
n

noinownon
onolonwolon,
onanonionocao
mm010113111001
01010010101001010 •-s.„,,
100011101010100

010101010

Physical Unclonable Functions for
Cryptographic Key Generation
Physics and Information Theoretic Considerations

Calvin Chan
Rachel Dondero

Jason Hamlet

Ryan Helinski

Mark Torgerson

Will Zortman

C 5 DEPARTMENT OF RIL MIC&VAR

ENERGY

Energy Et
Homeland
Security

Advanced
Science Et
Technology

National
Security
Programs

Nuclear
Deterrence

Global

Security

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, lnc., for the U.S. Department of Energys National Nuclear Security Administration under contract DE-NA0003525.

SAND2018-13455PE



Keys: The Entropy Problem

• Linux Random Number Generator (RNG): Failure in Entropy

• Servers, loT devices

• Insufficient diversity of devices and environments insufficient entropy

• Weak/common TLS/SSH keys, usually generated on first boot
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Keys: The Uniqueness Problem

■ Mirai Botnet: Failure in Identity and Key Management

■ Internet-of-Things (loT) devices, i.e., routers, webcams

■ 60+ common default usernames (identities) and passwords (keys)

■ 600,000 devices hijacked for Distributed Denial of Service (DDoS) attacks

Oct '16: Dyn DNS DDoS Attack
> 1 Tbps network traffic, widespread internet outage
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Keys: The Storage Problem
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■ Cold Boot Attack: Failure in Secure Key Storage

■ Dynamic Random Access Memory (DRAM)

■ Data retention extended from seconds to minutes by lowering temperature

■ Recovered AES, DES, and RSA keys stored in memory

A. Halderman, et al., "Cold Boot Attacks on Encryption Keys", USENIX (2009) 4



Physical Unconak)le Functions (PUFs)

• Semiconductor, a.k.a. Integrated Circuit PUFs
Proposed solution to key entropy / identity / storage problems
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• Identity: Capture these variations
using semiconductor devices to
form a digital fingerprint

• Storage: Keying material stored as intrinsic materials properties
Keys dynamically generated on the fly, never stored in memory

Bohm & Hofer, Physical Unclonable Functions in Theory and Practice, DOI: 10.1007/978-1-4614-5039-9, Springer (2013). 5



Key Generation with PUFs
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• Keys should be n-bits long depending on security requirements

• Keys should be independently, identically distributed (IID)

• Keys should remain the same throughout the duration of use

analog

algorithmic
postprocessing

(opfional; with or
without Dummy)
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(das random numbers)
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Koc (ed.), Cryptographic Engineering, DOI: 10.1007/978-0-387-71817-0, Springer-Verlag (2009). 6



Key Generation with PUFs
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• Keys should be n-bits long depending on security requirements

• Keys should be independently, identically distributed (IID)

• Keys should remain the same throughout the duration of use
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Koc (ed.), Cryptographic Engineering, DOI: 10.1007/978-0-387-71817-0, Springer-Verlag (2009). 7



Integrated Circuit PUFs
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• Metal-Oxide-Semiconductor (MOS) Transistor is the fundamental

readout device in IC PUFs
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• Metal-Oxide-Semiconductor (MOS) Transistor is the fundamental
readout device in IC PUFs
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Integrated Cii cuit PUFs
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• Metal-Oxide-Semiconductor (MOS) Transistor is the fundamental
readout device in IC PUFs
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• Metal-Oxide-Semiconductor (MOS) Transistor is the fundamental
readout device in IC PUFs
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Integrated Circuit PUFs
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• Metal-Oxide-Semiconductor (MOS) Transistor is the fundamental
readout device in IC PUFs
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Complex non-linear relationships define propagation delay
l's to 10's picosecond

Very difficult to predict a priori (theory/modeling)
Very difficult to measure a posteriori (empirically)

Tajik et al., CHES, LNCS 8731, pp. 493-509, (2014).



Delay Based PUF

• Ring Oscillator PUF

Based on RO TRNG

Compares frequency of 2 ROs

Challenge-Response Pairs

(CRPs):

• Arbiter PUF

Element pairwise paths (MUX)

Race between two nominally

identical paths

Challenge-Response Pairs

(CRPs):
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Bauer & Hamlet, "Physical Unclonable Functions: A Primer," IEEE Security & Privacy, Nov/Dec 2014. 13



State Based PUF

• Static Random Access Memory (SRAM) PUF
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State Based PUF

• Static Random Access Memory (SRAM) PUF
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State Based PUF

• Static Random Access Memory (SRAM) PUF
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Bohm & Hofer, Physical Unclonable Functions in Theory and Practice, DOI: 10.1007/978-1-4614-5039-9, Springer (2013). 16



Key Generation with PUFs
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• Keys should be n-bits long depending on security requirements

• Keys should be independently, identically distributed (IID)

• Keys should remain the same throughout the duration of use
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Koc (ed.), Cryptographic Engineering, DOI: 10.1007/978-0-387-71817-0, Springer-Verlag (2009). 17



Noise Sources

• Two fundamental sources of noise

• Quantum mechanics
Shot noise

Single photon detection

Electrons tunneling

Nuclear decay
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• Thermal mechanics
Johnson-Nyquist noise

Thermionic emission

Avalanche noise

Atmospheric noise
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Noise Sources
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• "Manufacturing variations" ARE NOT fundamental noise sources
Manufacturing processes may contain fundamental noise sources
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Quality of PUF N()ise Sources
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• Recall: Keys should be independently, identically distributed (IID)

FORAB
chip
(350 nm)

• Resistors: n/p-channel, M1-M4 vias,

poly-Si interconnects

Capacitors: integrating oscillators

Ring oscillators
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• Source of randomness is dependent on fab and Iot
Source of randomness is - Gaussian distributed
NOT IID

Helinski et al., HOST 2016. 20



Key Generation with PUFs
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• Keys should be n-bits long depending on security requirements

• Keys should be independently, identically distributed (IID)

• Keys should remain the same throughout the duration of use
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Koc (ed.), Cryptographic Engineering, DOI: 10.1007/978-0-387-71817-0, Springer-Verlag (2009). 21



Randomness Extractors

• OK if source is not IID, as long as it's a random variable (seed)
Randomness extractors transform value to IID

Recall: e.g., SRAM cell is a non-linear feedback circuit

TT
(7?

Q

J_

BL

• On power-up, satisfies conditions for an autonomous, chaotic circuit
1) 1+ non-linear elements
2) 1+ locally active resistors

3) 3+ energy storage elements
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Randomness Extractors

• OK if source is not IID, as long as it's a random variable (seed)
Randomness extractors transform value to IID

Chaotic Circuit: Chua's Circuit, a model chaotic circuit
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Matsumoto, "A Chaotic Attractor from Chua's Circuit", IEEE Trans. Circuits and Systems. 12, 1055-1058 (1984). 23



Randomness Extractors

• OK if source is not IID, as long as it's a random variable (seed)
Randomness extractors transform value to IID

Chaotic Circuit: SRAM as a chaotic circuit
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• Time-dependent output highly
sensitive to parameters
and starting conditions

Prone to operational noise
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Randomness Extractors

• OK if source is not IID, as long as it's a random variable (seed)
Randomness extractors transform value to IID

Algorithmic Extractors: Hash functions, AES S-box

SHA-256 (x64 Rounds)
A B C D E F G H

 \ rrk
 11--H—E1+-K
 -El -

ABCDEFGH 

Ch{E F G) — (E A F) HE A G)
Ma(A,B,C) = (A A B) e ( A A C) (B A C)
Lo (A) = (A 2) ED (A 13) ED (A 22)
EI (E) = (E>6) e (E >1.1) e (E>> 25)

Sandia
National
Lahoratories

00000000 00000000

00000000 00000000

00000000 00000000
00000000

00000000
1-bit change 

00000000

00000000

00000000 00000000

00000000 00000000

00000000 00000010

n
SHA-256

66687aad

F862bd77

6c8fcl8b

8e9f8e20

08971485

6ee233b3

902a591d

0d5f2925

129-bit
change
(-50%)

SHA-256

38dflclf

64a24a77

B23393bc

A50dff87

2e3ledc4

F3b5aa3b

90ad0b82

f4f089b6

• Hashes designed to amplify changes in input: Prone to operational noise



Fuzzy Extractors

• Randomness extractors sensitive to operational noise
Fuzzy extractors add some reliability back

Dodis Scheme m-bit
(Enrollment) codeword

n-bit
ke /seed

...0-16-

,
ECC
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........41P c1
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N C2m

randomness extractor /
key derivation function

e. 
V
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helper
data

m-bit PUF
Response Space
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Dodis et al., SIAM J. Computing 38(1), 97-139 (2008). 26



Fuzzy Extractors

• Randomness extractors sensitive to operational noise
Fuzzy extractors add some reliability back

Dodis Scheme
(Recovery)

n-bit
ke /seed

I'
ECC

Decode
k2n

m-bit
codeword

co
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H
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randomness extractor /
key derivation function
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hd
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m-bit PUF
Response Space
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• PUFs serve as a device-specific one-time pad, hiding sensitive information



Fuzzy Extractors

• Randomness extractors sensitive to operational noise
Fuzzy extractors add some reliability back

Dodis Scheme m-bit
(Enrollment) codeword

n-bit
key/seed

ko 1-1"1"..-1

k1 --,' ECC
, Encode/

Decode
N

S = n

co

..••••11111'c1

—1.

C2m

S = m?
or n ?

hd

helper
data

m-bit PUF
Response Space

S = ?

• Caution: Scheme only as secure as your least entropic element (PUF?)
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Summary
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• PUFs leverage manufacturing

variations in ICs as digital

fingerprints for keys or seeds.

• "PUFs are now a secure

alternative [for] secret keys...

(Wikipedia)
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• PUFs are likely stochastic and

chaotic, but exact sources and

distributions TBD.

( I

PUFs should be implemented

and used with extreme care.


