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The International Monitoring System (IMS)

321 stations for seismic, airborne radionuclide, hydroaccoustic, and infrasound detection

INTERNATIONAL MONITORING SYSTEM
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The Comprebensive Nuclear-Test-Ban Treaty (CTBT) of 1996 bans suckear explosions in all environments.
Explosions in the atmosphere, under water and in outer space were banned in 1963, CTBT prohibits them underground as well

Under CTBT, a global system of monitoring stations, using fous complementary technologies, is being established 10 recond data necessary 10 venfy compliance with the Treaty. Supported by 16 mdiomuctide laboratonies,
this network of 321 maonitoring stations will be capable of registering shock waves emanating from i nuckear explasion undergroand, in the seas und in the air, as well as detecting radicactive debris rekased into
the atmosphere. The location of the stations has been carclully chosen for optimal and cos-elfective global coverige.

The monitoding ssations will transenis, via sasellite, the data to the International Data Centre {IDC) within CTBTO PrepCom in Vienna, where the data will be used 1o deteet. Jocate and charucterize events,
These data and 1DC prodects will be made available 1o the Stases Signatories for final analysis.
Overleal is 3 listing of the 337 (acilitics of the intemational momitoring systern and brief descriptions of their charcteristics and capsbilities.

isanic primary amay (PS)
Seismic primary omponent station (PS)
Seismic auxiliary array (AS)
Seismic auniliary tree-component station (AS)
Hydroacoustic (hydrophonc) station (HA}
Hydroacoustic (T-phase) station (HA )
Infrasound station (15)

Radionuchide station (RN)

Radionuclide laboratory (RL)

International Data Censre, CTBTO PrepCom, Vieana @




Airborne radionuclide detection by the IMS
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Courtesy, Dr. Ted Boyer, Pacific Northwest National Lab.




Xenon isotopes used for nuclear detonation detection

\ 4 A 4

Nuclide 131mxe 133mxe 133Xe 135Xe
Fission Yield per kT Pu (Bq) 5x 10° 2 x10% 2 x 1014 2 x 1016
Half-life (days) 11.93 2.19 5.25 0.38

v Ray (keV) 163.9 233.2 81 249.8
X-rays (keV) 29.5-34.6 29.5-34.6 30.6-36.0 30.6-36.0
B Endpoint (keV) - - 346 905
Conversion electron (keV) 129 199 45 214

Multiple isotopes are used to distinguish a detonation from isotopes produced by
medical isotope production facility




MOFs are well-known adsorbents for noble gases

 Ultrahigh surface areas enable
preconcentration of noble gases

« Selective gas uptake due to s PCN-14 GRUSED. DR

tailorable pore size/chemical
environment; e.g.

* (Kr, Xe, or Rn):N, > 6

e Stable in air to 2 200 °C; allows
fast sorbent regeneration

Ar 0, Kr N, Xe Rn
(3.5A) (3.54) (3.7A) (3.7A) (4a1A) (a.1A)
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Multi-axis concept for detecting unstable noble gas isotopes

“Phoswich” detector for
radionuclide detection

= Use scintillating MOFs (S-MOFs) as
sorbent+detection material
1. PB-counts above background
2. Coincident y energy
3. Timing distributions

4. Continuous integrated signal (real time) 7| (eg. Nal)
. . Pressurized gas flow
= High-pressure cell (10-100 bar) to increase (10-200 bar) ' : mm) Gas out

gas concentration

High-pressure cell

l - Sapphire
v Scintillator window

| v Scintillator

= “Dual Phoswich” detector design (e.g. Nal)

= S-MOF sorbent for 3 particles Scintillating MOF
= Nal scintillator for coincident y particles tentipownen
= Discriminates against background muons and

v particles

Detection enhancement factors (GCMC calculations) for MOFs screening CoRE Database

* Max. absolute Xe uptake (v/v): ~30 — 200 cm*@STP/cm?

 Excess capacity (v/v): 100 — 180 cm3@STP/cm3

* Xe/N, selectivity: 5 — 28X

» Detector geometry 47 B interaction: ~2X

-> ~400X signal enhancement over conventional continuous air monitor should be feasible




Coincidence detection discriminates background events
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Although many MOFs have high uptake and selectivity for Xe,

most are not luminescent

MOF

CaSDB (SBMOF-1)
SBMOF-2
Ni-MOF-74
Co3(HCOO)g
HKUST-1

MOF-5
FMOF-Cu
MFU-4l

MOF-505
SIFSIX-3-Ni
SIFSIX-3-Fe
CROFOUR-1-Ni
CROFOUR-2-Ni
UlO-66

PCN-14
NOTT-100
NOTT-103

ZIF-8

[Zn(tmz),]
MOF-74 Mg
MOF-74-Co
MOF-74-Zn
Porous Organic Cages,
Noria

CE3

COP-4

Activated Carbon
Carbon-Zx
Carbon-Z

D. Banerjee et al. Chem. 4 (2018),
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Basics of radiation detection using organic scintillators

Typical luminescent MOF linkers have fused aromatic rings
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Design principles for MOF-Based Scintillators

Use closed-shell metal cations

= E.g.,ZnorCd Zn,0(0,CR);, ‘
= No MOFs with open metal sites

= Avoid non-rigid linkers with non- HO,C
radiative pathways COZH ‘

NDC

\ ¢




We are characterizing the radio-luminescent and gas sorption
properties of several candidate MOFs

Systematic tailoring of MOF radioluminescence is feasible

Molecular MOF Organic MOF
Scintillator Linker Scintillator MOF Light yield*
HO,C
) IRMOF-8
(= DUT-6 79%
COZH IRMOF-8-INT ’
O “ DUT-6 IRMOEF-8 124%
& L da DUTE IRMOF-8-INT 55%
HoaacwW NOTT-103-Zn 64%
2 PCN-14-Zn 39%
NOTT-105-2n *Relative to trans-Stilbene
Light Yield: Linker-based luminescence is at least as
bright as the analogous molecular scintillator
PCN-14-Zn

Perry IV, J.). et al., J. Mater. Chem. 2012, 22(20), 10235




“Phoswich detector” for evaluating S-MOFs

e Use to determine ability of S-MOF to distinguish between particle types
* Addition practical value: discriminate against background y and muons

Test source: 0.8 nCi 137Cs
Emits 3 and y particles

Vial containing S-MOF

/(B scintillator)
i

<«—— Sapphire window
1 <«—— Naly
scintillator




Phoswich two-parameter histogram: stilbene reference powder

File  Vertical Timebase Trigger Display Cursors Measure Math Analysis  Utilities Help

Stilbene or MOF emission
(B particle)

Nal emission (y particle)

photopeak Nal emission

Stilbene emission
Compton edge

Measure P2:fall(C1) P4:area(C1) P5:area(C1)
value 538.617 ns 92.168254 nVs 92.167238 nVs
status R v v
5.00 #div 500 ns/div Stop -14.0 mV
20.0 nVs 10 kS 2 GS/s [Edge Negative
3.828 k#
121712015 6:23:22 PM




Scintillating MOFs in phoswich detector prototype

* Prototype dual-phoswich detector design
—Powder bed with pressure window
—Two 7 scintillators/PMTs (Nal:Tl)

* Demonstrated viability of detection Al
—Photons detected/unit absorbed B energy
—Source: 0.8 nCi 13’Cs 3/y 4 cm above MOF

No vial Stilbene reference

* Nal and MOF pulses are clearly separated
—> Fast MOF phosphors can be used as a 3 I LA AR

trigger in a phoswich detector
N

* Figure of Merit (FOM) determined using 2r 1,4 NCD IRMOF 8
stilbene reference

—130 photons/MeV from fast electrons
—FOM is 43 photons/MeV/ns assuming 3 ns

radioluminescence decax time

14



Detection of 3 particles from a noble gas isotope using Zr(1,4-
naphthalene dicarboxylate) as S-MOF

Pulse from B signals +

radioisotope background

introduced for trigger from S-MOF
setup l

85Kr as surrogate for short-lived Xe isotopes
* Half life 10.8 years .
6F

e ~1ppm Bg/m?3in air v

7t

. . 5
e Source is nuclear fuel reprocessing plants

) ) : Red = background
in the Northern Hemisphere - 4

* e.g.see. Igarashi et al. J. Environ. - 3
Radioactivity 48 (2000) 191 o

:

ot !

Hours

S:background determined to be 8c at 1 bar pressure, sufficient to detect the isotope
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Conclusions

= MOFs possess a unique combination of properties that
make them useful for detecting noble gas isotopes

= Scintillation
= Selective uptake over majority atmospheric components

= Detection of B and y particles was demonstrated using a
surrogate for short-lived Xe isotopes

- S-MOFs show potential to replace conventional porous
carbons and allow rapid detection of trace gases resulting
from nuclear detonations
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