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Introduction Oceanographic Model + The formulation of high temporal fidelity predictions of Drew Point April 2018 Permafrost Coring

The Coring Team:

‘ | * DFlow-FM is a hydrodynamic model used to simulate
T N nearshore circulation including water level variations,
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Multiple atmospheric reanalysis datasets were used to supply the wind
forcing and sea ice extent for the WW3 model. These reanalysis data sets
included the Arctic System Reanalysis v2 (ASR) and the North American

In April, a small team braved
the frozen tundra to take
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Regional Reanalysis (NARR). Using multiple atmospheric forcing datasets Arctic WAVEWATCH Ill ® model bathymetry. . several core samples of the

, . provided a range of hindcast predictions and helps describe the [ . | Tr— — | — rmafr Drew Point.

70°N NATIONAL PETROLEUM RESERVE ALASKA ity mulat - = _ Ase e WHENARH permatrost at Drew Foint
uncertainty In model simulations. 0 200 400 600 800 1000 = The team dISCOVEI’ed 3

: P g SWAN model bathymetry and DFlow-FM model extend is shown below. Water Depth (m) & 15 ) ] ] )
s wmﬁfﬁﬁs o . o cryopeg while coring which is
: T ciea —— . : : .
" TR, | e e o e odeng e sl v 400 ocated at and below today’
—Circulation Model Extents Imu I wav ' In, © \ ‘, : | | , —
:  One-third of the slobal caastling consiats of Arekic parmatrost coasts model. All of 2011 was simulated using 3-hourly ASR = 05 e SRR — M ) g W ey 52 1€vel. Does the cryopeg
— . . . R IV AN IO T o v v O F = -— Cd Lt it 7 ] | 652/ = ) 7 = L : - : . Y
8 P y winds and sea ice and blended NARR/ASR winds and ASR @ MZW /‘,;/,,/{ /3,;7,9/ /4}%’ z f’ﬂ?‘l s ;LT g ?a;{‘?’g\ @\“ﬁ(‘;% ?3\{'“\@% ettt b e iSRS SN  contribute to Drew Pt’s
T

« The U.S. and Canadian coastlines exhibit the highest erosion rates in the Arctic and are
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e Sandia National Laboratories (SNL), the U.S. DOE, and the U.S. DOD operate research and
defense sites along rapidly degrading coastline (Utqiagvik, Atgasuk, Oliktok Point).

 SNL has recently funded a project to develop a predictive coupled model for Arctic ThermO-ChemO-MeChan|Ca| MOdel 4 ——
coastal erosion, focusing on Drew Point. e ., e e

e The Arctic Coastal Erosion (ACE) model is being developed in | e = a /A
ALBANY (https://github.com/gahansen/Albany).

e ALBANY is an open-source, multi-physics research platform
developed mainly at Sandia National Laboratories.

 ALBANY is written in object-oriented C++, is parallel, can handle
unstructured grids, and uses the implicit finite element method for
solving general partial differential equations.

UAV surveys can tell us how the coast changes between surveys. It
can also help characterize tundra morphology, such as polygon size
and spacing.

Block failure along Alaskan Arctic coastline (Drew Point).
Images: Ben Jones, University of Alaska, Fairbanks

In late July and early August 2018, another small team lead
by Ben Jones went back to Drew Point to collect field data
on land and sea. The summary of observations and
measurements made are shown below:

Summary of Terrestrial Observations in 2018 Season

Drew Point Measurement Summary
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