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NONLOCAL DIFFUSION MODELS

main feature: interactions can occur at distance, whitout contact

every point & in a domain interacts with a neighborhood

our interest: nonlocal diffusion operators
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NONLOCAL DIFFUSION MODELS

main feature: interactions can occur at distance, whitout contact

every point & in a domain interacts with a neighborhood

our interest: nonlocal diffusion operators

e nonlocal models for continuum mechanics

e stochastic jump processes

e nonlocal heat conduction

e subsurface flow/porous media

e Image processing

Buades, 2010
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NONLOCAL DIFFUSION OPERATORS

how do they look like?

Luf@) = [ (uly) - ul@)) 2(2.v) dy

what do we want to solve?

Lu=f

<+ volume contraints
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NONLOCAL DIFFUSION OPERATORS

how do they look like?

Luf@) = [ (uly) - ul@)) 2(w.v) dy

what do we want to solve?

Lu=f

<+ volume contraints
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FACTS

facts: e a recently developed theoretical and numerical analysis allows us to study
nonlocal problems similarly to the local (classical) counterpart

e we have numerical convergence results for finite element approximations

challenges: the numerical solution might be prohibitively expensive
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BALLS AND MESHES

Challenge: matrix assembling using FEM in 2D and 3D simulations
e figure out intersections

e computing integrals of round domains
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BALLS AND MESHES

Challenge: matrix assembling using FEM in 2D and 3D simulations
e figure out intersections

e computing integrals of round domains
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CURRENT STRATEGIES

triangles: e triangulation of caps (Xu, Google Inc., Stoyanov, ORNL)

e approximation of the ball with a polygon (Bond, SNL)

e inclusion of partial triangles based on barycenters (Borthagaray, U. Maryland)

squares: e oct-tree mesh refinement at the ball boundaries (Foster, UT Austin)

o 77
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CURRENT STRATEGIES

triangles: e triangulation of caps (Xu, Google Inc., Stoyanov, ORNL)

e approximation of the ball with a polygon (Bond, SNL)

e inclusion of partial triangles based on barycenters (Borthagaray, U. Maryland)

squares: e oct-tree mesh refinement at the ball boundaries (Foster, UT Austin)

o 77

these may be unnecessary, inaccurate or inefficient!
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USING DIFFERENT BALLS

what if we consider a different ball?
= triangulation w/o geometry errors

= much easier re-triangulation!
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USING DIFFERENT BALLS

what if we consider a different ball?
= triangulation w/o geometry errors

= much easier re-triangulation!

this can be a modeling choice!

e when even round balls
are not required by physics

e when the nature of the
problem calls for square balls

M. D'Elia — mdelia@sandia.gov @ Sandia National Laboratories



USING DIFFERENT BALLS

IMPORTANT QUESTIONS

0. does the nonlocal vector calculus still apply?
1. do we recover local operators as 6 — 07

2. do we recover fractional operators as 0 — oo?

3. are there applications for which these are models in their own right?
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OUTLINE

e Background: a Nonlocal Vector Calculus

e Non-standard neighborhoods

1. formulation and analysis
2. numerical tests

3. applications
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A NONLOCAL VECTOR CALCULUS

— M. Gunzburger, R. Lehoucq, A nonlocal vector calculus with application to nonlocal boundary

value problems, Multiscale Modeling & Simulation, 8, 1581-1598, 2010

— Q. Du, M. Gunzburger, R. Lehoucq, and K. Zhou, Analysis and approximation of nonlocal

diffusion problems with volume constraints. SIAM Review, 54, 667-696, 2012

— Q. Du, M. Gunzburger, R. Lehoucq, and K. Zhou, A nonlocal vector calculus, nonlocal volume-

constrained problems, and nonlocal balance laws. Math. Model. Meth. Appl. Sci, 23, 493-540, 2013



NONLOCAL VECTOR CALCULUS

e generalization of the classical vector calculus to nonlocal operators
e allows us to study nonlocal diffusion similarly to the classical, local, counterpart

e based on the concept of nonlocal fluxes
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NONLOCAL VECTOR CALCULUS

e generalization of the classical vector calculus to nonlocal operators
e allows us to study nonlocal diffusion similarly to the classical, local, counterpart

e based on the concept of nonlocal fluxes

()
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NONLOCAL VECTOR CALCULUS

e generalization of the classical vector calculus to nonlocal operators
e allows us to study nonlocal diffusion similarly to the classical, local, counterpart

e based on the concept of nonlocal fluxes

Nonlocal operators acting on u(x): R? — R and v(z,y): R? x R — R?
o divergence of v: D(v)(z) = / (v(z,y)+v(y,x))  alz,y)dy

o gradient of u: G(u)(z,y) = (u(y) — u(z))a(z,y)

e nonlocal diffusion of u: Lu(x) = D(Gu(x))

Cu(e) = 2 / (u(y) — u(®@)) @, y) - oz, ) dy
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NONLOCAL VECTOR CALCULUS

e generalization of the classical vector calculus to nonlocal operators
e allows us to study nonlocal diffusion similarly to the classical, local, counterpart

e based on the concept of nonlocal fluxes

Nonlocal operators acting on u(x): R? — R and v(z,y): R? x R — R?
o divergence of v: D(v)(z) = / (v(z,y)+v(y,x))  alz,y)dy
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e nonlocal diffusion of u: Lu(x) = D(Gu(x))
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NONLOCAL VECTOR CALCULUS

Interaction domain of an open bounded region 2 € R¢
Q= {y e R\ Q: a(z,y) £0, z € Q},

0: interaction length, interaction radius

()

& /5 |
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A NEW CONCEPT OF BALLS

— C. Vollman, M. D'Elia, M. Gunzburger, V. Schulz, Formulation and analysis
of fast discretization methods for nonlocal FEM by using non-standard nonlocal

neighborhoods, in progress.




INTERACTION SETS

e Non-degeneracy: 36 > 0 such that

Ve € (QUQy), Bsa(x) C S(x)
with Bsa(x) :={y e R": ||z —y|l2 < J}

e Symmetry: V (x,y) € (QU Q)

y € S(x) if and only if x € S(y)

= (z,y) = Xg(z)(y) is symmetric in (x,y)
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KERNELS

assumptions: 3v5 > 0s.t. Vo e (QUQ )

Y@, y) >0 V yeS(x) o S(x)
V(@ y) =% >0 V y€ Bsa(x) w.
Y)=0 VyeR"\S
(@, y) Y \ S(z) .z o
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KERNELS

assumptions: 3v5 > 0s.t. Vo e (QUQ )

Y(x,y) >0 YV ycSx) . S(x)
v(@,y) =% >0 V ye Bsy(x) s
y)=0 VyeR"\S
V(z, y) Y \ S(z) CfI(S, |

kernel expression:
Yz, y) = ¢, y)Xs(z) (y)

where ¢(x,y) is referred to as kernel function
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KERNELS

kernel expression:

examples:

S(x) :={y € R" : n(x,y) <0} for a symmetric n(x,y)

standard interaction set: n(z,y) = ||z — y||l2 — ¢

= S(«) is the Euclidean ball Bsa(x)

d: horizon.
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KERNELS

kernel expression:

examples:

S(x) :={y € R" : n(x,y) < 0} for a symmetric n(x,y)

standard interaction set: n(z,y) = ||z — y||2 — o
= S(«) is the Euclidean ball Bs ()

d: horizon.

general interaction sets: n(x,y) = || — ylle — 9, for an arbitrary norm || - ||,

= S(x) are balls Bso(x) :={y € R": ||z — ylle < 6}
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WEAK FORM AND WELL-POSEDNESS

bilinear form: A(u,v) = /QUQ /QUQ (u(y) — u(x))(v(y) — v(x))y(x,y) dydx

energy seminorm: |||lul|| =+1/A(u,u)
unconstrained and constrained energy space:
V(QuUQ) ={ue L*(QU) : |lullvuar = l[ulll + llullL2uar) < oo}

‘/C(QUQ]) = {’U,E V(QUQ[) : u=0 a.e. on Q]}
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WEAK FORM AND WELL-POSEDNESS

oiltear Samems Aln, o) = /Q - /Q  (uly) — u@)(0(y) ~ v(@))(w,y) dyde

energy seminorm: |||lul|| =+/A(u,u)
unconstrained and constrained energy space:
V(QuQ) ={ue L*(QU) : |lullvua = llulll + llullL2uar) < oo}

‘/C(QUQI) = {UE V(QUQ]) . u=0 a.e. on QI}

weak form:

gwen f € V'(Q) and g € V(Q), find u e V(QU Q)

such that ulq, = g and A(u,v) = / fodx Yve V. (QUQr)
Q
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WEAK FORM AND WELL-POSEDNESS

bilinear form: A(u,v) = /QUQ /QUQ (u(y) — u(x))(v(y) —v(x))y(x,y) dydx

energy seminorm: |||lul|| =+/A(u,u) norm in V,
unconstrained and constrained energy space:
V(QuQ) ={ue L*(QU) : |lullvua = llulll + llullL2uar) < oo}

‘/C(QUQI) = {UE V(QUQ]) . u=0 a.e. on Q]}

weak form:

given f € VI(Q) and g € ‘7(9]), find v € V(Q2UQy) well-posed by the Riesz

representation theorem

such that ulq, = g and A(u,v) = / fodx Yve V. (QUQr)
Q
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KERNELS

KERNEL 1
for s € (0,1), 30 < ¢cx < ¢* <00 s.t. forany & € Q C R”
e <m@ylly —z3™ <t VyeS(z)

S(x): any set with non-degeneracy and symmetry properties
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KERNELS

KERNEL 1
for s € (0,1), 30 < ¢cx < ¢* <00 s.t. forany & € Q C R”
e <m@ylly —z3™ <t VyeS(z)

S(x): any set with non-degeneracy and symmetry properties

properties
e the corresponding energy norm satisfies a Poincaré inequality

e the corresponding unconstrained and constrained energy spaces

are equivalent to H*(Q2U Q) and HZ(Q U Qy)
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KERNELS

KERNEL 1
for s € (0,1), 30 < ¢cx < ¢* <00 s.t. forany & € Q C R”
e <m@ylly —z3™ <t VyeS(z)

S(x): any set with non-degeneracy and symmetry properties

properties
e the corresponding energy norm satisfies a Poincaré inequality

e the corresponding unconstrained and constrained energy spaces

are equivalent to H*(QU Q) and H(QU Q) — ull = auar) < CNflla-:uar)
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KERNELS

KERNEL 1
for s € (0,1), 30 < ¢cx < ¢* <00 s.t. forany & € Q C R”
e <m@ylly —z3™ <t VyeS(z)

S(x): any set with non-degeneracy and symmetry properties

properties
e the corresponding energy norm satisfies a Poincaré inequality

e the corresponding unconstrained and constrained energy spaces

are equivalent to H*(QU Q) and H(QU Q) = 1wl = ouar) < CIFIl -2 @uar)

o(z,y)
Jy— a3 W)
2

example: i (x,y) =
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KERNELS

KERNEL 2

F0 < ki <k <0 s.t. for any € 2 C R"”

ki < inf/ Y2(z,y) dy
2€Q ) 3(=)

[ eme
xcQUQ J (QUOQNS(x)

S(x): any set with non-degeneracy and symmetry properties
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KERNELS

KERNEL 2

F0 < ki <k <0 s.t. for any € 2 C R"”

ki < inf/ Y2(z,y) dy
2€Q ) 3(=)

[ eme
xcQUQ J (QUOQNS(x)

S(x): any set with non-degeneracy and symmetry properties

properties
e the corresponding energy norm satisfies a Poincaré inequality

e the corresponding unconstrained and constrained energy spaces

are equivalent to L*(QU Q;) and LZ(QU Q1) = ||ullz2ua,) < Cllfllzz@uar)
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CONVERGENCE TO FRACTIONAL OPERATORS



TRUNCATED FRACTIONAL KERNELS

interaction sets: balls wrt a norm || - |le = S(x) = Bse(x)

assumption: § > diam(Q2) = max ly —x|le = QCS(x) for all x € Q
T,Yyc
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TRUNCATED FRACTIONAL KERNELS

interaction sets: balls wrt a norm || - |le = S(x) = Bse(x)

assumption: § > diam({2) = max ly —zlle = QCS(x) forall z € Q
T,y

Cn,s

kernels of type 1: v(x,y) = s ABs . (x)(y) for0<s<1

2||e — yll3

truncated fractional Laplacian Lou(x) = Cn,s/ u(x) — ?fz(ijz,)s Y
Bs. 1T —yll3
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TRUNCATED FRACTIONAL KERNELS

interaction sets: balls wrt a norm || - |le = S(x) = Bse(x)

assumption: § > diam({2) = max ly —zlle = QCS(x) forall z € Q
T,y

Cn,s

kernels of type 1: v(x,y) = s ABs . (x)(y) for0<s<1

2||e — yll3

truncated fractional Laplacian Lou(x) = Cn,s/ u(x) — 7:;(1?21 Y
Bs. 1T —yll3

fractional Laplacian Lu = (—A)°u= Cn,s/ u(®) — Z(Jil
re ||y — |3
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TRUNCATED FRACTIONAL KERNELS

—Lu=f in {[,.u. =f in
and

want to compare
g { u=0 inR™\

ue = 0 1In

well studied for S(x) = Bsa(x), see [1]

[1] M.D., M. Gunzburger, The fractional Laplacian operator on bounded domains as a special case of
the nonlocal diffusion operator, Computers and Mathematics with applications, 66, 12451260, 2013
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TRUNCATED FRACTIONAL KERNELS

u=0 inR™\ ue =0 in

—Lu=f in {[,.u. =f in
and

want to compare {
well studied for S(x) = Bsa(x), see [1]

result:

[ — el s (uay) < Collul|L2@nyd ™

lu = wellz2ues) < CoCrpllull L2n)d =2

[1] M.D., M. Gunzburger, The fractional Laplacian operator on bounded domains as a special case of
the nonlocal diffusion operator, Computers and Mathematics with applications, 66, 12451260, 2013
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TRUNCATED FRACTIONAL KERNELS

numerical test
Se() = Bs.oo(x) 8.t. Q C Bsoo(x) VI €
Q = [0, 1]?, uniformly discretized with h = 278

s =0.4, and §; = 2°0g, 7 = 4,5,...,8, with dg = 1.5

J |u — ue||r2 rate  ||u— ue|lgs rate

24 8o 0.019 0.825 0.027 0.826
2° d 0.011 0.815 0.015 0.814
26 8o 0.006 0.809 0.009 0.808
27 5o 0.003 0.807 0.005 0.804
28 8o 0.002 0.804 0.003 0.802
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TRUNCATED FRACTIONAL KERNELS

numerical test

Se() = Bs.oo(x) 8.t. Q C Bsoo(x) VI €

Q = [0,1]?, uniformly discretized with h = 278

S = 04, and (52 — 2i50, 1= 4,5,...,8, with (50 = 1.5

J |u — ue||z2 /Tate \ |u — ue||Hs /Tate \
248 0.019 0.825 0.027 0.826
29 &g 0.011 0.815 0.015 0.814
26 do 0.006 0.809 0.009 0.808
27 8o 0.003 0.807 0.005 0.804
285, 0002 \0804) 0003 \ 0.802)
S — T —
28 28
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APPLICATIONS



FINITE INTERACTION RADIUS - APPLICATIONS

Mechanics: some thoughts

o (? balls make sense only in case of anisotropy = we can use any ball combined
with an influence function that determines the area of interactions

e (> balls can be used in combination with mollifiers when their purpose is to
approximate ¢ balls
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FINITE INTERACTION RADIUS - APPLICATIONS

Image denoising: the shape of the ball does not matter, the nonlocal model is a tool

1.0

0.8 4

f: noisy image o
u: denoised image, solution of an optimization problem 041
0.2
1 )\ ) 0.2 0.4 0.6 " 0.8 .o

min Zljul|[> + 5 llu = fllzco

necessary conditions: —Lu 4 Au= \f nonlocal diffusion - reaction equation
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FINITE INTERACTION RADIUS - APPLICATIONS

Image denoising: the shape of the ball does not matter, the nonlocal model is a tool

1.0

0.8 4

f: noisy image ”
u: denoised image, solution of an optimization problem 041

1 A
min Zljul|[> + 5 llu = fllzco

necessary conditions: —Lu 4 Au= \f nonlocal diffusion - reaction equation

kernel: vy(x,y) = exp {— /(=) ;2f(y))2 } kernel of type 2
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NEIGHBORHOODS WITH DIFFERENT NORMS
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NEIGHBORHOODS WITH DIFFERENT NORMS

0.0 0.2 0.4 0.6 0.8 1.0
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Thank you






