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Assumptions:

ultivariate Quadratic Discriminant Analysis

Spectrogram-Based Machine Learning Method

Input are 90-sec long spectrograms (starting 10 sec before first P arrivals) from 3-

Methods with a Machine Learning Approach
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Three-Category Classification Using the AR Method
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between the MIEs and shallow (depth < 5 km), as implied by the fact that the ER
value drops to 4.5% if only deeper TEs are considered.
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