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• One-third of the global coastline consists of Arctic permafrost coasts.
• The U.S. and Canadian coastlines exhibit the highest erosion rates in the Arctic and are

among the highest rates in the world.
• Rates of coastal erosion are increasing: 1955-1979 - 6.8 m/yr; 1979-2002 - 8.7 m/yr;

2002-2007 - 13.6 m/yr; 2007-2016 - 17.2 m/yr [Jones et al. 2009, Jones at al. 2018].
• Block failure erosion is most common along Alaskan Arctic coastline.
• Rapid Arctic coastal erosion stands to adversely impact native, scientific, industrial, and

military communities in Alaska.
• Sandia National Laboratories (SNL), the U.S. DOE, and the U.S. DOD operate research and

defense sites along rapidly degrading coastline (Utqiagvik, Atqasuk, Oliktok Point).
• SNL has recently funded a project to develop a predictive coupled model for Arctic

coastal erosion, focusing on Drew Point.

Block failure along Alaskan Arctic coastline (Drew Point).
Images: Ben Jones, University of Alaska, Fairbanks
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Arctic Coastal Erosion Model: Component Coupling

• solarflux
• evaporative flux  

• \m'Inii 
spectia0C,t)

• 
sea:ice 

concenti-ati•or.1„x,t)

• cu.r 
cents

Oba% 
sez-levei Oise

• 

iratTio lkx,t)-1-E,„„suriac_eit)
• 

atm° (Xit)

To„arburfacert).

• currents
• 3-d wave spectra

• Orbital velocities
• Radiation shear stresses

• Turbulent Dissipation
• global sea-level rise

• BathymetiN
(depth, roughness)

• Salinity

*theoretical gaps exist in the
incorporation of sea-ice

• 2-d wave  height(x,t)

ce a n (X.rt)

• eroded sediment
volume/mass(x„t)

• Salinity

• Water level variations
(tide)

• bathymetry(depth)

• seabed sediment grain
size and strength

• (x t)

• Ta:mo (X,t)

height(x,t)
• Saiinity(x,t)

• bluff
geometry(x,t)

• coastline(x1t)

• Water Quality(x,t)

• Sediment transport(x,t)

Location Specific Data

• Thluff (X,t)I

• porosity

• ice content
• bulk density

• sediment type

porosity

• sediment type
• geothermal heat tiux

15 

10, comparison of wind forcing
cit
E 5

2 0

Oceanographic Model

f.,46̀• 4404441 • %,4i, P P" k.k h A f

-ASR (40 pts)
-14ARR (14 pts)

-1 A1").0•Iff r. ' 11744 \ "k\ AlV)14, J V' 1. 4 '.P. '‘-rA4 \ll' 4140111411" Ail

01-Jul-2011 05-Jul-2011 11-Jul-2011 16-Jul-2011 21-Jul-2011 26-Jul-2011 31-Jul-2011

Multiple atmospheric reanalysis datasets were used to supply the wind

forcing and sea ice extent for the WW3 model. These reanalysis data sets

included the Arctic System Reanalysis v2 (ASR) and the North American

Regional Reanalysis (NARR). Using multiple atmospheric forcing datasets

provided a range of hindcast predictions and helps describe the

uncertainty in model simulations.

SWAN model bathymetry and DFlow-FM model extend is shown below.

o

* ASR Points
• Narr Points
-Circulation Model Extents

Arctic WAVEWATCH III ® model bathymetry.

200 40D 600
Water Depth (m)

• The initial step for the modeling system evaluation was

simulating waves in the largest domain, the WW3

model. All of 2011 was simulated using 3-hourly ASR

winds and sea ice and blended NARR/ASR winds and ASR

sea ice. The WW3 model data were compared to a single

measured data location, a Nortek AWAC acoustic

Doppler current profiler deployed at Barter Island during

the summer and fall of 2011.

• This comparison provided an initial assessment of the

variation in wave results using different atmospheric

reanalysis datasets. The ASR wind forcing is shown to

cause over predictions of wave heights at the selected

location while NARR forcing resulted in better

agreement to the measure wave heights. Both reanalysis

datasets predicted the peak period well.

• The formulation of high temporal fidelity predictions of

hydrodynamic and wave parameters along the Alaskan coast
necessitates the application of site specific numerical models.

• These models incorporate atmospheric and hydrodynamic factors
such as sea ice coverages, winds, and regional water levels to
determine relevant parameters such as water levels and wave
heights in a region of interest.

• We use a three-model system to simulate conditions around Drew
Point on the North Slope of Alaska:

• Two spectral wave models, WAVEWATCH III® (WW3) and
Simulating Waves Nearshore (SWAN), provide wave field
information at varying spatial and temporal resolutions in the
region of interest.
• DFlow-FM is a hydrodynamic model used to simulate
nearshore circulation including water level variations,
currents, and temperature in the region of interest.
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Thermo-Chemo-Mechanical Model
• The Arctic Coastal Erosion (ACE) model is being developed in

ALBANY (https://github.com/gahansen/Albany).
• ALBANY is an open-source, multi-physics research platform

developed mainly at Sandia National Laboratories.
• ALBANY is written in object-oriented C++, is parallel, can handle

unstructured grids, and uses the implicit finite element method for
solving general partial differential equations.

• The grid is meshed by CUBIT (https://cubit.sandia.gov).
• Advances in the ACE model include calculations of:

• unsteady 3D stress/strain according to classical solid mechanics
formulations (e.g. no empirical relationships or pre-defined
stress planes)

• unsteady 3D permafrost temperature, ice content, and unfrozen
water content, that includes effects of salts

• thermal properties that depend on permafrost state
• mechanical strength properties that depend on permafrost state
• material evolution which tightly couples permafrost strength and
temperature

Governing Equations For Mechanics Problem
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surface
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gradient We use a simple J2 deformation theory of plasticity (equivalent to
non-linear elasticity). It is not yet permafrost-specific!
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This figure shows how the maximum
tensile stress varies with niche geometry.

To create this plot, niche depth and height

were systematically varied and the
maximum tensile stress was calculated.
Tensile stress depends more strongly on
niche depth. These simulations are based
on simple J2 deformation theory, and do
not yet include permafrost-specific

0
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This figure shows a snapshot of
permafrost temperature and
ice/water saturation after heat
was applied to the top of the
initially frozen domain.

Drew Point April 2018 Permafrost Coring The Coring Team:
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Fig. 10. Borehole DP-2'-2. silt with ret culate cryostructure. 30-55 cm.

PM 1 - Primary Surface - bluff height 6.8 m
• Deep Core: 7.4 m
• Short Core 1: 4.0m
• Short Core2: 1.3m
• Cryopeg from 6.5 to >7.4m bgs

• Cryopeg at 0.3 m asl to >0.6 m bsl

DP1- Ancient Drained Lake Basin- bluff height 5.2 m
• Deep Core: 7.5 m
• Short Core 1: 3.3 m
• Cryopeg from5.1 to >7.5m bgs

• Cryopeg at 0.1m asl to > 2.3 bsl

DP 2 - Young Drained Lake Basin- bluff height4.0m
• Deep Core: 4.6rn
• Short Core:3.0m
• Cryopea from4.1m to >4.6m bus

• Cryopeg at0.1m bsl to >0.6m bsl

Total core length retrieved- -31 m

Fig. 5. Borehole PM-1-1. subvertical silt/peat structure: almost no visible ice in peat. extremely
ice-rich silt with ataxitic cryostnicture. 180-200 cm.
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Fig. 9. Borehole DP-1-1. unfrozen silty clay. 650-670 cm.

In April, a small team braved
the frozen tundra to take
several core samples of the
permafrost at Drew Point.
The team discovered a
cryopeg while coring which is

located at and below today's
sea level. Does the cryopeg
contribute to Drew Pt's

elevated erosion rates?

Drew Point July 2018 Field Campaign
Sub-Weekly Scale Bluff Change Observations

24 July

The

Drew Point Measurement Summary

it'6' 8 x 3 water samples (nuts, TSS, del018)

116*N 8 CTD casts (LISST, PAR, OBS, chl. A)

eri: 8 bottom grabs (grain size)

4°\ Multibeam bathymetric mapping

t6'd 1 year-round mooring
vADCP: Directional wave spectra, water velocity

CTD: water level, sal., temp.

oceanographic data collected (water

samples, conductivity, temperature, density,

bottom grabs for grain size, bathymetry, and
mooring data) will aid the oceanographic model
validation.

UAV surveys can tell us how the coast changes between surveys. It
can also help characterize tundra morphology, such as polygon size
and spacing.

In late July and early August 2018, another small team lead
by Ben Jones went back to Drew Point to collect field data

on land and sea. The summary of observations and
measurements made are shown below:

Surnmary of Terrestrial Observations in 2018 Season

a rshore Water Level Sensor

RBR Wave Sensor

Drew Point WX Station

Deep Borehole

Horizontal Thermistor

DGPS Data

Bathymetry/Geophysics

UAV Survey 1

UAV Survey 2

UAV Survey 3

UAV Survey 4

L'AV Survey 5

Time Lapse Cameras

7/1 7/11 7/21 7/31 8/10 8/20 8/30 9/9 9/19

Coastal Archetypes for Statistics
• How can we take our understanding of
event-based erosion modeling, and apply
it to better understand erosion along
entire stretches of coastline?

• We are exploring the idea of "permafrost
archetypes," which is the classification of
regions with self-similar permafrost
morphology (e.g., sediment type, bluff
geometry, formation history, etc.).

• We will test the hypothesis that
permafrost archetypes erode similarly,
given same conditions.

• If this hypothesis is
true, we can apply
predictions made
with event-based
modeling to regional
scales, for hazard
and infrastructure
risk analysis.
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