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Summary

* The instrument response function (IRF) and average neutron
sensitivity have been determined for the same detector using EJ228
and EJ232Q-1% scintillators and quartz over a broad dynamic range
using an average of single-event DT neutron interactions.

* The response characteristics of each material (pulse shape, width,
amplitude, area) agree with the expected values.

* A path forward to convert single-event IRFs to current integrated has
been developed
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nToF detectors can be characterized using the neutron
calibration chamber (NUCAL) at the lon Beam Laboratory (IBL).

NUCAL target chamber, shown with a dual
PMT nToF under study

lon beam generated using a 350 keV Cockroft-Walton HVEE accelerator

 Magnetically analyzed beam
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Particle coincidence is derived from the reaction kinematics
and used to infer the detector response to single DT neutron
interactions and the counting efficiency.
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The IRF is an average of the leading-edge normalized data (10%
of the max) , which can be described using an exponentially
m Od Ifl ed G a u SSIa n fu n CtIO n . T. J. Murphy et al., Rev. Sci. Instr. 68, 610 (1997)

J. D. Styron et al., Rev. Sci. Instr., 89 (2018).
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Detector materials are chosen based on inherent properties
such as timing characteristics or neutron sensitivity.
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Qualitative comparison (at three different bias settings) of the
three active detection materials exposed to DT neutrons
exhibit the expected trends.

 The Quartz IRF is much faster than either scintillator since there is no time required to

populate electronic states.

* The quenching agent in the EJ232Q-1% scintillator provides a ~1-2ns improvement over

the EJ228 scintillator

* Eljen quotes a FWHM and decay time of 1.2ns and 1.4ns for the EJ228 and 290ps and 700ps for

EJ232Q-1%, respectively.
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Quantitatively the IRF-FWHM parameter can
be compared for each material.

* The FWHM of the measured IRF using
different material is consistent with the

FWHM (ns)
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HHHH & o2z | expected value
%8 HH HH . * The slope of each data set is consistent
"Oog | regardless of the detection media or
nniuumnn Photek data source.

* The Quartz data is comparable to the
PMT response
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anomalous single-events in the data
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Quantitatively the amplitude and extracted
charge agree with the expected values.

* For the same particle type the EJ232Q-1% produces a factor of 6 less light than the
EJ228

* The integrated charge for the Quartz with a DT source is comparable to EJ228 with
a DD source (light output correlation from Verbinski et al and Stanton et al.)
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The fit parameters from the IRF function reflect
the expected behavior in the measured values.

e The Gaussian FWHM from the IRF fit is consistent between data sets.

e This implies that the Gaussian FWHM is solely due to the PMT response and not the detection
media.

* The Tau parameter (scintillator decay) varies based on the detection media.
* Given the previous statement this implies that the IRF broadening is from the scintillator
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Eff. (cts/inc-n)

The calculated efficiencies provide a path forward to convert
single-event response to current integrated.

* For the scintillator materials the counting

Efficiencies shown for the Photek-PMT-240 .
. | | efficiency can be used to convert the
? sensitivity (pC/n) from single-event to
current integrated
) d 9 o _  Differential cross-sections and light-output
10 O O (m) E ; ; g
o ] relationships are well known quantities for H-C
o ° / : scintillators
Change in disc. Setting 1 . .
- changes the slope | * Converting the quartz data from single-
—_—l event to current integrated will require
o - o E2329| much more effort.
[m] O Quartz | 1 . .
» . . . . * Physics are more complex with n-gamma,
1026 3.8 A 4.2 1.4 L5 gamma-electron interactions.
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These parameters can be converted from single-event to
current integrated by using the measured and expected values

for Q and the efficiency.

Conversion from single-event to Average expected light-output Average measured light-output
integrated average sensitivity
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Hypothetical curves generated using n-p differential scattering cross-sections for an expected neutron flux. Assumes all protons are measured individually 14
(Not exactly correct, for demonstration purposes only)



Summary

* The instrument response function (IRF) and average neutron
sensitivity have been determined for the same detector using EJ228
and EJ232Q-1% scintillators and quartz over a broad dynamic range
using an average of single-event DT neutron interactions.

* The response characteristics of each material (pulse shape, width,
amplitude, area) agree with the expected values.

* A path forward to convert single-event IRFs to current integrated has
been developed
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IRF measurements were made with the NTF22D-Hamamatsu
mod-5 detector fitted with EJ228, EJ232Q(1%) scintillators, and

quartz.

EJ228 EJ232Q-1% Quartz
400 T 25 T T . 25 T
350 ——1.7kV
——1.8kV
306 1.9 kv 4 <0
——2.0kV
S 2 S S
~———2.1kV 15 F 15}
E 250 —22kV E g
< ——2.3KkV & =
S200f O\ e 24xv|{ S 10} S10f
= = =
B 150 = =
: £ 5 g5
100
0 0
50F
0 . - P — -5 . : . . . -5 . . . L .
- 0 5 10 15 20 25 - 0 5 10 15 20 25 -5 0 5 10 15 20 25
Time (ns) Time (ns) Time (ns)



Amplitude (mV)

IRF measurements were made with the NTF22D-Hamamatsu
mod-5 detector fitted with EJ228, EJ232Q(1%) scintillators, and

quartz.
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Amplitude (mV)

Comparison of three active detection materials for
DT neutrons using NTF22D-Photek PMT240.
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Counts were taken with NTF22D-Hamamatsu mod-5 in
various configurations to determine the origin of events.
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Counts for the various configurations
shown on the previous slide. Counts with

the quartz were repeated.

Quartz ri| ]

Discriminator (mV)

¢
- ® Quartzr2| 1
® L.G.only | ]
® . é PMT only
a - & EJ232
®
[ [ ]
®
) ®
® @ ®
o ®
®s ® §
® 9 -]
°
° 2
0 50 100 150

200

* The count rates observed with the
EJ232Q-1% scintillator are an order of
magnitude greater than the quartz
over a substantial range of pulse
heights

* The count rates observed with the
light-guide and PMT only geometries
are of the same magnitude as the
count rates observed with the quartz
in place
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The number of events per incident neutron for each
component can be determined by process of elimination.
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Signal fraction

A better comparison is to show the fraction of the total counts
by each component as a function of discriminator.

* The PMT contribution dominates a large fraction of the signals measured with the quartz
configuration
* Shielding the PMT and light guide are absolutely essential to ensuring a neutron measurement

ected trend. The scintillator signal dominates
Fand the PMT dominates the higher amplitude

* The EJ232Q-1% configuration shows an ex
the lower amplitude regime (i.e. neutrons

regime (i.e. photons)
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Counts and net counts for the Photek-

PMT240 at -4.0 kV
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C

Signal fraction

C

he fraction of the signal from each component as
etermined from the previous efficiencies for a

uartz crystal and EJ232Q.
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Counts were also taken directly from the PMT (split
signal to o-scope and constant fraction discriminator)

Photek at -4.0 kV
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nToF characterization at the IBL includes extracting, from the same
measurement, the instrument response function, the average
neutron sensitivity and counting efficiency.

Full Signal width (FWHM, ns)
| Gaussian width (HWHM, ns)
Coincidence ‘ Tau, decay constant (ns)
110° e —— Amplitude (mV)
detector Sensitivity (Peak area, pC)

Counting efficiencies
Counter Neutron yield

110° a Coincidence monitoring
detector
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Particle coincidence is derived from
relativistic two body kinematics.
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Uncertainty in each data point is derived from the bit-noise
distribution prior to the leading edge of the waveform.

Bit noise is defined by 11 discrete values that are normally distributed.
1E6 bins used for distribution; only 11 bins had counts > 0.
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*1000 waveforms taken with NTF22D Hamamatsu mod-5 (-2.0kV), EJ228 scintillator and D-T neutrons
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The uncertainty in each data point is propagated
throughout the normalization process

Uncertainty in each data point

Oy = Onoise

Baseline correction
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