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Tasks

Task 1: Modeling Damage Created by
Excavation

Task 2: Experimental study of the
mechanical and transport properties
for dry and saturated rock samples

Task 3: Non-isothermal damage-porosity visco-
elastic rheological model

Task 4: Experimental study of thermal
properties
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2018

2019

Task 5: Modeling Damage Created by Heat

Task 6: Long Term Modeling Damage Evolution
of Radioactive Waste Repository

Task 7: Code Modernization and Parallel
Execution




Damage induced by:
e Excavation
e Heat

Mechanical

Hydrologic |

Coupled nature of operative processes
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Depth of Zenifim formation

(Calvo & Gvirtzman, 2013)

Depths of interest: 3-5 km;
70-100MPa confining pressure
Temperatures: ambient to 300C
Dry, water-saturated

Target Horizon:

Late Precambrian Zenifim Fm.

lithic-arkosic

coarse sandstone
50% feldspar
(oligoclase-andesine)
40% quartz,

10% lithics, biotite,
chlorite,

hornblende
(Weissbrod & Sneh 2002)



Rock Core transfer to Sandia
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Mechanical,

Hydrologic,

Thermal

property determinations

Limited sample availability



Mmeralogy and Cementatlon

Plane Ilght (left) andplane poIarlzed light (rlght) |mages of feldspar quartz, magnetite, I|th|c fragments and mica flakes cemented by
calcite. Almost all grains are coated with a thin hematite layer. Field of view = 0.800mm. Loading direction is vertical, sample IR-29-1.

PIane light (Ieft) and plane- polarlzed light (right) |mages of feldspar, quartz, lithic fragments, magnetlte and other opaques mica
flakes, and hornblende in a fine-grained matrix of hematite, chlorite, and clays. This fine-grained matrix without obvious cementation
is more common than calcite cement shown above. Field of view = 0.800mm. Loading direction is vertical, sample MK2-1 C29 B2e.




Anisotropy: Grain Alignment

Plane Iigt (left) and pla
constituents. Field of view = 0.800mm. Loading direction is vertical, sample IR-29-3.




Elastic and Strength Properties

o, E, B, strength criterion: f(temperature,
pressure,
strain/stress)
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Modulus (GPa)
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Real-time Noble Gas Release
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Hydrologic Properties

Porosity, Permeability: f(pressure, temperature, deformation)

Log,, permeability (m?)
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Thermal Properties
Conductivity: (W/mK ) the property of a material
to conduct heat
Diffusivity: (mm?/s) measure of thermal inertia
Specific Heat: (MJ/m3K) the amount of heat per unit
mass required to raise the temperature by 1 °C
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Thermal Conductivity (w/mK)

Thermal Diffusivity (mm?/s)
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Samples: TC-2 Thermal Conductivity Data: Anisotropy

—— [
Y 3 .
E —e—Position A, Perpendicular °
~~ 29 —s—Position B, Perpendicular
; )8 —e—Position C, Perpendicular L]
=2 | et . Pl A Nisotro
3 2.7 —eo—Position E, Parallel
= ) - —e—Position F, Parallel
2 2.6
O
S 25
©
S 24 Samples: TC-2, MK2: All Specific Heat Data: Anisotropy
O 23 \ . 3.5
S — SN —_
MC 22 N N
= e °¢ 3
= 24 =
Q =
- 2 E 2.5
— 25 75 125 175 225 275
o
Temperature, °C R
Q
—_ Samples: TC-2, MK2 All Thermal Diffusivity Data : Anisotropy I
Q 1.8 o 1.5
(o] —e—Position A, Perpendicular Position D, Parallel G
E .G —e—Position A, Perpendicular Position D, Parallel
1.6 —e—Position B, Perpendicular —e—Position E, Parallel q) 1
E Q_ —e—Position B, Perpendicular —e—Position E, Parallel
- —e—Position C, Perpendicular —e—Position F, Parallel (Vp)] —e—Position C, Perpendicular —e—Position F, Parallel
> 14 0.5
= .
> 25 75 125 175 225 275
D 12 o
> Temperature, °C
G
=
o 1
(q°)
E 0.8
| -
Q
L 06
= 25 75 125 175 225 275

Temperature, °C



Thermal Conductivity (w/mK)
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Summary

Compressive strength testing nearly completed;
strength arkose < granite

Strength, elastic properties not anisotropic (minimal
study); arkose softer than granite

Elastic properties pressure and deformation
dependent (probably more so than granite)
Observations completed to support experimental work
Permeability low, decreases with increasing pressure
Noble gas release during deformation observed,
potential tool in the future

Thermal properties anisotropic, plenty of variability
Thermal conductivity similar to granite



Future work (this year and next)

1-Document results (planned paper with GSI, LLNL)
2-Continue/complete quasi-static testing to include more
permeability measurements and permeability measurements
post fracture

3-Time-dependent (Creep) testing to support model
development (GSI/LLNL)

4-Tests at elevated temperature

5-Petrofabric analyses to support acoustic emission and
damage model development
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This year: Constant Load Creep Tests; temperature
effects for Zenifim
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Lab studies of borehole breakouts

Laminations

Mancos Shale

250 Mm

* Investigate bedding effects upon
borehole breakout

* 3 sample orientations: parallel,
perpendicular, and 45° to bedding

* Clear variations in borehole
strength, mechanism




Orientation of borehole, stresses,
anisotropy are important to nature
of breakout formation and growth




Test Type
Creep

Creep

Creep

Creep

Creep

Creep
Constant Rate
Constant Rate
Constant Rate
Constant Rate
Constant Rate
Constant Rate
Constant Rate
Constant Rate
Constant Rate
Constant Rate

Bedding
Orientation
Perpendicular
Perpendicular
Perpendicular
Perpendicular
Parallel
Parallel
Perpendicular
Perpendicular
Perpendicular
Perpendicular
Perpendicular
Perpendicular
Parallel
Parallel
Parallel
Parallel

Test Matrix

Confining Pressure Temperature

(MPa)
7
20
100
200
50
200
20
100
200
20
100
200
50
200
50
200

(°C)
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient

75
75
75

225

225

225

75
75
225
225

Acoustic
Emission
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
Yes
Yes
No
No

Permeability
No
No
No
No
No
No
No
No
Yes
No
No
Yes
No
Yes
No
Yes



