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OVERVIEW
The capability to discriminate low-magnitude earthquakes from low-yield anthropogenic sources, both detectable only
at local distances, is of increasing interest to the event monitoring community. We used a dataset of seismic events in
Utah recorded during a 14-day period (1-14 January 2011) by the University of Utah Seismic Stations (UUSS)
network to perform a comparative study of event classification at local-scale using amplitude ratio (AR) methods and
a machine learning (ML) approach. We compare the AR and ML methodologies using a broad set of criteria and
conclude that a major advantage to machine learning methods is their robustness to low signal-to-noise ratio (SNR)
data, allowing them to classify significantly smaller events.
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Event Dataset: 
The Unconstrained Utah Event Bulletin (UUEB):
• Compiled by an expert analyst, who manually scanned through

continuous seismic data recorded by the UUSS regional network
from 1 to 14 January 2011.

• Consists of 7,377 event within or around the state of Utah with
of -2.0 and lower up to 5.8. Data for -58% of the events

have insufficient SNR. Hence their magnitudes could not be
estimated. These events are not included in the calculation of the
magnitude of completeness.

• Six event categories identified based on the event locations:
o 1,040 tectonic earthquakes (TEs) located mostly within

the ISB
o 6,286 mining-induced events (MIEs) in coal mining

regions
o 27 ripple-fired mining blasts from Bingham Canyon mine

(SMBs)
o 5 mining blasts from Lisbon Valley mine (LMBs)
o 16 mining blasts from Westmoreland mine (WMBs)
o 3 quarry blasts from the Cricket Mountain quarry (CQBs)
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METHODS

Rg-to-Sg Spectral Amplitude Ratios
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From the Z-component spectrogram, a mean time series is generated for the
frequency range of 0.5-2 Hz. A similar time series is generated from the T-
component spectrogram for the frequency range of 0.5-8 Hz. The time series are
then smoothed. The maximum amplitude in the Rg window (max{Rg[0.5-2Hz]})
of the Z time series is estimated. The same is done in the Sg window of the T time
series to obtain (max{Sg[0.5-8Hz]})• These amplitudes are then corrected for the
propagation effects. The reported Rg-to-Sg ratios consists of the corrected
max{Rg[0.5-2Hz]} divided by the corrected max{Sg[0.5-8Hz]}.
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For each frequency in the range of 1-15 Hz in 1-Hz increment: Apg = (131+13D1/2

where Pz and PR are rms of the amplitudes in the Pg window on the Z and R
components, respectively; Asg = + SR + SW/2, whereby Sz, SR, and STare the

rms of the amplitudes in the Sg window on the Z, R and T components, respectively.
Apgand Asgare then corrected for the propagation effects. The reported Pg-to-Sg ratios

are obtained by dividing the corrected Apgby the corrected Asg.

To allow sufficient separation and avoid interferences between the phases, only data
recorded at distances from 25 to 150 km were used for both Rg-to-Sg and Pg-to-Sg
ratios.

The authors acknowledge the support of the National Nuclear Security Administration Office of Defense Nuclear Nonproliferation Research and Development for funding this work.
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Multivariate Quadratic Discriminant Analysis
Assumptions: 
• f(r) with j = 1, 2, ..., N is the probability density associated with the j-th

population, whereby r = (r1, r2, r3, r4, r5)T is the vector of amplitude ratios. The
variables r1 to r4 are Pg-to-Sg ratios at 4 discrete frequencies, while r5 represents
the Rg-to-Sg ratio. The characteristics of f(r) is inferred from the learning set.

• Amplitude ratios of the training sets are normally distributed within each
population

• Events in the training sets are correctly classified.
• The N populations have equal prior probability of occurrence (7E=1/N).
• The N populations have equal misclassification costs

The quadratic discriminant function, Di (r), is define as:
1

Di (r) = - (r - 
T 
Sj (r - µi) -

1
+ In 6),

where and Si are the ratio vector mean and ratio covariance matrix of the learning
set for the j-th population, respectively.
An event of interest with the ratio vector x is allocated to the l-th population if DI (x) is
the largest of the score values D1 (X) , D2 (X), DN (X) .

For N - 2 (two populations p and q), the event of interest is classified as p-type if the
score difference dpq = Dp (X) - Dq(x) > 0, and as q type if dpq< O.

Spectrogram-Based Machine Learning Method
• Input are 90-sec long spectrograms (starting 10 sec before first P arrivals) from 3-

component (when available) or single local to near-regional stations
• Models were built using 5 years (2012-2016) of labeled UUSS events, except for

the MIEs for which we used the current dataset
• We used the (VGG11) convolutional neural network (CNN) architecture, that

involves between 64 and 512 filters for each layer and includes batch normalization
and max pooling with Relu non-linearity

• Our hyperparameter optimization relied on extensive testing from previous studies
that relied on the UUSS dataset

• We used 10 fold cross validation and early stopping
• Our models trained between 20 and 80 epochs
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RESULTS
Depth Discrimination Based on Rg-to-Sg Ratios

Histograms of the estimated Rg-to-Sg ratios for
each population. The median and one-median
absolute deviation values of the ratios are shown in

80 the bottom plot. The division of TEs into STEs and
DTEs occur along the depth of 5 km.
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Likelihood of equality (LE, inferred from Mood's median tests) of the
median Rg-to-Sg ratios as function of the depth of separation
between shallow and deeper TEs.

For the depths of separation of 6 km or less, the LE values are
below 2%, implying that for any of those depths of separation
shallow and deeper TEs are statistically different

Two-Category, Pairwise Discrimination
0.2

-0.3

-)3)
t.n
al
°- -0.5

F -0.6

(2
c) -0.7

-0.8

-0.9

1 0
0

• MIE
4 SMB

• TE

+ • 

* ♦ * *

# # # # f + +

2 4 6 8 10 12

Center Frequency (Hz)

Average Pg-to-Sg ratios and associated two-
standard deviations as estimated for each discrete
frequency from 1 to 15 Hz for each population.

14 16

The three populations are well separated from one
another in the frequency range from 8 to 15 Hz, but
less so for frequencies below 8 Hz.
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Mood's median tests suggest that for the six
possible population pairs the median ratios of the
members are different at confidence levels above
99%.

This provides further argument for the notion that
using Rg-to-Sg ratios one can not only discriminate
shallow from deeper events, but is able to
discriminate among different populations of shallow
events.

This finding is also consistent with the results
reported by Kolaj (2018), according to which low-
frequency Sg-to-Rg ratios successfully discriminate
low-magnitude shallow earthquakes and road
construction blasts recorded at distances less than
50 km in New Brunswick, Canada.
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Mood's median tests suggest that at
12 Hz the populations are all
statistically different. At 5 Hz, the
SMBs are different from the TEs, and
the MIEs from the TEs; but, there is a
-7% likelihood that the SMBs and
MIEs are the same.

The QDFs were tailored for each population pair. The optimum set of frequencies
for the Pg-to-Sg ratios were selected for each pair using a trial-and-error process,
and corresponds to the set associated with the lowest misclassification rate. The
optimum frequency sets were 1, 2, 10, 15 Hz; 1, 2, 6, 8 Hz; and 6, 8, 14, 15 Hz for
the pairs MIE/SMB, SMB/TE, and MIE/TE, respectively.

Difference in discriminant scores for each of the population pairs. The discriminant
scores were calculated by jointly exploiting Pg-to-Sg and Rg-to-Sg ratios in the
multivariate QDFs.
With an error rate (ER) of only 1.6%, the QDF performs best for the population pair
MIE/SMB, followed by the pair SMB/TE (ER = 6%). MIEs and TEs share some
characteristics, as reflected by the ER value of 14%. This is particularly the case
between the MIEs and shallow (depth 5 km), as implied by the fact that the ER
value drops to 4.5% if only deeper TEs are considered.
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Three-Category Classification Using the AR Method
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events classified correctly (true
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Comparison of the AR with the ML Method
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All three populations are considered simultaneously in the QDF approach.
• The optimum frequency set for Pg-to-Sg ratios is 1, 2, 7, and 8 Hz.
• On average about 85% of the events are classified correctly.
• The population of SMBs is associated with the lowest error rate (ER =

11.1%) followed by the MIEs (14.6%). The TE group exhibits the
highest error rate of any population (19.4%).

• The majority of the misclassified TEs are assigned to the MIE group.
Similarly, most of the misclassified MIEs are assigned to the TE
population. This is consistent with the outcome of the two-category
classification discussed above, which suggests that the two
populations have some properties in common, which make it difficult to
discriminate between them.
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3-category classification
using the ML approach.

Confusion matrix for the
ML method. The reported
values represent averages
from 10 prediction runs.
* Note that in this case only
120 TEs were investigated,
compared with 124 TEs for
the AR approach.

100

SIMB TE MIE MIE TE SMI3 TE MIE SIMB

100

95

90

85

• For each classification method
and each population, the
standard deviations estimated
from the 10 prediction runs are

95

80 indicated.
90

75 _ 27 • The high variability in
classification success rates 85 48

4- AR

ML
70

124(120) 219 (accuracy) for the SMB group is -0- ML 1016 6286
65 mainly the result of the limited 80

SMB TE MIE

,

MB TE MIE
number of events in that group. Using the ML approach, we were able to classify the entire

• For the SMB population the performance of the AR method is comparable with that of the ML UUEB dataset, including the abundant, extremely low-
approach within the margin of errors. magnitude events. In this case, the SMBs, WMBs, LMBs, and

• For the TE and MIE groups, however, the latter method outperforms the former by an average CQBs were grouped together to form a class called "mining
of about 14% in terms of success rate. blasr (MB). We achieved success rates of -97-99%.
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CONCLUSIONS
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AR Method ML Method
• Require only limited number of learning events for

each category

■ Fast computation
• Physical basis well understood (i.e., energy

partitioning between specific phases)

■ Achieve moderate accuracy (-80-90%)
■ Require high-quality data

• Achieve high accuracy 90%)
• Can classify extremely low-magnitude events

• Fast to apply the model once it has been built

• Require large dataset (100s-1000s) of labeled
training events for each category

• Computationally intensive to build the model
• Lack of insight into the physical basis

CI Using the same set of events that were well-recorded at local distances by the UUSS network, a traditional method of
event classification in which amplitude ratios are exploited in the QDFs is compared with a spectrogram-based
machine learning approach.

D With the AR method, we achieve classification success rates of about 80-90%.
D The ML approach uses convolutional neural network models to classify the populations, and achieves success rates of

90% and higher.
D The ML method is more robust to low SNR data, allowing it to classify extremely low-magnitude events.
D The complex algorithms involved in the ML method are able to expose and exploit characteristics that are specific to

each event population to the level that the traditional AR approach cannot, allowing ML to achieve higher accuracies
and classify significantly smaller events.

CI The lack of insight into the physical basis for ML classifications has traditionally been a major reason why people have
been reluctant to use ML methods. SNL intends to work on this problem.
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