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Summary

• The instrument response function (IRF) and average neutron
sensitivity have been determined for the same detector using EJ228
and EJ232Q-1% scintillators and quartz over a broad dynamic range
using an average of single-event DT neutron interactions.

• The response characteristics of each material (pulse shape, width,
amplitude, area) agree with the expected values.

• A path forward to convert single-event IRFs to current integrated has
been developed
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• Experimental geometry at the IBL

• IRF analysis procedure

• Comparison of scintillation materials (EJ228,EJ232Q-1%) and Quartz
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nToF detectors can be characterized using the neutron
calibration chamber (NUCAL) at the lon Beam Laboratory (IBL).

NUCAL target charnber, shown with a dual
PMT nToF under study

• lon beam generated using a 350 keV Cockroft-Walton HVEE accelerator
• Magnetically analyzed beam
• Electrostatic focusing
• Electromagnetic steering
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Particle coincidence is derived from the reaction kinematics
and used to infer the detector response to single DT neutron
interactions and the counting efficiency.

1" active area, Attransit 460 ps

14.0 — 14.5 MeV neutrons
Atflight = 160 ps at 43-cm

175-keV D± ion beam

3.23 — 3.56 MeV alphas
Atflitht = 1.1 ns at 30.5 cm
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The IRF is an average of the leading-edge normalized data (10%
of the max) , which can be described using an exponentially
modified Gaussian function.
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T. J. Murphy et al., Rev. Sci. Instr. 68, 610 (1997)

J. D. Styron et al., Rev. Sci. Instr., 89 (2018).
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Detector materials are chosen based on inherent properties
such as timing characteristics or neutron sensitivity.

Plastic Scintillator (1.1 H
• Primary reactions

• H(n, el)H or C(n, el)C

• dE/dx conversion to electronic states (prompt
and delayed)

• Isotropic visible light produced
• 340 - 440 nm

• Light output vs. proton energy
• MeV „ = —10.68(1 — e-O.07E1189l) + 0.929E

• meveMeve 3.01, Mevele.25mev = 0.29

• Two types of scintillators used at SNL
• EJ228

• LEJ228 
10200yf
 , At = 1.2 ns,-1- = 1.4 ns
Mevee

• EJ232Q-1%
• r EJ232 1700yf s =

t 290 ps,-r = 700 ps
Melfee

C ratio) Quartz (Si02)
• Primary reactions

• n, n' or n, y

• Cherenkov light produced by Compton scattered electrons
in the quartz

• Light cone produced along e- velocity vector

1
cos(0) =

n
• Electron energy threshold (n = 1.55, p = 2.65 g/cc)

• Tth = 0.511 (inn2_1 1) = 161 keV

• Cherenkov photons produced per unit wavelength per
path length

d2N _27ra (1  1 1

• dxdil fl2n(A2)) A2

• — 400 Cherenkov photons per 1-MeV electron in 300 - 600
nm range

• At = 6(t),T = 0 ns

B.D Sowerby, Nucl. Instr. Meth., 97, (1971).

J.B. Birks, The Theory and Practice of Scintillation Counting, Oxford: Pergamon Press, 1964.

Noel R. Stanton, "A Monte Carlo program for calculating neutron detection efficiencies in plastic scintillator," 1971.

Eljen Technologies, "Plastic Scintilators," 2016. [Online]. Available: http://www.eljentechnology.com/products/plastic-scintillators. 8
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Qualitative comparison (at three different bias settings) of the
three active detection materials exposed to DT neutrons
exhibit the expected trends.

• The Quartz IRF is much faster than either scintillator since there is no time required to
populate electronic states.

• The quenching agent in the EJ232Q-1% scintillator provides a —1-2ns improvement over
the EJ228 scintillator
• Eljen quotes a FWHM and decay time of 1.2ns and 1.4ns for the EJ228 and 290ps and 700ps for

EJ2320-1%, respectively. 
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Quantitatively the IRF-FWHM parameter can
be compared for each material.
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• The FWHM of the measured IRF using
different material is consistent with the
expected value

• The slope of each data set is consistent
regardless of the detection media or
source.

• The Quartz data is comparable to the
PMT response

Systematic differences need to be
resolved in the analysis of the data due to
anomalous single-events in the data



Quantitatively the amplitude and extracted
charge agree with the expected values.
• For the same particle type the EJ232Q-1% produces a factor of 6 less light than the
EJ228

• The integrated charge for the Quartz with a DT source is comparable to EJ228 with
a DD source (light output correlation from Verbinski et al and Stanton et al.)

Since we have a better understanding of scintillator this may help with scaling when fielded on
Z
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The fit parameters from the IRF function reflect
the expected behavior in the measured values.
• The Gaussian FWHM from the IRF fit is consistent between data sets.

• This implies that the Gaussian FWHM is solely due to the PMT response and not the detection
media.

• The Tau parameter (scintillator decay) varies based on the detection media.
• Given the previous statement this implies that the IRF broadening is from the scintillator
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The calculated efficiencies provide a path forward to convert
single-event response to current integrated.

Efficiencies shown for the Photek-PMT-240

10-1

10
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3.6 3.8

Change in disc. Setting

changes the slope

4 4.2

Bias (-kV)

4.4 4.6

• For the scintillator materials the counting
efficiency can be used to convert the
sensitivity (pC/n) from single-event to
current integrated
• Differential cross-sections and light-output

relationships are well known quantities for H-C
scintillators

• Converting the quartz data from single-
event to current integrated will require
much more effort.
• Physics are more complex with n-gamma,
gamma-electron interactions.



These parameters can be converted from single-event to
current integrated by using the measured and expected values
for Q and the efficiency.
Conversion frorn single-event to
integrated average sensitivity
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Summary

• The instrument response function (IRF) and average neutron
sensitivity have been determined for the same detector using EJ228
and EJ232Q-1% scintillators and quartz over a broad dynamic range
using an average of single-event DT neutron interactions.

• The response characteristics of each material (pulse shape, width,
amplitude, area) agree with the expected values.

• A path forward to convert single-event IRFs to current integrated has
been developed
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Intensity plots for the Photek PMT240 at -
4.0kV
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IRF measurements were made with the NTF22D-Hamamatsu
mod-5 detector fitted with EJ228, EJ232Q(1%) scintillators, and
quartz.
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IRF measurements were made with the NTF22D-Hamamatsu
mod-5 detector fitted with EJ228, EJ2320(1%) scintillators, and
quartz.
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Comparison of three active detection materials for
DT neutrons using NTF22D-Photek PMT240.
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Counts were taken with NTF22D-Hamamatsu mod-5 in
various configurations to determine the origin of events.

10°

Counts for the various configurations
shown on the previous slide. Counts with
the quartz were repeated.
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• The count rates observed with the
EJ232Q-1% scintillator are an order of
magnitude greater than the quartz
over a substantial range of pulse
heights

• The count rates observed with the
light-guide and PMT only geometries
are of the same magnitude as the
count rates observed with the quartz
in place
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10-

The number of events per incident neutron for each
component can be determined by process of elimination.
Quartzri = Cts — CtQuartz Slig ht guide

Quartzr2 = Cts — CtQuartzr2 slig htguide

Light guide = CtSlight guide — CtspiuT

PMT = CtSPMT

EJ232 = CtSEJ232 — CtSlightguide

•••
•

• • 
•

•
•

•

• • • • • •

Quartz rl

Quartz r2
Light guide
PMT
EJ232

• • •

50 100 150

Discriminator (mV)

200

• At 50 mV the EJ232Q-1% scintillator is
"'103 times more sensitive than the
Quartz

• The PMT is '`'102 times more sensitive
than the quartz in this geometry

• At the most sensitive setting (20 mV) the
EJ232Q-1% has a 20% efficiency (12%
inferred from the coincidence
measurement)
• The results of this experiment, while not

exact, is a good indicator of the DT neutron
efficiency
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A better comparison is to show the fraction of the total counts
by each component as a function of discriminator.
• The PMT contribution dominates a large fraction of the signals measured with the quartz

configuration
• Shielding the PMT and light guide are absolutely essential to ensuring a neutron measurement

• The EJ232Q-1% configuration shows an expected trend. The scintillator signal dominates
the lower amplitude regime (i.e. neutrons) and the PMT dominates the higher amplitude
regime (i.e. photons)
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Counts and net counts for the Photek-
PMT240 at -4.0 kV
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The fraction of the signal from each component as
determined from the previous efficiencies for a
quartz crystal and EJ232Q.
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Counts were also taken directly from the PMT (split
signal to o-scope and constant fraction discriminator)
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nToF characterization at the IBL includes extracting, from the same
measurement, the instrument response function, the average
neutron sensitivity and counting efficiency.

I PMT #2

r10 

detector

PMT #1 

I
  Full Signal width (FWHM, ns)

RF 
Gaussian width (HWHM, ns)

Tau, decay constant (ns)

Amplitude (mV)
Sensitivity (Peak area, pC)

PMT #2

IRF
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Coincidence
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Counter
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Counting efficiencies

Neutron yield

Coincidence monitoring
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Particle coincidence is derived from
relativistic two body kinematics.

m1, Ei.

M4/ E4

m3, E3

0
i___ 0

m2, E2

Center of mass µ = cos(9)

Si = m1 + m2

Sf = M3 + M4

df = 17/.3 — MA

di = m1- m2

--.s = si2 + 2m2E1
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1112, E2 0

1113, E3
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Uncertainty in each data point is derived from the bit-noise
distribution prior to the leading edge of the waveform.

• Bit noise is defined by 11 discrete values that are normally distributed.
• 1E6 bins used for distribution; only 11 bins had counts > O.
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*1000 waveforms taken with NTF22D Hamamatsu mod-5 (-2.0kV), EJ228 scintillator and D-T neutrons



The uncertainty in each data point is propagated
throughout the normalization process
Uncertainty in each data point

ay = °noise

Baseline correction

Y adj = Y — Ybl *** ayadj = Alay

Normalization value in y (10% of max)
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