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The Z Pulsed Power Facility is the world's largest pulsed
power machine



Pulsed-power is aIl about energy compression in both
space and time

• Energy compression
achieved by a
sequence of storage
and switching
techniques :
• Voltages are added

in series

• Currents are added

in parallel
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Z can be a challenging place to conduct high impact
experiments

■ Shot rate of —1/day

■ —150 shots/year

■ Mrs of magnetic
energy to the load

■ Equivalent to
detonating a few
sticks of dynamite

■ Harsh debris, shock,
and radiation
environment make
fielding experiments
unique and
challenging



We use Z in several ways to create HED matter for
various physics applications
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Z can perform both shockless compression
and shock wave experiments

Sample
P > 4 Mbar

+
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Shocks
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o ICE

Shockless/lsentropic Compression Experiments (ICE): 

gradual pressure rise in sample

P

Flyer Plate -

v up to 40 km/s

Sample
P > 10 Mbar

Shock Hugoniot Experiments: 
shock wave in sample on impact
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Shock experiments on Z were able to measure a metallic
phase of deuterium
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Redmer, Science 348, 1455, (2015). Collaboration with Prof. Ronald Redmer's group at University of Rostock



1
short circuit

B JxB

anode cathode

Dynamic Material Properties

Tungsten
Z-Pinch
Plasma

Radiating
Shock

CH2
!ban.'

6 tnm

4 mm 0
Radiation
Exit Hole

Tungstcn
Wires

Astrophysical Plasmas

CurrentA

Jx8 Force

Gas Jet

‘111111

Z-Pinch X-Ray Sources

Magnetization Laser Heating Compression

Inertial Confinement Fusion



(Nested) wire array Z pinches
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Z Astrophysical Plasma Properties (ZAPP) collaboration
uses single x-ray source to conduct multiple experiments

Atomic kinetics
in warm
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G.A. Rochau et al., Phys. Plasmas 21, 056308 (2014) *J. Bailey et al., Nature 517, 56 (2015)
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Z-Backlighter Facility Overview



Z- Backlighter Facility Lasers

• Z-Beamlet

• NIF prototype beamline

• Delivers several kJ in few ns

pulse

• 1054 nm or 527 nm operation

• Primarily used for x-ray

backlighting and fuel preheat

1



Key research areas at the Z-Backlighter Facility

Improve x-ray backlighting for radiography of imploding liners or wire arrays
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Magneto-inertial fusion sits in the space
2o between magnetic and inertial confinement fusion

ITER MIF concept NIF hohlraum

Density 1 x 1014 cm-3 1 x 1023 cm-3 2-20 x 1025 cm-3

Volume 8 x 108 cm3 8 x 10-5 cm3 6 x 10-8 cm3

Duration 300-500 s 1-2 x 10-9 s 5-10 x 10-11 s

Magnetic field 100 kG 50-100 MG 0 kG



ICF has requirements on fuel temperature and areal
21 density for gains to exceed losses

50

15' 40

a)
'5 30
ILI
0

200
1—

0 MG-cm

0 -4
10 1 0

-3 
1 02 10

-1 
100

pR [g/cm2]

• There is a minimum fuel
temperature of about 4.5
keV
• This is where fusion
heating outpaces radiation
losses

• The minimum fuel areal
density is around 0.2
g/cm2

• Traditional ICF concepts
attempt to operate in this
minimum

P. F. Knapp, et al., Phys. Plasmas 22, 056312 (2015).



Magneto-inertial fusion utilizes magnetic fields to relax
22 the stagnation requirements of ICF
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• As the field is increased,
particle magnetization
reduces thermal
conduction

• Performance increases
dramatically once the
Larmor radius of alphas is
equal to the fuel radius

• In this regime, particle
trapping is achieved
through magnetization
rather than areal density

P. F. Knapp, et al., Phys. Plasmas 22, 056312 (2015).



Preheating fuel may also reduce implosion requirements
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CR10 = Convergence Ratio (R0/Rf) needed
to obtain 10 keV (ignition) with no radiation
losses or conductivity

• Laser heating of fuel (6-10 kJ)
offers one way to reach pre-
compression temperatures of
—200 eV

• Detailed simulations suggest we
can reach fusion temperatures
through cylindrical implosions at
IR0/Rf of 25
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Magnetized Liner Inertial Fusion (MagLIF)

Initialize axial magnetic field (Bo = 10-30 T)
• Inhibits thermal losses from fuel to liner

• May help stabilize liner during compression

• Flux compression increases field to kT and trap a
particles

Laser heating of fuel (EL = 2-4 kJ)

• Initial fuel temperature 150-200 eV 4 10 keV at compression
. Fuel heating achieved by compression against fuel pressure

rather than high convergence and high velocity

Magnetic compression of fuel

-, • 70-100 km/s, quasi-adiabatic fuel compression

• Low aspect liners (r/Ar z 6) are robust to
hydrodynamic instabilities

• Significantly lower implosion velocity and final
pressure/density than NIF ICF because preheat
and magnetization relax requirements

S.A. Slutz et al., Phys. Plasmas (2010); S.A. Slutz & R.A. Vesey, Phys. Rev. Lett (2012); A.B. Sefkow et al., Phys. Plasmas (2014)



First steps: Radiographs throughout the implosion were
25 collected on a series of implosion only experiments
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• Magneto-Rayleigh-Taylor instabilities develop
and grow
• Azimuthal correlation of instabilities

• Use thick liners to limit feedthrough to inner surface

• Massive liners implode on a relatively slow time scale
compared to traditional ICF

• Relatively happy with liner stability
• Inner surface is relatively straight at a convergence

ratio of 5

• 82% of implosion distance to CR 40

R. D. McBride, et al., Phys. Rev. Lett. 109, 135004 (2012).



The axial B-field converted the azimuthal MRT structure
26 into helical; stabilized the implosion?
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First integrated experiments show primary neutron yield
27 is highly dependent on magnetization and laser heating
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• Experiments without the magnetic field
and laser produce yields at the typical
background level

• Adding just the magnetic field had a
marginal change in yield

• In experiments where the magnetic field
was applied and the laser heated the fuel,
the yield increased by about 2 orders of
magnitude

M. R. Gomez, et al., Phys. Rev. Lett. 113, 155003 (2014).



An ensemble of measurements from MagLIF experiments
28  are consistent with a magnetized, thermonuclear plasma
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Early experiments identified laser heating as area of
30 concern (only —10-20% coupling) •
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• Initial experiments used thick windows, an unconditioned defocused beam with
high intensity variations, and high intensities that led to strong laser plasma
instabilities

• Several techniques were used to mitigate these problems, including beam
smoothing with phase plates, and redesigned temporal shapes

• Unfortunately, Z does not provide a good environment for testing variations in
preheat due to a low shot rate (shot/day) and shot allocation (few shots/year)



Experiments in the Pecos chamber measure laser heated
32 fuel with a variety of diagnostics at a high(er) shot rate

ZB1

(not to scale)

FS CCD2

CD1

Shadowgraphy — Blast wave and
total energy coupling
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111111
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Stimulated Raman scattering (SRS)
spectroscopy — Density evolution in
areas of high SRS gain, filamentation

Near beam imaging — Energy loss to
laser plasma instabilities (SBS, SRS)

III

Optical Thomson scattering imaging
and spectroscopy—
Spatially resolved laser fluence
Temperature and mix

M. Geissel, et al. Phys. Plasmas 25, 022706 (2018)



We measure optical Thomson scattering (OTS) in the
33 collective regime

• Thomson scatter comes from dipole radiation
of electrons moving in the incident electric
field

• The scattering parameter a gives the ratio of
the scattered wave vector k' to the plasma
Debye length, AD

• For a << 1, light is scattered off of individual
electrons with a temperature dependent
Doppler profile

• For a >> 1, light is scattered from collective
structures (fluctuations), primarily ion acoustic
features

Ikl= 2(coo/c) sin (912)



1 Collective OTS provides way to measure temperature and
34 rn

• The separation of the blue-shifted and red-shifted scattering peaks is given by
the ion acoustic frequency:

kics
mi

(with corrections cr—Ti/Te)

• The width of theses peaks is related to the ion temperature

Thomson Spectra for 120 psi (4x102° cm-3) D2 targets
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Thomson scatter images are encouraging, but show less
35 energy than expected

B18062207

120 psi co-injection

B18061207

120 psi co-injection, misaligned

B18051102

60 psi No-DPP

• Features correlate with shadowgraphy and show distinction between different
preheat protocols

• Integrated scattering energy is 5..1-2 mJ, 2 to 3 orders of magnitude smaller
than calculated based on geometry, indicating strong absorption



36 Scatter spectra (to date) show primarily laser scatter
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Scatter spectra (separate from 3 peak modulated ZBL spectrum) do not show the
expected double peak, but rather only a red-shifted feature.

May indicate SBS side scattering or Doppler shifted Thomson scattering (or both)

Without an idea of possible Doppler shifting between ion acoustic (SBS) peak and laser
fundamental, it is not possible to assign a temperature.

A complete (double peaked) Thomson spectra would avoid this problem

Prominence (and minimal blurring) of laser spectrum may indicate we are mainly
collecting reflections in the chamber

Additional testing needed to eliminate failure modes



Stimulated Raman scatter (SRS) provide measure of
3 7 density in areas of high gain

• SRS comes from scattering off of electron
plasma wave features that are driven by the
incident beam

• For direct backscatter, the downshifted
frequency gives the local electron density

• Backscatter primarily comes from areas of
high gain (high intensity and density, long scale
length)

• SRS is observed on a streaked visible
spectroscopy (SVS) system consisting of a
streak camera coupled to a spectrometer
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Diodes provide easy way to track SRS evolution when SVS
38 is unavailable (often...)

• Two diodes facing a scatter plate are individually filtered, giving different
responses for different wavelengths

• Assuming a Gaussian SRS spectrum with a=10 nm, we perform a nonlinear least
squares fit to extract the mean wavelength and amplitude at each time step
(original analysis model developed by Daniel Davis, UNM)
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Diodes provide easy way to track SRS evolution when SVS
39 is unavailable (often...)

• Two diodes facing a scatter plate are individually filtered, giving different
responses for different wavelengths

• Assuming a Gaussian SRS spectrum with a=10 nm, we perform a nonlinear least
squares fit to extract the mean wavelength and amplitude at each time step
(original analysis model developed by Daniel Davis, UNM)

500

• Extracted values
show good
agreement with SVS
data, but only for
some shots...
• SVS analysis by Jeff

Fein
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Extraction fails for non-Gaussian spectra and wavelengths
40 outside the second diode's sensitivity

• Shots with a broad supercontinuum background or broad multipeaked spectra
are not well handled by the model (no DPP shot below, diode's return constant
wavelength —700 nm)

• The second SRS diode has effectively zero response below 690 nm because of
the color filter

• This means many of the lower density shots are unreliable (60 psi density
corresponds to —680 nm scattering)
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Analysis of full diode dataset shows interesting trends, with
4 1 caveat that some shots are unreliable

• Co-injection shots consistently show scattering
corresponding to densities below the fill pressure,
indicating early gas/window expansion after the co-
injection pre-pulse

• SRS increases with intensity and then saturates
• Numbers may only be good to a factor of —2-3x based on
comparison of select shots with SVS
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Plans to upgrade diode assembly to extend useful time
42 window and better constrain spectra

• Four diodes mounted on two lines of sight to scatter plate with beam-splitter
cubes allows fit of more spectral parameters

• Wavelength dependence achieved with different combinations of ND filters
• Each diode covers full range, preventing covariance matrix from diverging
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43 Summary

• Experiments on the Z Machine and related Z Backlighter facility support a wide
range of scientific interests and national needs, including laboratory
astrophysics, stockpile stewardship, inertial confinement fusion, materials
physics and high energy density science

• MagLIF provides a possible route to high yield ICF by using fuel preheat and
magnetization to relax requirements on implosion velocity and final hot spot
conditions

• Experiments on the Pecos target chamber support preheat objectives for the
MagLIF program and allow detailed diagnostics of high energy laser energy
deposition in a plasma target
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• About the science?

• About Sandia and the Z Facility?

• About working in a national lab?

• About the SSGF fellowship (provided support for this internship)?
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48 Density depression

• The decrease in density during preheat may indicate thermally driven
expansion or filamentation (or both)

• This decrease shows a weak correlation with intensity, and differences in
preheat protocols

• Too preliminary to make conclusions: new diode array needed
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