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Talk overview ) Mot

" For the uninitiated — why would we want to use meshfree?
= A non-technical survey of our current meshfree projects

= General takeaway: exchange a nice mathematical setting for nice models
= Good for stubborn engineering problems, bad for mathematical analysis

= What is “compatible discretization”?
= Conservation principles, and why are they hard to get in meshfree?
= Qurtools:

= Generalized moving least squares — meshfree approximation
= Combinatorial Hodge theory — meshfree topology

= Key result:

= A conservative meshfree divergence theorem defined on a graph
" Final product:

= A compatible meshfree finite volume method
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Compadre — Compatible Particle Discretization ) foor

Objectives:
* Meshless schemes with rigorous approximation theory and mimetic properties like
compatible mesh-based methods
» Software library supporting solution of general meshless schemes with tools for
coarse+fine grain parallelism and preconditioning

People: Students/collaborators:
* Pavel Bochev (PI) * Huaiqian You, Yue Yu — Lehigh
* Pete Bosler * Amanda Howard, Martin Maxey — Brown
* Paul Kuberry * Wenxiao Pan — UW Madison
* Mauro Perego * Paul Atzberger — UC Santa Barbara
« Kara Peterson e J.S. Chen — UC San Diego
* Nat Trask
Key tools:
* Optimization based approaches to develop meshfree discretizations with reproduction
properties

* The Compadre Trilinos library — open source library for scalable implementation of
meshfree methods
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Compadre Trilinos package =

- -

Coordinates

Repartitioning

Fields =

File Reader/Writer Neighbors |
Input Deck
i N J Cur G

Collection of modules for general meshfree discretizations + heterogeneous architectures

* Local modules for efficiently solving small optimization problems on each particle
*  Kokkos implementation gives fine grained thread/GPU parallelism

*  Global modules for assembling global matrices and applying fast solvers
* MPI based domain decomposition for coarse grained parallelism
* Interfaces to MueLu for fast solvers



ASCeND - Ft -
Asymptotically compatible foundations for nonlocal discretization
Obj ectlves
Develop mathematical underpinnings for meshfree nonlocal models
People:
* Nat Trask (PI)
 Marta D’Elia
* David Littlewood

» Stewart Silling
* Michael Tupek

PhiLMs DoE MMICCs center—
Physics-based Learning Machines for scientific computing

Obj ectlves
Develop approximation theory for deep neural networks in multiscale applications
People:
* George Karniadakis (Brown University — head PI)

* Sandia Team
* Michael Parks (Institutional PI)
* Pavel Bochev
e Marta D’Elia
* Mauro Perego
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What is meshfree?

= |n classical methods, a mesh gives you a lot:
= Easy construction of basis functions
= A partition of unity
= Simple quadrature

= Asimplicial complex and associated exterior calculus structures

= j.e. cells, faces, edges, nodes linked together through a boundary
operator + generalized Stokes theorems

= Usually the best option, but for many applications its
infeasible/annoying to efficiently build a mesh
= Lagrangian large-deformation problems ==

= Automated design-to-analysis
= (~50% of analyst time!)!

= Non-intrusive multiphysics coupling for
legacy code

[1] "DART system analysis" SAND2005-4647
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Meshfree — restricting ourselves to O-forms ) foor

= |ots of versions of meshfree out there!

= Recall examples of differential k-forms:
= For a polygonal mesh in 3D

Zero-form: 0Oy, ou

rho
1 =1

"io.75
05
Bo2s

u-dl

One-form:

Two-form: / u-dA
JF

-0.00368 -0

Three-form: / udV
Jc

= For our purposes, define meshfree as restricting ourselves to
describing solution only in terms of zero-forms
= Easy to push points around if you don’t care about preserving a mesh

= Exchange nice mathematical setting to get more descriptive models ,




Why meshfree? Large deformation problems 77 Ntora

—V2u+Vp=f
V-u=0

ulg, = U+ (z —X) x Q
J5,0 - dA =0

Meshfree: great for moving boundaries, but how do we handle inf-sup stability?




Why meshfree? Large deformation problems ) B

(—vVPu+ Vp = —pe(¢)V¢
V-u=0

u—w

\UZV,'—|—(X—X;) x Q;

0 =[5 T - dA
0= [, 0% (x—X) dA
Electric Field Magnitude '
0.25 0.5 |D'7|'5 = 2 v
T LUl LLLL LU J:—eo(E®E+E|)+—p|+§(VU—|—VUT)

0

Meshfree: a nice multiphysics platform for Lagrangian models, but how do we
analyze stability of coupling? 9
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Why meshfree? Automatic geometry discretization i) feema_

3D Image Data
(X-ray CT)

Labeling Exodus mesh

CDFEM

Segmentation




Why meshfree? Automatic geometry discretization

temperature

-10 0 10 20
l]lllllllllllllll

displacement Mcgnlfude

Meshfree:

Great for automatically
handling internal
interfaces, but

how do we make
sense of
conservation?



Why meshfree? Fracture mechanics

Meshfree:

Automatic treatment of
topology changes, but
we may lose
variational principles
for nonlinear
problems
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Why meshfree? Differential geometry on manifolds

To oversimplify — mapping between local charts and
tangent space can be inferred "meshlessly” to get
access to metric tensor, curvature, surface
differential operators, etc.

manifold concentration

00885 -
=0.08

Bulk concentration



Why meshfree? Code couplers for E3SM @ Notore
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Why is conservation hard in meshfree?

Generalized Stokes theorem

/dw:/ w
(1 a(l

Gauss divergence theorem

/V-ud\/:j& u-dA
C FeC

Two ingredients to a conservative discretization:
* A chain complex — the metric information

* A topological structure with a well-defined boundary operator
* An exterior derivative — the function approximation

* A consistent definition of a divergence
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First ingredient: function approximation i) feema_

= QOlder meshfree approaches suffer from accuracy and stability
issues

= We build all of our work on top of a framework with a
rigorous approximation theory

= Give a quick overview of existing approximation theory using
GMLS and our generalization to an abstract theory

Wendland, Holger.Scattered data approximation. Vol. 17. Cambridge
university press, 2004.

Mirzaei, Davoud, Robert Schaback, and Mehdi Dehghan. "On generalized
moving least squares and diffuse derivatives."IMA Journal of Numerical
Analysis 32.3 (2012): 983-1000.

Trask, Nathaniel, Mauro Perego, and Pavel Bochev. "A high-order staggered
meshless method for elliptic problems."SIAM Journal on Scientific Computing

39.2 (2017): A479-A502. .




Generalized moving least squares (GMLS)

2
p* = arg)ém/m Z,J )\_7] @)) A\j('w)) W (t, Aj)
i) 3
Example: [
Approximate point evaluation of derivatives: | /\\ |

= D% 0 d,,

Takeaway:
A rigorous way to obtain formulas that look like:

Ti(uw)p = LA (u)
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Preliminaries: Quasi-uniform point clouds i) feema_

Definition 0.1. Fill4separation distances Given point cloud X = {z1,...,zn} C
1, define distances

hx = sup min||z — z.||?

X wEPjGXM M
e 1minM| ; -M2

gx = oY=y L — Ty

Definition 0.2. Quasi-uniformity A point cloud X is quasi-uniform with
respect 1o g, if

gx < hx < CouldX

Proposition 0.1. Suppose bounded §) and quasi-uniform X w.r.i. cg, > 0.
Then there exist c1,co > 0 such that

ClNW% < hx < C2NW%
18




Classical MLS: quasi-interpolants AR
[Wendland04]

Laboratories
Definition 0.1. Local polynomial reproduction: A process defining Vz; €
X an approximation u(z) = ). ¢;ju(z;) Is a local polynomial reproduction if
there exist C1,C2 > 0.

1. >2;0;P; = P(z) for all P € V,
2. 3 ;o5 < Crforall z €

3. ¢j(x) =0if ||z — xj||]2 > Cohx and z €

Theorem 0.1. For bounded (2, define 0* = gﬂB(w, Cahx). If s¢ is a local
polynomial reproduction of order m and f € cm+l (Q2*) then

|f(z) = s7(2)] < Ch ™| flem+i(ar

Theorem 0.2. Consider the GMLS process with T = 05, Aj(u) = u(z;), and
V =11,,. If) is compact and satisfies a cone condition, and X is quasi-uniform,
then there exists a constant C > 0 such that supp(W) = C hx where the GMLS

problem is solvable and forms a local polynomial reproduction.
19




Classical MLS: derivative approximation AR i,
[Mirzaeil2?] o

Definition 0.1. Local polynomial reproduction: A process defining Vz; €
X an approximation D*u(z) = }_; ¢;ju(z;) Is a local polynomial reproduction
if there exist C1,C2 > 0.

1. >, ¢;P; = D*P(z) for all P € Vj,

2. 3,161 < Cihx* for all z € Q
3 (ﬁg(w) =0if Eiw — mjgﬂz > Cohx and z € 2

Theorem 0.1. For bounded 2, define Q* = gﬂB(m,Oghx). If sy is a local
polynomial reproduction of order m and f € C™1(Q*) then

f(z) — s¢(@)] < ChE T 1 flomirgary

Theorem 0.2. Consider the GMLS process with 7(u) = D%u(x), Aj(u) =
u(z;), and V = 1l,,. If Q is compact and satisfies a cone condition, and X is
quasi-uniform, then there exists a constant C > 0 such that supp(W) = C hx
where the GMLS problem is solvable and forms a local polynomial reproduction.
20




A general abstract framework T

Basic technique:
() = T (u)| < () = 7<(p)| + |7x(p) — X (u)l, (Vp € P)
< |7x(u) — 7x(p)| + |7 (p —u)[, <— reconstruction property

NF' . .
< |melu = p)l + | 0 Ai(u = plas, | <— GMLS definition

=1

< |rx(u = p)| + max [Ni(u = p)| 3 ||

tEfx T

> la% | < Cw Il e+ | ALl
iy

Holds for any target functional and approximation space:
I (u) — Tt ()] < |7(u = p)| + Cw |7l - 1AL max[Ai(u —p)|, p€P

F-

21
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A general abstract framework

= All examples from beginning of talk fall into this framework

= Ex: Data transfer applications

1
Af(a) = t; }af /u n; AV( :=—[ y) di
() := |et|,[ w )= 1A ®) =1y ), M) v

= Ex: Solving different PDES

r(w) = div(w) () = [ K@ y)uly) —u@)dy (W) = [yo0) - dA
= Ex: Handling divergence/curl constraints in saddle point problems

Vi={vey,)? V-v=0}
Vi={vel,)? Vxv=0}

22




Solving PDEs with or without a mesh

To generate mesh free schemes for V*¢ = f:

T; VZé(x;) | j" face Vé-dA

‘ Vv
Smmpﬂhmg fmmtmmﬂll Aj

Weighting function W (Jlx; — o)) Wlle; — :ll)

—— Collocation P2
—— Collocation - P4
001 —— Collocation - P6
o—o FV-P1
FV-P3
a FV-P5




Quadrature with GMLS ) B

Assume a basis, Vp e V, p=cTP and rewrite GMLS problem as

N
c* = argmin lz (Aj(u) — C*Aj(P})Qw(T; Aj)-
ccRdim(V) =1

T(u) = c*7(P")

Ex: Selecting 7 = [_u dx, and defining the vector

V.= /de

we can see that a quadrature functionals may be represented as a pairing
of the GMLS reconstruction coefficient vector with some vector in its
dual space

IcJu] = vIc*

We seek to similarly define meshfree quadrature functionals with

summation by parts properties.
24




Second ingredient for conservation: topology

Generalized Stokes theorem

/dw:/ W
(1 o1

Gauss divergence theorem

/ V- -udV = f u-dA a . ‘-, o N ___}J .
¢ FeC

Definition 0.1. e-ball graph: Given a point set X, consider the graph G(N, E)
embedded in 2, where N = X and E = {(3,7) | ||zi — zj||]2 < €}

Definition 0.2. Boundary operator: For all n; € N, define the operator

0:N—- F

where

On; ={e(j,k) € E|i=jori=k} 25




Combinatorial Hodge theory: meshfree topology

Definition 0.1. k-clique: A k-tuple denoting a subset of k nodes C' C N such
that every two distinct vertices are adjacent.

Definition 0.2. Boundary operator: A mapping 0 from a k-clique to a
(k — 1)-clique.

Definition 0.3. Abstract simplicial complex: A collection K of k-cliques
with associated boundary operators, satisfying £ € K = 0k € K, and
ki,ko € K = k1 Nky € 0k1 N Oks.

Definition 0.4. Exterior derivative/coboundary operator: A linear map
0, taking a k-clique to a (k + 1)-clique, satisfying dxdx+1 = 0.

o 5o = grad|s|(i,j) :=s; — s;
o 5 = curl[X](i,5,k) = X;; + Xjp + Xgi

Definition 0.5. Adjoint operator: A linear map 6 from k-cliques to (k—1)-
cliques.

o —div:=0;

Jiang, Xiaoye, et al. "Statistical ranking and combinatorial Hodge theory." Mathematical Programming 127.1

(2011): 203244, 26



Gameplan

= From our easily constructed graph, we have access to
operators in combinatorial Hodge theory

= Nice operators — exact sequence, summation-by-parts properties, etc

= Unfortunately — pure topological objects
= We want a conservative approximation to the divergence
= Combinatorial divergence does not converge to actual divergence

= Solution: Use GMLS to define integration functionals that use
combinatorial divergence to define virtual face areas and
virtual cell volume at nodes and edges to define an operator
analogous to the mimetic divergence




A virtual meshfree divergence theorem

We assume a collection of particles partitioned over the interior and boundary of
the domain and characterized by a spacing lengthscale h (X, = X; U X), and
for each particle on the boundary xp we associate a portion of the boundary
(892 = uLd,).

Select a velocity space V, = {ﬂ'l]ld and define M, = div( V).

Seek to define a discrete divergence theorem ansatz in terms of virtual cells, virtual faces and physical boundary

faces.
LIV -Fl= 3 I{F] +xcE1b/ F.dA
fedc
which, under the assumption that Iﬂj = _fﬁi provides the following global conservation statement

S LIV-Fl= 3 HFl+ Zf

c,feBc ceXy, * Flc

= ‘ F-dA=| F-.-dA

28
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Truncation error of ansatz

Let u € CY(2). We assume the following ansatz for our wirtual divergence

theorem.
Vi (Oz,u); = Z“’f’ﬁ‘?ﬂ (u) + Xiem/ udA®
3,8 o
where
e Vi and vy,. = —wy,. are virtual volumes and face areas to be determined

. c;%(u) are GMLS coefficients associated with the %" basis function of the
GMLS reconstruction of u at the virtual face f;;

e o € 1,...,d denotes the component of the gradient and virtual face normal

Objective:
Define V; and vy, such that our VDT holds for any u € Py

29
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Summation-by-parts ansatz i) feema_

Assume virtual areas vy,;, may be expressed in terms of virtual area potentials
multiplied by point evaluation of basis function at virtual face

vy, = @? P~y ”8) ¢ (2:;)
Theorem. Let u € C1(f2), and consider a set of virtual metric information

({V;} g {w%;ﬁ }) that define a P;-reproducing SBP operator. Assume that the

virtual face moments satisfy the scalings, E@j}?’ﬁ — P < Crh®1 and |V;| <
C.h? for all o, B,i,§. If Py C 11, then there exists C > 0 such that the following
estimate holds at each virtual cell

|V‘-fumvh~m§~

7

<Ch

where Vi, - u =) (05, u%);.

30
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How to get the areas? ) foor

For each ¢? € V, plug into ansatz and get

2 (Q"’}? gt W,ﬁ) &

P (i) = V; (05.9°), — X1eon / ¢’ dA*
- 89

Assume we have a process for generating volumes satisfying
e TV =10
o V. >0

then this provides a weighted-graph Laplacian problem for each area moment,
with RHS satisfying Fredholm alternative necessary for singularity.

Solve d + 1 graph Laplacian problems, each with d RHSs, using
AMG for O(N) work.

31
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How to get the volumes? ) fooer

Assumed we have a process for generating volumes satisfying

« SVi=0]

e V. >0
Solve

V; = argmin z %2?1),;
Such that
D Vi=10|
i

where

Lemma 0.1. Assume a quasi-uniform points X. Then there exist C1,Co > 0
such that
C1h? < V; < Cyh 32




Convergence of divergence operator

' h | Unweighted | Weighted

1/16 0.081 0.058
1/32 0.049 0.032
1/64 0.024 0.015

1/128 0.011 0.0072




Results: singularly perturbed advection-diffusion ) e

Consider conservation laws for conserved variable q
81;(1 +V-F=0
Where we will assume steady state and the following fluxes:

e Darcy:
F=—uV¢

e Singularly perturbed advection diffusion:

F=—-uV¢+ag

e Linear elasticity:

F=X(V-u)I+p(Vu+VuT)

All problems will be shown for discontinuous material properties to highlight
flux continuity of approach.
34
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Darcy: jumps in material properties ) fooer

Flux continuity across interface

pVé -] =0

Vo —

70 , |
60 - l.-" _
)
B |
|
50 Il .
i — R=1 !
40 — R=2 -
3 — R=4 |
ER — R=8
x| — R=16 —
— R=32
| -~ R=64




Darcy: jumps in material properties

Zero flux normal to interface
admits discontinuous fluxes

uVeo-n| =0
Vo —




Darcy: 5-spot problem

O  Exact
\ — h=1/8

. | L 1 |
2() 0.5 1

Length along diagonal

—C
0

O  Exact |
— h=1/8 |
— h=1/16 [
— h=1/32 ‘
— h=1/64

Velocity magnitude

Distance along diagonal




Darcy 5-spot problem




Singularly perturbed advection diffusion )

n-V¢=0

a
—ao+ V- -F=0
Efﬁb

F=ap— eV

Single timestep
Co€ {1, 10, 100, 1000, oo}
demonstrating L-stability

39




Linearly elastic composite materials

4

Hydrostatic loading of a stiff inclusion
- Normal stress continuity across interface
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Conclusions ) Mot

We have illustrated how GMLS may be used to pair metric
information together with function approximation, obtaining
the two key ingredients to generating conservative meshfree
discretizations

We presented an ansatz for a meshfree divergence theorem,
and illustrated how it may be solved efficiently via graph
Laplacian problems

We presented a number of applications where we are able to
obtain consistent + conservative solutions for problems that
present challenges for other discretizations that lack H(div)
conformity

For the first time, a rigorous meshfree method with discrete
conservation, convergence, and scalability, replacing geometric
problem of mesh generation with scalable algebraic one

41



