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Tasks
2017 2018 2019

Task 1: Modeling Damage Created by
Excavation

Task 2: Experimental study of the

mechanical and transport properties
for dry and saturated rock samples
Task 3: Non-isothermal damage-porosity visco-
elastic rheological model

Task 4: Experimental study of thermal
properties

Task 5: Modeling Damage Created by Heat

Task 6: Long Term Modeling Damage Evolution
of Radioactive Waste Repository

Task 7: Code Modernization and Parallel
Execution
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Damage induced by:
• Excavation
• Heat

Mechanical

Hydrologic ,

Coupled nature of operative processes
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Rock Core transfer to Sandia

Mechanical,
Hydrologic,
Thermal
property determinations

Shortcoming to project:
Limited sample availability



Mineralogy and Cementation

Plane light (left) and plane-polarized light (right) images of feldspar, quartz, magnetite, lithic fragments, and mica flakes cemented by
calcite. Almost all grains are coated with a thin hematite layer. Field of view = 0.800mm. Loading direction is vertical, sample IR-29-1.

Plane light (left) and plane-polarized light (right) images of feldspar, quartz, lithic fragments, magnetite and other opaques, mica
flakes, and hornblende in a fine-grained matrix of hematite, chlorite, and clays. This fine-grained matrix without obvious cementation
is more common than calcite cement shown above. Field of view = 0.800mm. Loading direction is vertical, sample MK2-1 C29 B2e.



Anisotropy: Grain Alignment
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Plane light (left) and plane-polarized light (right) images of grain alignment, accentuated by elongate quartz, feldspar, and mica
constituents. Field of view = 2.043mm. Loading direction is vertical, sample IR-29-3.

Plane light (left) and plane-polarized light (right) images of grain alignment, accentuated by elongate quartz, feldspar, and mica
constituents. Field of view = 0.800mm. Loading direction is vertical, sample IR-29-3.



Elastic and Strength Properties
a, E, [31 strength criterion: f(temperature,

pressu re,
stra i n/stress)
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Real-time Noble Gas Release
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Hydrologic Properties
Porosity, Permeability: f(pressure, temperature, deformation)

Log10 penneability (m2)
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Thermal Properties
Conductivity: (W/mK ) the property of a material
to conduct heat
Diffusivity: (mm2/s) measure of thermal inertia
Specific Heat: (MJ/m3K) the amount of heat per unit
mass required to raise the temperature by 1 °C

it
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Summary
• Compressive strength testing nearly completed;

strength arkose < granite
• Strength, elastic properties not anisotropic (minimal

study); arkose softer than granite
• Elastic properties pressure and deformation
dependent (probably more so than granite)

• Observations completed to support experimental work
• Permeability low, decreases with increasing pressure
• Noble gas release during deformation observed,

potential tool in the future
• Thermal properties anisotropic, plenty of variability
• Thermal conductivity similar to granite



Future work (this year and next)

1-Document results (planned paper with GSI, LLNL)

2-Continue/complete quasi-static testing to include more
permeability measurements and permeability measurements
post fracture
3-Time-dependent (Creep) testing to support model
development (GSI/LLNL)

4-Tests at elevated temperature
5-Petrofabric analyses to support acoustic emission and
damage model development



This year: Constant Load Creep Tests; temperature
effects for Zenifim
• Conduct brittle creep experiments
• Samples deformed at constant

stress, not constant
displacement/strain rate

• Failure time varies based on load,
confining pressure

• Use acoustic emissions to monitor
damage development during creep
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Lab studies of borehole breakouts

• Investigate bedding effects upon
borehole breakout

• 3 sample orientations: parallel,
perpendicular, and 45° to bedding

• Clear variations in borehole
strength, mechanism



PERP 1.1

Orientation of borehole, stresses,
anisotropy are important to nature
of breakout formation and growth

PARA 1.1

45D 1.1



Test Matrix
Bedding Confining Pressure Temperature Acoustic

Test Type Orientation (MPa) (°C) Emission Permeability

Creep Perpendicular 7 Ambient Yes No

Creep Perpendicular 20 Ambient Yes No

Creep Perpendicular 100 Ambient Yes No

Creep Perpendicular 200 Ambient Yes No

Creep Parallel 50 Ambient Yes No

Creep Parallel 200 Ambient Yes No

Constant Rate Perpendicular 20 75 Yes No

Constant Rate Perpendicular 100 75 Yes No

Constant Rate Perpendicular 200 75 Yes Yes

Constant Rate Perpendicular 20 225 No No

Constant Rate Perpendicular 100 225 No No

Constant Rate Perpendicular 200 225 No Yes

Constant Rate Parallel 50 75 Yes No

Constant Rate Parallel 200 75 Yes Yes

Constant Rate Parallel 50 225 No No

Constant Rate Parallel 200 225 No Yes


