACTION RADIUS - APPLICATIONS

Image denoising: the shape of the ball does not matter, the nonlocal model is a tool

f: noisy image
u: denoised image, solution of an optimization problem

A
min 

1 
— 111412 + —11u— fIlL2(c2u 2 2 

1.0

0.8

0.6

0.4

0.2 -

0.0
0 0 0.2 0.4 0.6

X_O

0.8

necessary conditions: —ru + Au = Af nonlocal diffusion - reaction equation

1.0
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FINITE INTERACTION RADIUS - APPLICATIONS

Image denoising: the shape of the ball does not matter, the nonlocal model is a tool

f: noisy image
u: denoised image, solution of an optimization problem

A
min 

1 
— 111412 + —117-1— fIlL2(c2u 2 2 

1.0

0.8

0.6

0.4

0.2 -

0.0
0 0 0.2 0.4 0.6

X_O

0.8

necessary conditions: —ru+ Au = Af nonlocal diffusion - reaction equation

kernel: ry(x,y) = exp { (f (x) — f (Y))2 } kernel of type 202

1.0
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NEIGHBORHOODS WITH DIFFERENT NORMS

1.0 -

0.8

0.6 -

0.4 -

0.2 -

0.0 -

0.0 0.2 0 4 0 6 0 8 1.0

0 0 0:2 0:8 L 0
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NEIGHBORHOODS WITH DIFFERENT NORMS

1.0 -

0.8 -

0.6 -

0.4 -

0.2 -

0.0 -

0.0 0.2 0 4 0 6 0 8 1.0

0 0 0:2 0.8 1.0
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Thank you




