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The International Monitoring System (IMS)

321 stations for seismic, airborne radionuclide, hydroaccoustic, and infrasound detection
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Airborne radionuclide detection by the IMS

Source terms and events:

• Nuclear reactors

• Fukushima accident

• Medical isotope production facilities

• Nuclear testing in North Korea

Detection of noble gas radioisotopes by
IMS monitoring systems

• 131mXe, 133Xe, 133mXe, 135Xe

• Completely automatic commercial
systems

• 12-hr collection, followed by 24-hr count

4 Dynamic "real-time" detection, crucial
for identifying detonation location by
meteorlogical monitoring, is impossible
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Xenon isotopes used for nuclear detonation detection

wev
Nuclide 131mXe 133mXe 133Xe 135Xe

Fission Yield per kT Pu (Bq)

Half-life (days)

y Ray (keV)

X-rays (keV)

p Endpoint (keV)
Conversion electron (keV)

5 x 109 2 x 1013 2 x 1014 2 x 1016

11.93 2.19 5.25 0.38

163.9 233.2 81 249.8

29.5-34.6 29.5-34.6 30.6-36.0 30.6-36.0

- - 346 905

129 199 45 214

Multiple isotopes are used to distinguish a detonation from isotopes produced by

medical isotope production facility
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MOFs are well-known adsorbents for noble gases

• Ultrahigh surface areas enable
preconcentration of noble gases

• Selective gas uptake due to
tailorable pore size/chemical
environment; e.g.

• (Kr, Xe, or Rn):N2 > 6

• Stable in air to 200 °C; allows
fast sorbent regeneration
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Multi-axis concept for detecting unstable noble gas isotopes

• Use scintillating MOFs (S-MOFs) as
sorbent+detection material
1. 13-counts above background
2. Coincident 7 energy
3. Timing distributions
4. Continuous integrated signal (real time)

• High-pressure cell (10-100 bar) to increase

gas concentration

• "Dual Phoswich" detector design
• S-MOF sorbent for 13 particles
• Nal scintillator for coincident 7 particles
• Discriminates against background muons and

y particles

"Phoswich" detector for
radionuclide detection

High-pressure cell

y Scintillator
(e.g. Nal)

Sapphire
window

Pressurized gas flow  
(10-200 bar)

r irm.111:3y Scintillator
(e.g. Nal)

Scintillating MOF
sorbent (powder)

Detection enhancement factors (GCMC calculations) for MOFs screening CoRE Database
• Max. absolute Xe uptake (v/v): —30 — 200 cm3@STP/cm3
• Excess capacity (v/v): 100 — 180 cm3@STP/cm3

• Xe/N2 selectivity: 5 — 28X
• Detector geometry 471 p interaction: —2X
4 "400X signal enhancement over conventional continuous air monitor should be feasible

Gas out



Coincidence detection discriminates background events
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Although many MOFs have high uptake and selectivity for Xe,
most are not luminescent

MOF Xe Uptake
(mmol g-la or mmol Kg-lb)

Xe Qst (kJ mol-1) Xe/Kr Selectivity

CaSDB (SBMOF-1) 1.4' (13.2)b 35 16'

SBMOF-2 2.06' 26.4 10`

Ni-MOF-74 4.19' (4.8)b 22 7.3'

Co3(HCOO)6 2' 28 12d

HKUST-1 3.3a 26.9 8.4e (3)b

MOF-5 1.98a 15

FMOF-Cu 0.8' 15 2f

MFU-4I 1.8' 20 4.7e

MOF-505 2.2' 8g

SIFSIX-3-Ni 2.51° 18.9

SIFSIX-3-Fe 2.45' 27.4

CROFOUR-1-Ni 1.8a 37.4 22`

CROFOUR-2-Ni 1.6a 30.5 15.5'

Ul0-66 1.58a 3.8g

PCN-14 7.1° 17.9 6.5d

NOTT-100 6.1° 18.6 6.7d

NOTT-103 4.1° 19.7 5.5d

ZIF-8 1.9

[Zn(tmz)2] 3a 23 15.5f

MOF-74 Mg 5.58' 5.92

MOF-74-Co 6.1° 10.37

MOF-74-Zn 3.88' 5.76

Porous Organic Cages, Carbons, and Covalent-Organic-Framework-like Materials

Noria 1.55' 24.5-26.9 9.4a'b

CC3 2.2a (11)6 31.3 20.4' (16)b

COP-4 1.7a 1.5

Activated Carbon 4.2' 8

Carbon-Zx 4.42'

Carbon-Z 3.17'

D. Banerjee et al. Chem. 4 (2018), 466-494
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Basics of radiation detection using organic scintillators

Typical luminescent MOF linkers have fused aromatic rings
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Design principles for MOF-Based Scintillators

■ Use closed-shell metal cations

■ E.g., Zn or Cd

■ No MOFs with open metal sites

■ Avoid non-rigid linkers with non-

radiative pathways

■ Adopt rigid framework topologies

■ Electronically isolate linkers

DUT-6

Zn40(02CR)6

HO2C

CO2H
NDC

IRMOF-8

vt

4-

4-

HO2C

CO2H
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We are characterizing the radio-luminescent and gas sorption
properties of several candidate MOFs

Systematic tailoring of MOF radioluminescence is feasible

Molecular

Scintillator
MOF Organic

Linker
H 02 C

H 02C

H 02 C

C 02 H

C 02 H

MOF

Scintillator

.<1 IRMOF-8

IRMOF-8-INT

DUT-6

1 1=1 DUT-6

4:1 NOTT-103-Zn
C 02 H

C 02 H

<=1 PCN-14-Zn

MOF Light yield*

DUT-6

IRMOF-8

IRMOF-8-INT

NOTT-103-Zn

PCN-14-Zn

79%

124%

55%

64%

39%

*Relative to trans-Stilbene

Light Yield: Linker-based luminescence is at least as
bright as the analogous molecular scintillator

Perry IV, J.J. et al., J. Mater. Chem. 2012, 22(20), 10235
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"Phoswich detector" for evaluating S-MOFs

• Use to determine ability of S-MOF to distinguish between particle types
• Addition practical value: discriminate against background y and muons

klf:Whs?..g4f'41

Test source: 0.8 nCi 137Cs

Emits p and particles

Vial containing S-MOF

(p scintillator)

Sapphire window

<- Nal 7

scintillator



Phoswich two-parameter histogram: stilbene reference powder
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Scintillating MOFs in phoswich detector prototype

• Prototype dual-phoswich detector design

—Powder bed with pressure window

—Two y scintillators/PMTs (Nal:Tl)

• Demonstrated viability of detection

—Photons detected/unit absorbed p energy
—Source: 0.8 nCi 137Cs p/7 4 cm above MOF

• Nal and MOF pulses are clearly separated

4Fast MOF phosphors can be used as a 13

trigger in a phoswich detector

• Figure of Merit (FOM) determined using
stilbene reference

—130 photons/MeV from fast electrons

—FOM is 43 photons/MeV/ns assuming 3 ns

radioluminescence decav time



1

Detection of f3 particles from a noble gas isotope using Zr(1,4-
naphthalene dicarboxylate) as S-MOF

Pulse from

radioisotope
introduced for trigger

setup

85Kr as surrogate for short-lived Xe isotopes
7

• Half life 10.8 years

• - 1 ppm 13q/m3 in air

• Source is nuclear fuel reprocessing plants 5

in the Northern Hemisphere _ 4

• e.g. see Y. lgarashi et al. J. Environ. 3

Radioactivity 48 (2000) 191 2

1

signals +
background
from S-MOF

Red = background

10

Hours

1 5

S:background determined to be 86 at 1 bar pressure, sufficient to detect the isotope
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Conclusions
Sandia
National
Laboratories

• MOFs possess a unique combination of properties that

make them useful for detecting noble gas isotopes

• Scintillation

• Selective uptake over majority atmospheric components

• Detection of 13 and y particles was demonstrated using a

surrogate for short-lived Xe isotopes

4 S-MOFs show potential to replace conventional porous

carbons and allow rapid detection of trace gases resulting

from nuclear detonations
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