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Keys: The Entropy Problem ) B,

= Linux Random Number Generator (RNG): Failure in Entropy
= Servers, loT devices
= |nsufficient diversity of devices and environments = insufficient entropy
= Weak/common TLS/SSH keys, usually generated on first boot
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Keys: The Uniqueness Problem ) B,

= Mirai Botnet: Failure in Identity and Key Management
" |Internet-of-Things (loT) devices, i.e., routers, webcams
" 60+ common default usernames (identities) and passwords (keys)
= 600,000 devices hijacked for Distributed Denial of Service (DDoS) attacks
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Keys: The Storage Problem )

= Cold Boot Attack: Failure in Secure Key Storage
= Dynamic Random Access Memory (DRAM)

= Data retention extended from seconds to minutes by lowering temperature
= Recovered AES, DES, and RSA keys stored in memory

A. Halderman, et al., “Cold Boot Attacks on Encryption Keys”, USENIX (2009)



Physical Unconable Functions (PUFs)
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= Semiconductor, a.k.a. Integrated Circuit PUFs
Proposed solution to key entropy / identity / storage problems

= Entropy: Manufacturing variations
in semiconductor materials, e.g.,
doping, oxide thickness, roughness
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= |dentity: Capture these variations
using semiconductor devices to
form a digital fingerprint
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= Storage: Keying material stored as intrinsic materials properties

Keys dynamically generated on the fly, never stored in memory
Bohm & Hofer, Physical Unclonable Functions in Theory and Practice, DOI: 10.1007/978-1-4614-5039-9, Springer (2013).



Key Generation with PUFs ) B

= Keys should be n-bits long depending on security requirements
= Keys should be independently, identically distributed (I1D)
= Keys should remain the same throughout the duration of use

analog I digital external interface
: !
: s
noise | algorithmic | |
source E postprocessing buffer S
i (optional) |
: (optional; with or
| without memory)
digitalised internal r.n. external .o,
analog signal
(das random numbers)

Koc (ed.), Cryptographic Engineering, DOI: 10.1007/978-0-387-71817-0, Springer-Verlag (2009).
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= Keys should be n-bits long depending on security requirements
= Keys should be independently, identically distributed (I1D)
= Keys should remain the same throughout the duration of use
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Integrated Circuit PUFs )

= Metal-Oxide-Semiconductor (MOS) Transistor is the fundamental
readout device in IC PUFs
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Integrated Circuit PUFs ) i

= Metal-Oxide-Semiconductor (MOS) Transistor is the fundamental
readout device in IC PUFs
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Integrated Circuit PUFs
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= Metal-Oxide-Semiconductor (MOS) Transistor is the fundamental

readout device in IC PUFs
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Integrated Circuit PUFs
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= Metal-Oxide-Semiconductor (MOS) Transistor is the fundamental
readout device in IC PUFs
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Sedra & Smith, Microelectronic Circuits, 6" Ed., Oxford (2009).
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Integrated Circuit PUFs )

= Metal-Oxide-Semiconductor (MOS) Transistor is the fundamental
readout device in IC PUFs
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Complex non-linear relationships define propagation delay
~ 1’s to 10’s picosecond

Very difficult to predict a priori (theory/modeling)

Very difficult to measure a posteriori (empirically)
Tajik et al., CHES, LNCS 8731, pp. 493-509, (2014). 12



Delay Based PUF

= Ring Oscillator PUF

Based on RO TRNG
Compares frequency of 2 ROs
Challenge-Response Pairs

(CRPs):
(2)

= Arbiter PUF

Element pairwise paths (MUX)

Race between two nominally
identical paths

Challenge-Response Pairs
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Bauer & Hamlet, “Physical Unclonable Functions: A Primer,” IEEE Security & Privacy, Nov/Dec 2014.
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State Based PUF

= Static Random Access Memory (SRAM) PUF
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State Based PUF

= Static Random Access Memory (SRAM) PUF
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State Based PUF
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= Static Random Access Memory (SRAM) PUF
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Cross-coupled inverters
Imbalanced transient determines
power-on state of cells
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Bohm & Hofer, Physical Unclonable Functions in Theory and Practice, DOI: 10.1007/978-1-4614-5039-9, Springer (2013).
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Key Generation with PUFs
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= Keys should be n-bits long depending on security requirements

= Keys should be independently, identically distributed (I1D)

= Keys should remain the same throughout the duration of use

analog ! digital external interface
b | !
| = E
noise | 1 algorithmic | |
soUurce :I postprocessing buffer S
’ i (optional) i
: (optional; with or
I without memory)
digitalised internal r.n. external .o,
analog signal
(das random numbers)

Koc (ed.), Cryptographic Engineering, DOI: 10.1007/978-0-387-71817-0, Springer-Verlag (2009).
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Noise Sources

= Two fundamental sources of noise

= Quantum mechanics
Shot noise
Single photon detection

Electrons tunneling
Nuclear decay
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= Thermal mechanics
Johnson-Nyquist noise

Thermionic emission
Avalanche noise
Atmospheric noise

p(z,t) = e 4Dt
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Noise Sources ) e

= “Manufacturing variations” ARE NOT fundamental noise sources
Manufacturing processes may contain fundamental noise sources
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Hofker et al., Radiation Effects 24, 223-231 (1975). | Bohm & Hofer (2013).



Quality of PUF Noise Sources ) .

= Recall: Keys should be independently, identically distributed (lID)

FORAB
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= Resistors: n/p-channel, M1-M4 vias,
poly-Si interconnects
Capacitors: integrating oscillators | | | r | r w
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Ring oscillators
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= Source of randomness is dependent on fab and lot
Source of randomness is ~ Gaussian distributed
NOT IID

Helinski et al., HOST 2016.
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Key Generation with PUFs
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= Keys should be n-bits long depending on security requirements

= Keys should be independently, identically distributed (I1D)

= Keys should remain the same throughout the duration of use

analog | digital external interface
.l !
| s
noise | ;
. -!—- ——= | buffer —'—-
| (optional) ;
: (optional; with or
| without memory)
digitalised internal r.n. external .o,
analog signal
(das random numbers)

Koc (ed.), Cryptographic Engineering, DOI: 10.1007/978-0-387-71817-0, Springer-Verlag (2009).
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Randomness Extractors h

= OKifsourceis notlID, as long as it’s a random variable (seed)
Randomness extractors transform value to IID
Recall: e.g., SRAM cell is a non-linear feedback circuit
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= On power-up, satisfies conditions for an autonomous, chaotic circuit
1) 1+ non-linear elements
2) 1+ locally active resistors
3) 3+ energy storage elements

Sandia
National
Laboratories

22



Sandia

Randomness Extractors ) feos,

= OK if source is not IID, as long as it’s a random variable (seed)
Randomness extractors transform value to 11D
Chaotic Circuit: Chua’s Circuit, a model chaotic circuit

() -
Z(f) £ ==C, ==C |\f1[x(t)]
‘l‘ 2 ‘l‘ 1 R
d
Rogd—i’ —z—y+ Rz,
dz
P —py. .

Matsumoto, "A Chaotic Attractor from Chua's Circuit”, IEEE Trans. Circuits and Systems. 12, 1055-1058 (1984). 23



Randomness Extractors ) 5
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= OK if source is not IID, as long as it’s a random variable (seed)
Randomness extractors transform value to 11D
Chaotic Circuit: SRAM as a chaotic circuit

— VDD —
vl dH AR L
T L . 4 ﬁ ]
L 6. . Q
A=
BL M, M; BL
—s J_ +—

= Time-dependent output highly
sensitive to parameters
and starting conditions
Prone to operational noise
Clark et al., IEEE Trans. VLSI Systems 26, 2027-2037 (2018).
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Randomness Extractors

= OKifsourceis notlID, as long as it’s a random variable (seed)

Randomness extractors transform value to 11D

Algorithmic Extractors: Hash functions, AES S-box
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SHA-256 (x64 Rounds) 00000000 00000000
00000000 00000000
|A[B[C[D|E|F |G [H | 00000000 & X 00000000
00000000 : 00000000
\ 00000000 1-bit change gepe0000
_,.—’ 00000000 00000000
00000000 00000000
g gt 00000000 00000010

H i 0
- *.—'Eﬂ SHA-256 SHA-256

-l = S
66687aad - 38dficlf
F862bd77 1ﬁ9 bit 64a24a77
6c8fc18b change B23393bc
|A | = | C | D | E | Fk |G |H | 8e918e20 (""50%) A50dff87
Ch(E,F,G)=(EANF)® (-ENG) 08971485 2e3ledc4
Ma(4, B,C) = (AAB) @ (AAC) @ (BAC) 6ee233b3  T~—— F3bSaasb
To(A) = (A352) @ (A3>13) @ (45> 22) 982a591d 90adebs2
0d5£2925 £4£089b6

¥, (E) = (E3>6) @ (E>>11) ® (E>>25)

= Hashes designed to amplify changes in input: Prone to operational noise

25



Fuzzy Extractors
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= Randomness extractors sensitive to operational noise

Fuzzy extractors add some reliability back

Dodis Scheme m-bit
(Enrollment) codeword
C
n-bit 0 |

m-bit PUF
Response Space

\ \ sz
randomness extractor /
key derivation function

Dodis et al., SIAM J. Computing 38(1), 97—139 (2008).

helper
data

26



Fuzzy Extractors ) i,

= Randomness extractors sensitive to operational noise
Fuzzy extractors add some reliability back

m-bit PUF
Dodis Scheme m-bit Response Space
(Recovery) codeword
: Co
n-bit ¢ =r/+h

Cq
=c+d

hy

| Cgm helper
randomness extractor /
key derivation function

= PUFs serve as a device-specific one-time pad, hiding sensitive information
7



Fuzzy Extractors
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Randomness extractors sensitive to operational noise

Fuzzy extractors add some reliability back

Dodis Scheme

(Enrollment)

n-bit
key/seed

/ I 1\

S=n

m-bit PUF
Response Space

m-bit
codeword
Co
—» C4
Encode/ ..
Decode —
\ sz
S =m?
orn?

A
"

helper
data

S=7?

= Caution: Scheme only as secure as your least entropic element (PUF?)

28



Summary ) S,

= PUFs leverage manufacturing of AN Ry V"'l
variations in ICs as digital e RS 2
fingerprints for keys or seeds.

y (

alternative [for] secret keys...”
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PUFs are now a secure 70 35
 (stochastic, intrinsio). -+ 5
(WikiDEdia) OOL._;;(; : .2.(; .310-.' 40 .'50' 60 0 - '80 ".

= PUFs are likely stochastic and
chaotic, but exact sources and
distributions TBD.

\&JJ}= PUFs should be implemented

and used with extreme care.
29



