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Talk overview

■ For the uninitiated — why would we want to use meshfree?
■ A non-technical survey of our current meshfree projects
■ General takeaway: exchange a nice mathematical setting for nice models

■ Good for stubborn engineering problems, bad for mathematical analysis

■ What is "compatible discretization"?
■ Conservation principles, and why are they hard to get in meshfree?

■ Our tools:
■ Generalized moving least squares — meshfree approximation
■ Combinatorial Hodge theory — meshfree topology

■ Key result:
■ A conservative meshfree divergence theorem defined on a graph

■ Final product:
■ A compatible meshfree finite volume method
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Compadre — Compatible Particle Discretization

Objectives:
• Meshless schemes with rigorous approximation theory and mimetic properties like

compatible mesh-based methods
• Software library supporting solution of general meshless schemes with tools for

coarse+fine grain parallelism and preconditioning

People:
• Pavel Bochev (PI)
• Pete Bosler
• Paul Kuberry
• Mauro Perego
• Kara Peterson
• Nat Trask

Students/collaborators:
• Huaiqian You, Yue Yu — Lehigh
• Amanda Howard, Martin Maxey — Brown
• Wenxiao Pan — UW Madison
• Paul Atzberger — UC Santa Barbara
• J.S. Chen — UC San Diego

Key tools:
• Optimization based approaches to develop meshfree discretizations with reproduction

properties
• The Compadre Trilinos library — open source library for scalable implementation of

meshfree methods
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Compadre Trilinos package

File Reacbr/Writer

Input Deck

Assembly

Physics

Coordinates

INFields

rieighbors

Problem

17me-stepping

Local

GMLS

RBIIM

Solver

Repartitioning

Curi

Collection of modules for general meshfree discretizations + heterogeneous architectures

• Local modules for efficiently solving small optimization problems on each particle

• Kokkos implementation gives fine grained thread/GPU parallelism
• Global modules for assembling global matrices and applying fast solvers

• MPI based domain decomposition for coarse grained parallelism
• Interfaces to MueLu for fast solvers

Sandia
National
Laboratories

4



ASCeND —
Asymptotically compatible foundations for nonlocal discretization

Objectives:
• Develop mathematical underpinnings for meshfree nonlocal models

People:
• Nat Trask (PI)
• Marta D'Elia
• David Littlewood
• Stewart Silling
• Michael Tupek

PhiLMs DoE MMICCs center—

Physics-based Learning Machines for scientific computing

Objectives:
• Develop approximation theory for deep neural networks in multiscale applications

People:
• George Kamiadakis (Brown University — head PI)
• Sandia Team

• Michael Parks (Institutional PI)
• Pavel Bochev
• Marta D'Elia
• Mauro Perego
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What is meshfree?

■ In classical methods, a mesh gives you a lot:
■ Easy construction of basis functions

■ A partition of unity

■ Simple quadrature

■ A simplicial complex and associated exterior calculus structures

i.e. cells, faces, edges, nodes linked together through a boundary
operator + generalized Stokes theorems

■ Usually the best option, but for many applications its
infeasible/annoying to efficiently build a mesh

■ Lagrangian large-deformation problems

■ Automated design-to-analysis

(-50% of analyst time!)1

■ Non-intrusive multiphysics coupling for

legacy code

[1] "DART system analysis" SAND2005-4647

Sandia
National
Laboratories

6



Meshfree — restricting ourselves to 0-forms

• Lots of versions of meshfree out there!

• Recall examples of differential k-forms:

• For a polygonal mesh in 3D

Zero-form: (5„,, u

One-for JE u
o-for u dA

Three-for udV

• For our purposes, define meshfree as restricting ourselves to
describing solution only in terms of zero-forms

• Easy to push points around if you don't care about preserving a mesh

• Exchange nice mathematical setting to get more descriptive models
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Why meshfree? Large deformation problems
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Meshfree: great for moving boundaries, but how do we handle inf-sup stability?
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Why meshfree? Large deformation problems

Electrle Held Magnitude
0.5 0.75

0 1
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—vV2u + V p = — pe(0)V 0

V • u = 0

u = w

u = VI + (x — XI) x Q,

_icv40 ± v20 = pe(0) 

E

{0 = fac2, Tr • dA

0 = x ()( — Xi) • dA

= —co (E E E21)+—pl+L (Vu VuT)
2

Meshfree: a nice multiphysics platform for Lagrangian models, but how do we
analyze stability of coupling? 9



Why meshfree? Automatic geometry discretization

3D Image Data
(X-ray CT)

korayr...017:::74,4tvi "17
ei. eio

Segmentation

Labeling Exodus mesh
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Why meshfree? Automatic geometry discretization

temperature

-20 -10
IIIIIII

dlsplacement Magnitude
30

22.5

-E15

[7.5

0
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Meshfree:
Great for automatically
handling internal
interfaces, but
how do we make
sense of
conservation?
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Why meshfree? Fracture mechanics
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Meshfree:
Automatic treatment of
topology changes, but
we may lose
variational principles
for nonlinear
problems
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Why meshfree? Differential geometry on manifolds
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To oversimplify — mapping between local charts and
tangent space can be inferred "meshlessly" to get
access to metric tensor, curvature, surface
differential operators, etc.
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Why meshfree? Code couplers for E3SM

Horizontal Grid
(tatitude-Longitude)

Vertical Grid
(Height or Pressure)

Physical Processes in a Model
NA, 1•11.O.i

FiK4P4-,

Coupler
(cpl7)

Land Ice
(MPAS-L1).4 ►—

Sea Ice
(MPAS-CICE)
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Why is conservation hard in meshfree?

Generalized Stokes theorem

Ldw= Wf012 
Gauss divergence theorern

1 V • LICIV = iFEC 11 • ca

•

4

Two ingredients to a conservative discretization:
• A chain complex — the metric information

• A topological structure with a well-defined boundary operator
• An exterior derivative — the function approximation

• A consistent definition of a divergence

Sande
Mond
laboratories
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First ingredient: function approximation
Sandia
National
Laboratories

■ Older meshfree approaches suffer from accuracy and stability
issues

■ We build all of our work on top of a framework with a
rigorous approximation theory

■ Give a quick overview of existing approximation theory using
GMLS and our generalization to an abstract theory

Wendland, Holger.Scattered data approximation. Vol. 17. Cambridge
university press, 2004.
Mirzaei, Davoud, Robert Schaback, and Mehdi Dehghan. "On generalized
moving least squares and diffuse derivatives."/MA Journal of Numerical
Analysis 32.3 (2012): 983-1000.
Trask, Nathaniel, Mauro Perego, and Pavel Bochev. "A high-order staggered
meshless method for elliptic problems."S/AM Journal on Scientific Computing
39.2 (2017): A479-A502.
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Generalized moving least squares (GMLS)

Example:
Approximate point evaluation of derivatives:

Target functional DI1N

.11'..;!..*:,;04:1131iI.,fifirli,1111,....,;:filt[ AC

[
4411' 1110111111' f 4.01' '

',[`; I. a

4111il 14;

V

Ai —

Takeaway:
A rigorous way to obtain formulas that look like:

Ti( .,Ai(r

2 3 4 5 6
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Preliminaries: Quasi-uniform point clouds

Definition 0.1. Fill-Esep a u©n dist ces Given oint cloud X = x N
define dist ces

hx = sup rninl lx —

1
qx = — xi 02

2 jp-

12

Defim ion 0.2. Quasi-uniformity A point cloud X is qu un o
respect to cqu if

qx < hX < cquqx

Proposition 0.1. Suppose bounded 12 and quasi-unz o X w.r. > O.
Then there t c1,c2 > 0 such that

ciN C hx < c2N

Sandia
National
Laboratories
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Classical MLS: quasi-interpolants Sandia
UV National
V 

[Wendlanc104] 
Laboratories

Definition 0.1 Local p►o~lyn® a reproduction: A process de ng E
X approximation u(a) E.0-u(x ) Is a local polyno al reproduction if
there exist CiL , > O.

1 E.o.Pi= P(x) foralPE Vh
2. E 0-1<C1fral1xEQ

3. 0-(x) = 0 if llx x-112 > C2hx dxcil

Theorem 0.1. For bounded Q, define Q U
xEl2 

B(x,C2hx)

polynomial reproduction of order m and f E C +1(Q*) then

f (x) — s f(x)I < C hnx1+1 flc 1(

is a local

Theorem 0.2. Consider the GMLS process with 7- = 6x, (u) = u(x -) and
V II If Q is rnpact and satisfies a cone condition, and X is quasi-unifo
then there ts a constant C > 0 such that supp(W) = C hx where the GMLS
problem is solvable and fo a local polynomial reproduction.
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Classical MLS: derivative approximation

[Mirzaeil2]
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Definition 1 Local olyno ial e roduction: A process defining vxi E
X an p roxim ion D u(x) 0-11(x -) Is a 1 c  1 po yno al reproduction
if here exist CI, C2 > O.

1 D P(x) for all P E Vh

2. E. < c hx-1"1 for all x E 52

3. 0-(x) - Off llx- li2 > C2hx d x E Q

Theorem 0.1. For bounded ft, define Q ~E B(x, C2hx)

polynomial reproduction ©f order m and f E C +1(Q*) then

lf( )- sf(x)I<Chx+1 flcm+i(w)

zs a local

Theorem 0.2. Consider the GMLS process with T(u) D u(x), A - (u)
u(xj), and V = If Q is compact and satisfies a cone condition, and X is
quasi-unifo , then there ts a co tant C > 0 such that supp(W )= C hx
where the GM S problem solvable and fo a local polynomial reproduction.
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A general abstract framework

Basic technique:

ITx(11) (101 ITIc(n) — 0:01 + 1Tx(P) T.! (u) 1, (VP E P)

irx(u) Tx(Al +11V1:1- t.1)1

< I lrx E Ai (.4 - Ir. -1- MILS. definiiioni=1

iTx(u P)1 + max Ai(ti P)1 7, laLl.

reconstmetion property

E Cw111-xlIpidIA;1 11

Holds for any target funclional and approximation space:

Sandia
National
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ITx(u) - TITOI + CivlIT5E11F- llA;1 11 .1iLAcc 19)11 P
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A general abstract framework

• All examples from beginning of talk fall into this framework
• Ex: Data transfer applications

1
• 11.. 1.1 '1

• Ex: Solving different PDES

1
4
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:= • tr(y)dy
•• • L

(u)  div (u) (u) f B (.) K (x y)u(y) u(x)dy (u)

• Ex: Handling divergence/curl constraints in saddle point problems

Vh

Vh

v E (lim)d
{v c (nnodl

V - v 01

V x v

(u) • d A
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Solving PDEs with or without a mesh

To gen

Target functional

Essonsimmiargoe•••••4•••(postodira•••01,isvompamisoombstallowasoirvalmbieraiw••ogio•••v• Itimbrwsi••.•%• Oloaoaki.464•••=1omodwaiwie•vi"..•■•••2001►ohoissiommedApplown••••gomwistaatisttion

0 01

0 0001

le-06

1e-08
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Vefio f:

— Collocation P2
— Collocation - P4
— Collocation - P6
13-0 FV - P1

FV - P3
FV - P5

m

0.1
h

1
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Quadrature with GMLS

Assume a basis, Vf...) V, CP and rewrite GMLS problem as

= a rg min 7
cG ::Grefn ky 2

A1(P))2 A1).

er(P')

Ex: Selecting T = fc u dx, ard defining the vector

= Pdx

we can see that a quadrature functionais rnay be represented as a pairing
of the GMLS reconstruction coefficient vector with some vector in its
dual space

ic[u] = -vIc*

We seek to similarly define meshfree quadr3ture hinctionols with
summation by parts properties.

Sandia
National
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Second ingredient for conservation: topology

Generalized Stokes theorem

a

a

Gauss divergence theorern

V • udV= u • dA
Fe

Befiniti©n . &ball graph: Given a oint set X, consider the aph G(N, E)
embedded in. where N = X and E j) llxi — x-112 < ej

Befirmiti©n 0.2. Bound operator:

where

©r

0 N E

E N, d e the operator

Oni le(.7, k) E E k}

Sande
Mond
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Combinatorial Hodge theory: meshfree topology

Definition 0.1. k-clique: A k-tuple denoting a subset of k nodes C c N such
that every two dis inct vertices are jacent.

Definitio 0.2. oundary operator: A ap a Cre a k-clique to
(k — 1)-clique.

Definitio O. Abst ct sunplicial co plex: A collectio IC of k-cliques
th sociated bound operators, satisfying k E ak c d

k1, k2 E ki n k2 c ak2.

Definitio 0.4. Exterior der tive/coboundary operator: A linear map
ak t *IT a k-clique to a (k )-clique, sa isfying åkåk+1 = O.

60 = grad[s]C j)

l[X j, k) :  X- - Xik Xki

Definition 0.5. Adjoint operator: A linear
cliques.

— div o

ap o k-cliques to (k

Jiang, Xiaoye, et al. "Statistical ranking and combinatorial Hodge theory." Mathematical Programming 127.1

(2011): 203-244.

Sandia
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Gameplan
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• From our easily constructed graph, we have access to
operators in combinatorial Hodge theory

• Nice operators — exact sequence, summation-by-parts properties, etc

• Unfortunately— pure topological objects

• We want a conservative approximation to the divergence

• Combinatorial divergence does not converge to actual divergence

• Solution: Use GMLS to define integration functionals that use
combinatorial divergence to define virtual face areas and
virtual cell volume at nodes and edges to define an operator
analogous to the mimetic divergence

)
27



A virtual meshfree divergence theorem

Vie assume a collection of particles partitioned over the interior and boundary cf
the domain and characterized by a spacing lengthscale h (X,F, = Xi Li X,E,), and
for each particle on the boundary xli we associate a portion of the boundary
(aQ = us-20.

Sekct a velocity space V = (71)d and define Mh = div(Vh).

Sandia
National
Laboratories

Seek to define a discrete divergence theorem ansatz in terms of virtual cells, virtual' faces and physical boundary
faces_

UV. F] = Y: if[F] xc x lar2c F • clA
8c

which, under the assumption that = provides the following global conservation statement

E uvr • F] = ir[F] F•dA
c,FGac 8 c2c

=   f F [IA = F [IA
c]Cli ar2c a 5-2

28



Truncation error of ansatz

Let u E C ). We a s e he o o g a z for our vi ua divergence
theorem.

where

3/4 and vfij are

(u)

1 volum

Xicao I u dA
a

and face o be determined

cz(u) are GMLS coefficients associated th the f3th basis ction of the
GMLS reconstructio of u at the virtual face f

• a E 1 ..., d denotes the co ponent f the gradient a >>d rtual face normal

Ob jective:
Define d vf such that ou  VDT holds for yuEP

Sandia
National
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Summation-by-parts ansatz

Ass e virtual areas vfzi may be expressed
phed by point evaluation of basis functi

(

n te of v
n at virtual

(x )

ua a

Sandia
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poten als

Theo e Let u c 611(Q), and consider a set of virtual metric nf© ation

) that define a P1-reproducing SBP operator. Assume that the

virtual face moments satisfy the scalings, I 71) I C hd—i and MI <

GO for all a, [3,i, j m If Pit, C II, then there
estimate holds at ch virtual cell

where Vh U = (a

ts C > 0 such that the following

IV • U Vh < Ch

30



How to get the areas?

For each E V, plug n o sa z and get

) (ax XrEau dA

Sandia
National
Laboratories

Assume we have a process for generating vo es sa isfying

E Ill

>

then this provides a weighted-graph Lapiaci proble for e area o ent,
with S satisfying Fredholm al ernative necess f singul ity.

Solve d + 1 graph Laplaci p blems, each ith d RHSs, using
AMG for O(N) work.
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How to get the volumes?

d have a p o

E
•vs>0

Solve

Such that

where

Lemma O.
such that

generating vo

Evi

Yg =

il satisfying

Assume a quasi-unifo points X . Then there

C hd < C2hd

C C2 >

Sandia
National
Laboratories
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Convergence of divergence operator

h Unweighted Weighted

1/16

1/32

1/64

0.081

0.049

0.024

0.058

0.032

0.015

1/128 0.011 0.0072
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Results: singularly perturbed advection-diffusion

Co 
.

nsider co se o la s for conserved variable q

atq+V-F= 0

Where we wi s e s eady state the follo n

• Darcy:

Singu

AVO

y perturbed advection diffusion:

F ck a0

Lin elasticity:

All prob e

es:

F A(V-u)/dhinNu )

11 be sho or disco tinuous ateriall properties to high
continuity f pproach.

Sandia
National
Laboratories
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Darcy: jumps in material properties

Flux continuity across interface

70

50

30

10

10
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- R = 1
- R = 2

R = 4
R = 8
R = 16

- R=32
R =
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Darcy: jumps in material properties

Zero flux normal to interface
admits discontinuous fluxes

15

gio
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1 l4

— Exact
dx = 1/16

- dx = 1/32
- - dx = 1/64
— dx = 1/128

0.2 0.4 0.6 0.8 1
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Darcy: 5-spot problem

Is.

Santla
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0 Exact
— h = 1/8
— h = 1/16
— h = 1/32
— h = 1/64

1

0.5
Length along diagonal

1

0.5
Distance along diagonal

0 Exact
— h= 1/8
— h = 1/16
— h = 1/32
— h = 1/64

1
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Darcy 5-spot problem

4.

♦

►

44-4+ t 4+ * 4 -N• • + • 4-* •
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Singularly perturbed advection diffusion

-

= 0

at

F = — €V4i

Single tinnestep
Co E {1, 10, 100, 1000} ccp}
demonstrating L-stability
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Linearly elastic composite materials

E>

-

\Z

•
11

< I

Hydrostatic loading of a stiff inclusion
- Normal stress continuity across interface
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Conclusions
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■ We have illustrated how GMLS may be used to pair metric
information together with function approximation, obtaining
the two key ingredients to generating conservative meshfree
discretizations

■ We presented an ansatz for a meshfree divergence theorem,
and illustrated how it may be solved efficiently via graph
Laplacian problems

■ We presented a number of applications where we are able to
obtain consistent + conservative solutions for problems that
present challenges for other discretizations that lack H(div)
conformity

■ For the first time, a rigorous meshfree method with discrete
conservation, convergence, and scalability, replacing geometric
problem of mesh generation with scalable algebraic one

41


