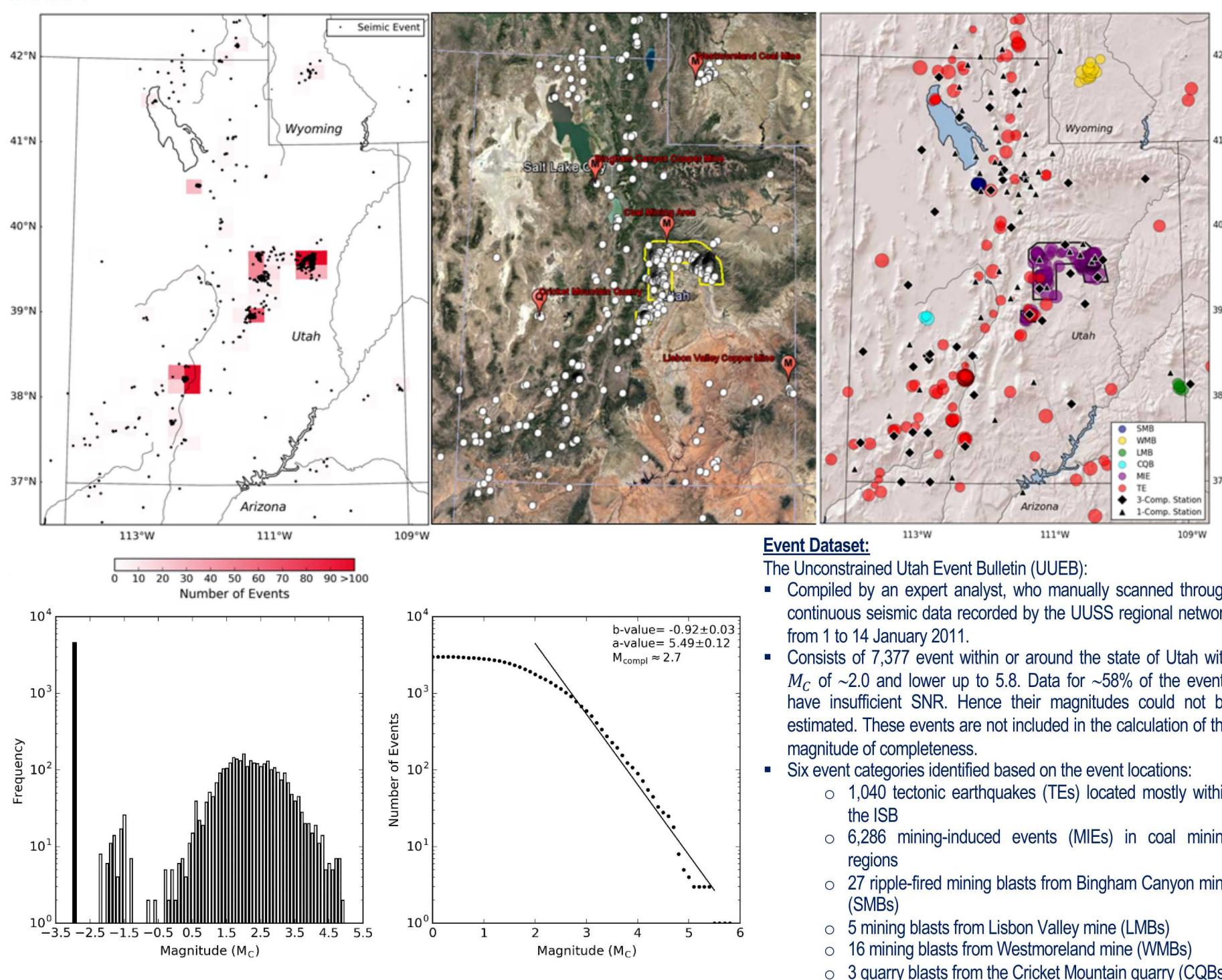


## OVERVIEW

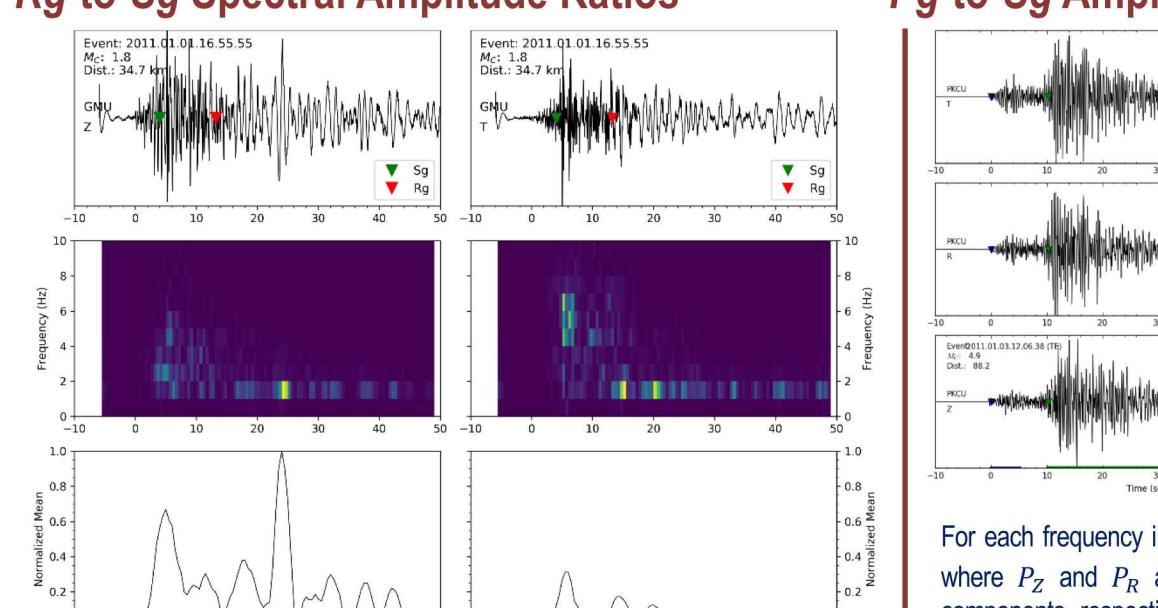
The capability to discriminate low-magnitude earthquakes from low-yield anthropogenic sources, both detectable only at local distances, is of increasing interest to the event monitoring community. We used a dataset of seismic events in Utah recorded during a 14-day period (1–14 January 2011) by the University of Utah Seismic Stations (UUSS) network to perform a comparative study of event classification at local-scale using amplitude ratio (AR) methods and a machine learning (ML) approach. We compare the AR and ML methodologies using a broad set of criteria and conclude that a major advantage to machine learning methods is their robustness to low signal-to-noise ratio (SNR) data, allowing them to classify significantly smaller events.

## DATA



## METHODS

### Rg-to-Sg Spectral Amplitude Ratios



From the Z-component spectrogram, a mean time series is generated for the frequency range of 0.5–2 Hz. A similar time series is generated from the T-component spectrogram for the frequency range of 0.5–8 Hz. The time series are then smoothed. The maximum amplitude in the Rg window ( $\max[Rg_{[0.5-2Hz]})$  of the Z time series is estimated. The same is done in the Sg window of the T time series to obtain ( $\max[Sg_{[0.5-8Hz]})$ . These amplitudes are then corrected for the propagation effects. The reported Rg-to-Sg ratios are obtained by dividing the corrected  $A_{Rg}$  by the corrected  $A_{Sg}$ .

To allow sufficient separation and avoid interferences between the phases, only data recorded at distances from 25 to 150 km were used for both Rg-to-Sg and Pg-to-Sg ratios. The reported Rg-to-Sg ratios consists of the corrected  $\max[Rg_{[0.5-2Hz]})$  divided by the corrected  $\max[Sg_{[0.5-8Hz]})$ .

### Multivariate Quadratic Discriminant Analysis

#### Assumptions:

- $f_j(r)$  where  $j = 1, 2, \dots, N$  is the probability density associated with the  $j$ -th population, whereby  $r = (r_1, r_2, r_3, r_4, r_5)^T$  is the vector of amplitude ratios. The variables  $r_1$  to  $r_4$  are Pg-to-Sg ratios at 4 discrete frequencies, while  $r_5$  represents the Rg-to-Sg ratio. The characteristics of  $f_j(r)$  is inferred from the learning set.
- Amplitude ratios of the training sets are normally distributed within each population
- Events in the training sets are correctly classified
- The  $N$  populations have equal prior probability of occurrence ( $\pi = 1/N$ )
- The  $N$  populations have equal misclassification costs

#### The quadratic discriminant function, $D_j(r)$ , is defined as:

$$D_j(r) = -\frac{1}{2}(r - \mu_j)^T S_j^{-1}(r - \mu_j) - \frac{1}{2}\ln|S_j| + \ln\left(\frac{1}{N}\right),$$

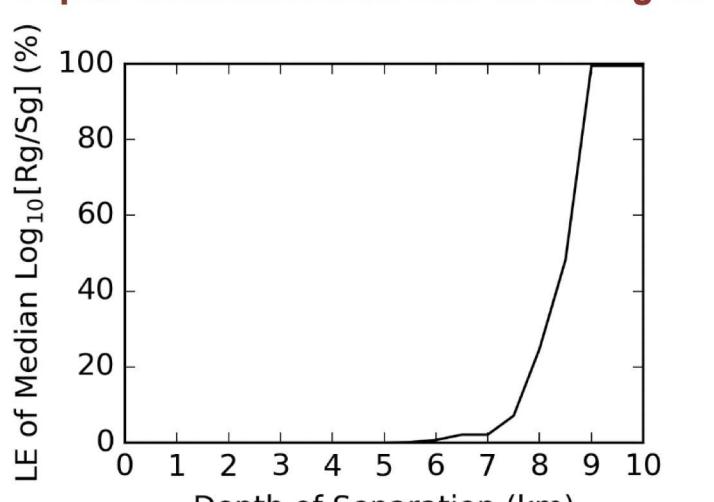
where  $\mu_j$  and  $S_j$  are the ratio vector mean and ratio covariance matrix of the learning set for the  $j$ -th population, respectively.

An event of interest with the ratio vector  $x$  is allocated to the  $l$ -th population if  $D_l(x)$  is the largest of the score values  $D_1(x), D_2(x), \dots, D_N(x)$ .

For  $N = 2$  (two populations  $p$  and  $q$ ), the event of interest is classified as  $p$ -type if the score difference  $d_{pq} = D_p(x) - D_q(x) > 0$ , and as  $q$  type if  $d_{pq} < 0$ .

## RESULTS

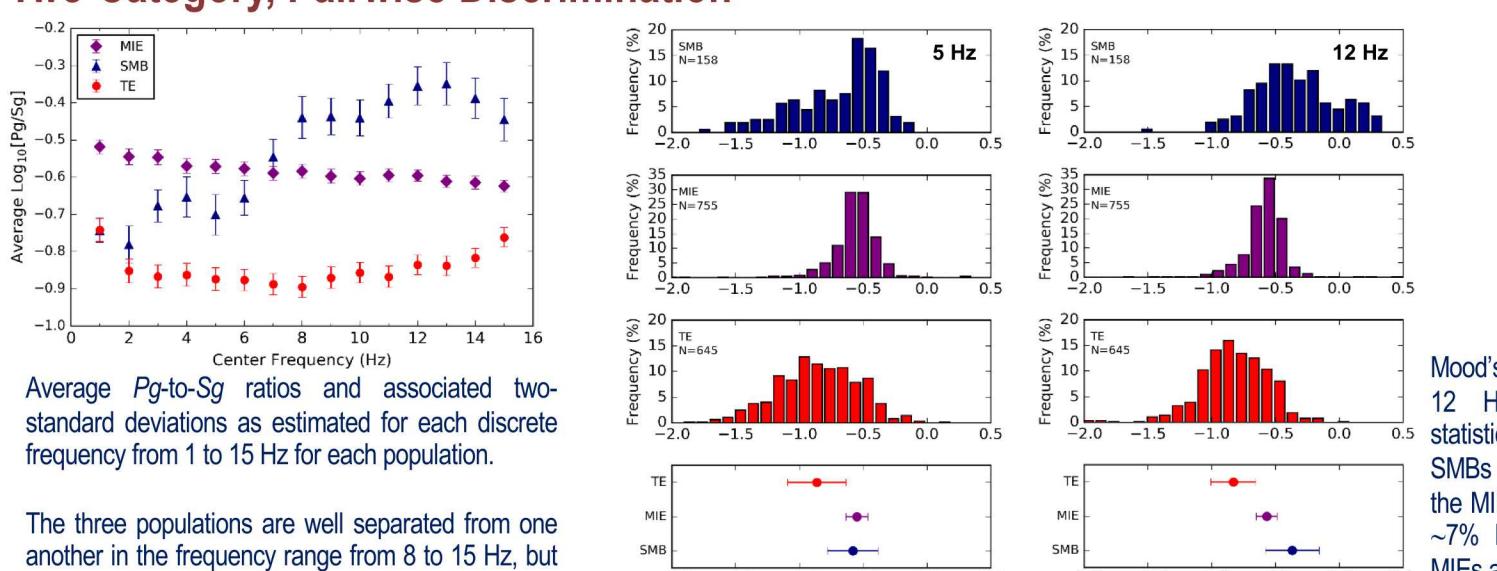
### Depth Discrimination Based on Rg-to-Sg Ratios



Likelihood of equality (LE, inferred from Mood's median tests) of the median Rg-to-Sg ratios as function of the depth of separation between shallow and deeper TEs.

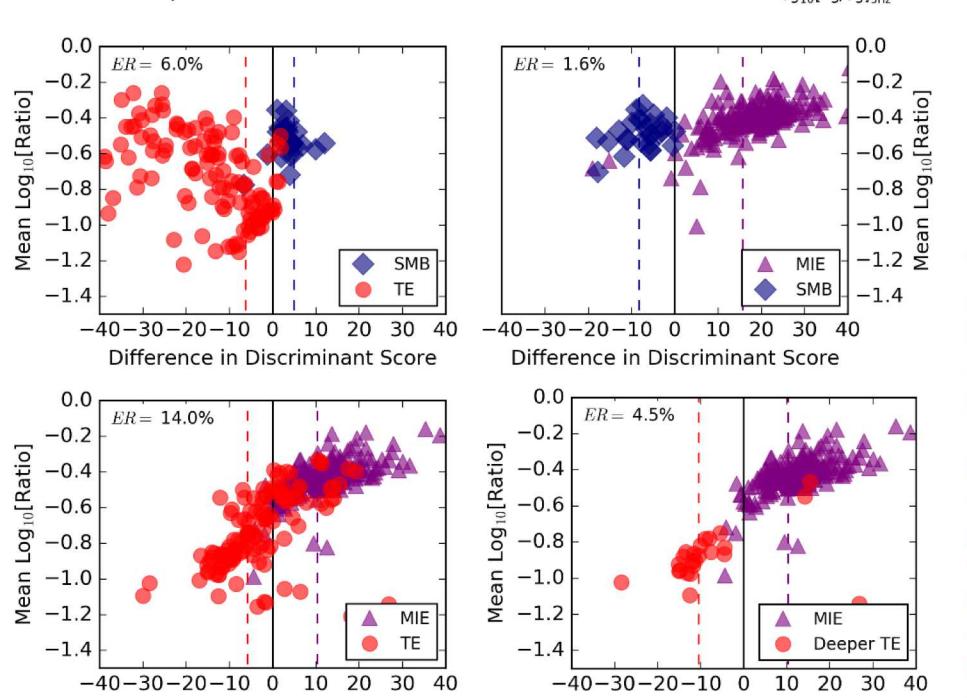
For the depths of separation of 6 km or less, the LE values are below 2%, implying that for any of those depths of separation shallow and deeper TEs are statistically different.

### Two-Category, Pairwise Discrimination



Mood's median tests suggest that at 12 Hz the populations are all statistically different. At 5 Hz, the SMBs are different from the TEs, and the MIEs from the TEs; but, there is a ~7% likelihood that the SMBs and MIEs are the same.

The three populations are well separated from one another in the frequency range from 8 to 15 Hz, but less so for frequencies below 8 Hz.



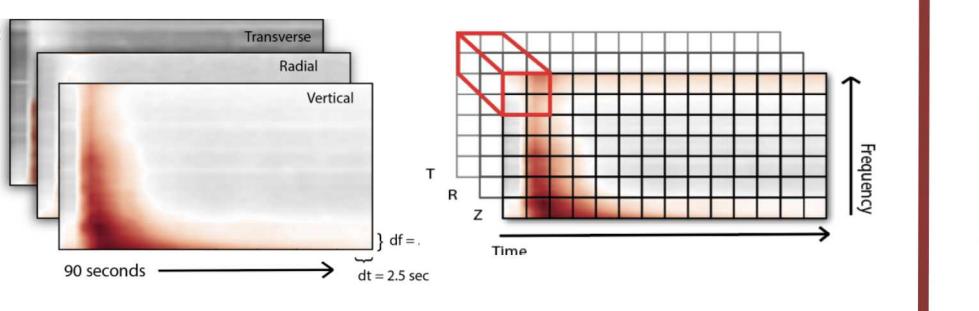
The QDFs were tailored for each population pair. The optimum set of frequencies for the Pg-to-Sg ratios were selected for each pair using a trial-and-error process, and corresponds to the set associated with the lowest misclassification rate. The optimum frequency sets were 1, 2, 10, 15 Hz; 1, 2, 6, 8 Hz; and 6, 8, 14, 15 Hz for the pairs MIE/SMB, SMB/TE, and MIE/TE, respectively.

Difference in discriminant scores for each of the population pairs. The discriminant scores were calculated by jointly exploiting Pg-to-Sg and Rg-to-Sg ratios in the multivariate QDFs.

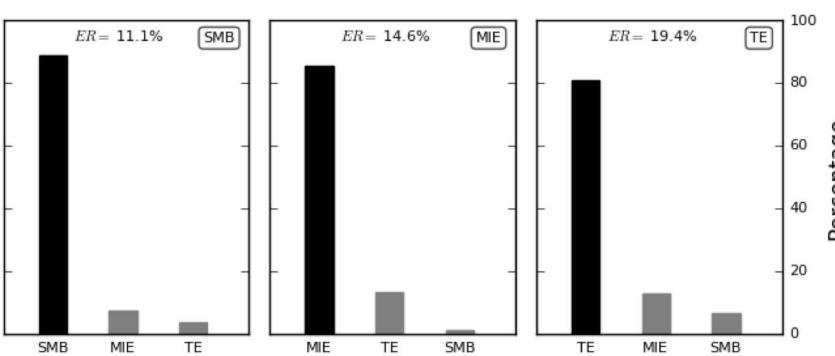
With an error rate (ER) of only 1.6%, the QDF performs best for the population pair MIE/SMB, followed by the pair SMB/TE (ER = 6%). MIEs and TEs share some characteristics, as reflected by the ER value of 14%. This is particularly the case between the MIEs and shallow (depth  $\leq 5$  km), as implied by the fact that the ER value drops to 4.5% if only deeper TEs are considered.

### Spectrogram-Based Machine Learning Method

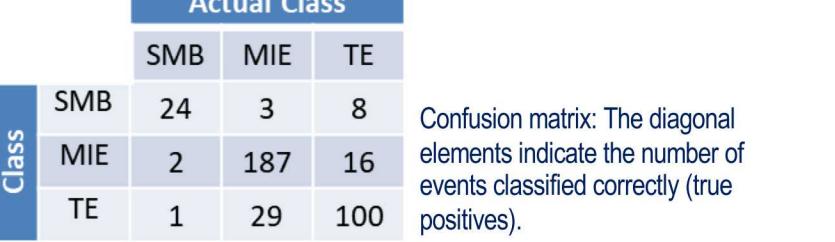
- Input are 90-sec long spectrograms (starting 10 sec before first  $P$  arrivals) from 3-component (when available) or single local to near-regional stations
- Models were built using 5 years (2012–2016) of labeled UUSS events, except for the Rg-to-Sg ratio. The characteristics of  $f_j(r)$  is inferred from the learning set.
- We used the (VGG11) convolutional neural network (CNN) architecture, that involves between 64 and 512 filters for each layer and includes batch normalization and max pooling with ReLU non-linearity
- Our hyperparameter optimization relied on extensive testing from previous studies that relied on the UUSS dataset
- We used 10 fold cross validation and early stopping
- Our models trained between 20 and 80 epochs



### Three-Category Classification Using the AR Method

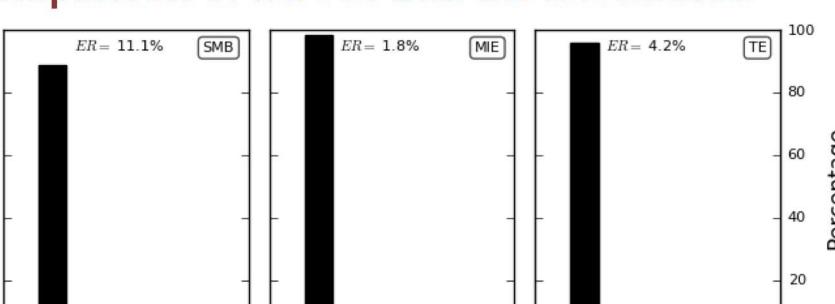


- All three populations are considered simultaneously in the QDF approach.
- The optimum frequency set for Pg-to-Sg ratios is 1, 2, 7, and 8 Hz.
- On average about 85% of the events are classified correctly.
- The population of SMBs is associated with the lowest error rate (ER = 11.1%) followed by the MIEs (14.6%). The TE group exhibits the highest error rate of any population (19.4%).
- The majority of the misclassified TEs are assigned to the MIE group. Similarly, most of the misclassified MIEs are assigned to the TE population. This is consistent with the outcome of the two-category classification discussed above, which suggests that the two populations have some properties in common, which make it difficult to discriminate between them.

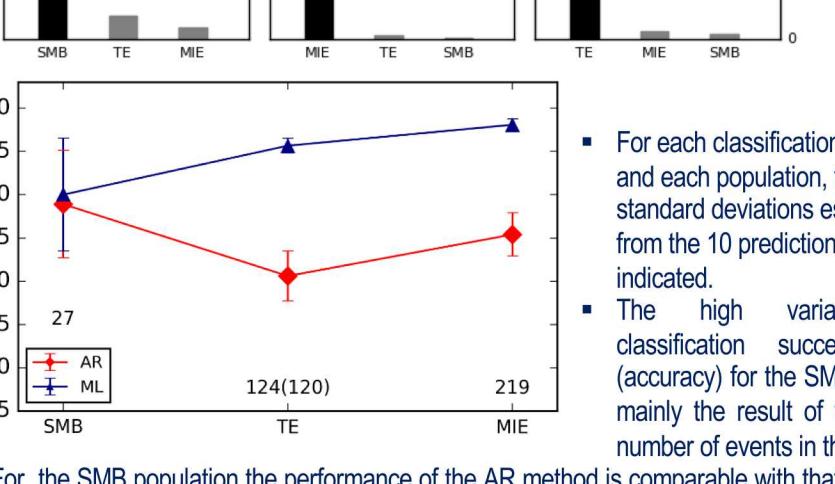


Confusion matrix: The diagonal elements indicate the number of events classified correctly (true positives).

### Comparison of the AR with the ML Method



- 3-category classification using the ML approach.
- Confusion matrix for the ML method. The reported values represent averages from 10 prediction runs.
- \* Note that in this case only 120 TEs were investigated, compared with 124 TEs for the AR approach.



- For each classification method and each population, the standard deviations estimated from the 10 prediction runs are indicated.
- The high variability in classification success rates (accuracy) for the SMB group is mainly the result of the limited number of events in that group.
- For the SMB population the performance of the AR method is comparable with that of the ML approach within the margin of errors.
- For the TE and MIE groups, however, the latter method outperforms the former by an average of about 14% in terms of success rate.



Using the ML approach, we were able to classify the entire UUEB dataset, including the abundant, extremely low-magnitude events. In this case, the SMBs, WMBs, LMBs, and CQBs were grouped together to form a class called "mining blast" (MB). We achieved success rates of ~97–99%.

