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The Z Pulsed Power Facility is the world’s largest pulsed
I power machine




Pulsed-power is all about energy compression in both
space and time

Energy compression
achieved by a
sequence of storage
and switching

=l

techniques :
* \Voltages are added
in series
e Currents are added
in parallel
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Z can be a challenging place to conduct high impact
experiments

= Shot rate of ~¥1/day
= ~150 shots/year

= MJ’s of magnetic
energy to the load

= Equivalent to A , Cleanup 4
detonating a few L\ =, /_ e
sticks of dynamite N~ '

= Harsh debris, shock,
and radiation
environment make
fielding experiments
unique and
challenging

A
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We use Z in several ways to create HED matter for
various physics applications
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anode cathode
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Z can perform both shockless compression

and shock wave experiments

Sample
P >4 Mbar

Flyer Plate

v up to 40 km/s

Sample
‘/ P > 10 Mbar

Shocks

Shockless/Isentropic Compression Experiments (ICE):
gradual pressure rise in sample

Shock Hugoniot Experiments:
shock wave in sample on impact




Shock experiments on Z were able to measure a metallic
phase of deuterium

Metallized Deuterium
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M.D. Knudson, M.P. Desjarlais, A. Becker, R.W. Lemke, K.R. Cochrane, M.E. Savage, D.E. Bliss, T.R. Mattsson, and R.
Redmer, Science 348, 1455, (2015). Collaboration with Prof. Ronald Redmer’s group at University of Rostock
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(Nested) wire array Z pinches

=50 mm

P.s=400TW, Y4 = 2.5 M/ (total)
=~ 10-15% efficiency
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Z Astrophysical Plasma Properties (ZAPP) collaboration
uses single x-ray source to conduct multiple experiments
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Z-Backlighter Facility Overview




Z- Backlighter Facility Lasers

m 7-Beamlet

NIF prototype beamline
Delivers several kJ in few ns
pulse

1054 nm or 527 nm operation
Primarily used for x-ray
backlighting and fuel preheat
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Key research areas at the Z-Backlighter Facility

Improve x-ray backlighting for radiography of imploding liners or wire arrays
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Magneto-inertial fusion sits in the space
20 | between magnetic and inertial confinement fusion

ITER MIF concept NIF hohlraum
V = s

Density 1x 10" cm3 1x 108 cm?3 2-20 x 1025 cm3
Volume 8 x 108 cm3 8x10°cm3 6 x 108 cm3
Duration 300-500 s 1-2x107%s 5-10x 101 s

Magnetic field 100 kG 50-100 MG 0 kG




ICF has requirements on fuel temperature and areal
21 1 density for gains to exceed losses

Fuel Temperature [keV]

50
=" There is a minimum fuel
temperature of about 4.5
401 keV
® This is where fusion
30! heating outpaces radiation
losses
®* The minimum fuel areal
201 density is around 0.2
g/cm?
10+ = Traditional ICF concepts
B attempt to operate in this
minimum
O y r vy oy . £ v oyl " v vy ool N g e poy gl
10 10° 107 10" 10°
pR [g/cm?]

P. F. Knapp, et al., Phys. Plasmas 22, 056312 (2015).




Magneto-inertial fusion utilizes magnetic fields to relax
2 1 the stagnation requirements of ICF

507
/ = As the field is increased,
< 40} &/ = / particle magnetization
£ 29 S reduces thermal
> s ™ § < conduction
S 30¢ °/ = .
& ol /| © / = Performance increases
S dramatically once the
£ 20+ Larmor radius of alphas is
= / equal to the fuel radius
o 1 H
T 10} { 0 MG-cm "= In this regime, particle
RS trapping is achieved
through magnetization
U 3 B rather than areal density
10 10 10 10 10
PR [g/em”]

P. F. Knapp, et al., Phys. Plasmas 22, 056312 (2015).




Preheating fuel may also reduce implosion requirements

6ot * Laser heating of fuel (6-10 kJ)

offers one way to reach pre-
compression temperatures of
~200 eV

\ Simulation with
constant
velocity

50 |

* Detailed simulations suggest we
can reach fusion temperatures
through cylindrical implosions at
Ro/Rs of 25

6 5 10 15 20 25 30
Velocity (cm/us)

CR,, = Convergence Ratio (R,/R;) needed
to obtain 10 keV (ignition) with no radiation
losses or conductivity




Magnetized Liner Inertial Fusion (MagLIF)

Initialize axial magnetic field (B, = 10-30 T)
= Inhibits thermal losses from fuel to liner
= May help stabilize liner during compression

’!' ) = Flux compression increases field to kT and trap a
particles

=1l cm

Laser heating of fuel (E, = 2-4 kJ)

= |nitial fuel temperature 150-200 eV = 10 keV at compression

= Fuel heating achieved by compression against fuel pressure
rather than high convergence and high velocity

:7 'J/ & Magnetic compression of fuel
_;i‘ «®® = 70-100 km/s, quasi-adiabatic fuel compression

= Low aspect liners (r/Ar = 6) are robust to
hydrodynamic instabilities

= Significantly lower implosion velocity and final
pressure/density than NIF ICF because preheat
and magnetization relax requirements

S.A. Slutz et al., Phys. Plasmas (2010); S.A. Slutz & R.A. Vesey, Phys. Rev. Lett (2012); A.B. Sefkow et al., Phys. Plasmas (2014) |
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First steps: Radiographs throughout the implosion were
collected on a series of implosion only experiments
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= Magneto-Rayleigh-Taylor instabilities develop
and grow

= Azimuthal correlation of instabilities

= Use thick liners to limit feedthrough to inner surface

= Massive liners implode on a relatively slow time scale
compared to traditional ICF

Relatively happy with liner stability

" Inner surface is relatively straight at a convergence
ratio of 5

= 82% of implosion distance to CR 40

R. D. McBride, et al., Phys. Rev. Lett. 109, 135004 (2012).




The axial B-field converted the azimuthal MRT structure
26 I into helical; stabilized the implosion?
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T. J. Awe, et al., Phys. Plasmas 21, 056303 (2014).




First integrated experiments show primary neutron yield
27 1 is highly dependent on magnetization and laser heating

12
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Primary Neutron Yield

9

10" ¢
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10|

Implosion

= Experiments without the magnetic field
and laser produce yields at the typical
background level

= Adding just the magnetic field had a
marginal change in yield

= [n experiments where the magnetic field
was applied and the laser heated the fuel,
the yield increased by about 2 orders of
magnitude

Implosion + B-field + laser

M. R. Gomez, et al., Phys. Rev. Lett. 113, 155003 (2014).
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An ensemble of measurements from MagLIF experiments
are consistent with a magnetized, thermonuclear plasma

Nuclear Activation (yield)
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M.R. Gomez et al. PRL (2014). P.F. Schmit et al., PRL (2014). P.F. Knapp et al., PoP (2015). M.R. Gomez et al., PoP (2015). S.B. Hansen et al., PoP (2015).
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Optical Diagnostics on Pecos Test Stand

* Measurements of Laser Heated Fuel, My




30

Early experiments identified laser heating as area of

concern (only ~10-20% coupling)

Blast Wave Data

Calorimeter Measurements
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D. B. Sinars, ICOPS (2015).




Distance [mm]

31 I Reasons for poor laser coupling

Beam smoothing with phase Pulse shaping for intensity control
plates
Unconditioned 0.75 mm phase plate 1
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* Initial experiments used thick windows, an unconditioned defocused beam with
high intensity variations, and high intensities that led to strong laser plasma
instabilities

* Several techniques were used to mitigate these problems, including beam

smoothing with phase plates, and redesigned temporal shapes

Unfortunately, Z does not provide a good environment for testing variations in

preheat due to a low shot rate (shot/day) and shot allocation (few shots/year)




Experiments in the Pecos chamber measure laser heated

ZBL

(not to scale)

321 fuel with a variety of diagnostics at a high(er) shot rate

Shadowgraphy — Blast wave and

total energy coupling .l —

Stimulated Raman scattering (SRS)
spectroscopy — Density evolution in
areas of high SRS gain, filamentation

nlx

Near beam imaging — Energy Iosé to
laser plasma instabilities (SBS, SRS)

;

Optical Thomson scattering imaging
and spectroscopy—

Spatially resolved laser fluence
Temperature and mix

M. Geissel, et al. Phys. Plasmas 25, 022706 (2018)




We measure optical Thomson scattering (OTS) in the
131 collective regime

* Thomson scatter comes from dipole radiation
of electrons moving in the incident electric As
Feld ~

Ap \
* The scattering parameter « gives the ratio of \/\/\/\/\/);‘ 7]

the scattered wave vector k' to the plasma
Debye length, A

* For a < 1, light is scattered off of individual | k| = 2(eofc)sin (6/2)
electrons with a temperature dependent '
Doppler profile

* For a > 1, light is scattered from collective
structures (fluctuations), primarily ion acoustic
features
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S (a.u.)

Collective OTS provides way to measure temperature and

mix

* The separation of the blue-shifted and red-shifted scattering peaks is given by

the ion acoustic frequency:

* The width of theses peaks is related to the ion temperature

%1071

Aw = k'c, = k' /%e- (with corrections o~T;/T,)

Thomson Spectra for 120 psi (4x102° cm™3) D, targets
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Thomson scatter images are encouraging, but show less
35 1 energy than expected

B18062207 B18061207 _ B18051102

120 psi co-injection 120 psi co-injection, misaligned 60 psi No-DPP
* Features correlate with shadowgraphy and show distinction between different
preheat protocols

* Integrated scattering energy is <1-2 mJ, 2 to 3 orders of magnitude smaller
than calculated based on geometry, indicating strong absorption




3 I Scatter spectra (to date) show primarily laser scatter

- y

ZBL (1.2 -1.5ns)
—04-0.7ns
—3.5-5.0ns
-~ black-green

A\ (Angstroms)

* Scatter spectra (separate from 3 peak modulated ZBL spectrum) do not show the
expected double peak, but rather only a red-shifted feature.

* May indicate SBS side scattering or Doppler shifted Thomson scattering (or both)

* Without an idea of possible Doppler shifting between ion acoustic (SBS) peak and laser
fundamental, it is not possible to assign a temperature.

* A complete (double peaked) Thomson spectra would avoid this problem

* Prominence (and minimal blurring) of laser spectrum may indicate we are mainly
collecting reflections in the chamber

*Additional testing needed to eliminate failure modes




Stimulated Raman scatter (SRS) provide measure of
371 density in areas of high gain

* SRS comes from scattering off of electron 1.\ 2
plasma wave features that are driven by the Ne = N, <1 — —0>
incident beam As

* For direct backscatter, the downshifted
frequency gives the local electron density

e Backscatter primarily comes from areas of
high gain (high intensity and density, long scale
length)

I

w ) S 1x10Y7|n,

.:l ne 0

cm?

N

* SRS is observed on a streaked visible
spectroscopy (SVS) system consisting of a
streak camera coupled to a spectrometer
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Diodes provide easy way to track SRS evolution when SVS
is unavailable (often...)

* Two diodes facing a scatter plate are individually filtered, giving different
responses for different wavelengths

* Assuming a Gaussian SRS spectrum with 6=10 nm, we perform a nonlinear least
squares fit to extract the mean wavelength and amplitude at each time step
(original analysis model developed by Daniel Davis, UNM)

Response (a.u.)
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Diodes provide easy way to track SRS evolution when SVS
39 I is unavailable (often...)

* Two diodes facing a scatter plate are individually filtered, giving different
responses for different wavelengths

* Assuming a Gaussian SRS spectrum with 6=10 nm, we perform a nonlinear least
squares fit to extract the mean wavelength and amplitude at each time step
(original analysis model developed by Daniel Davis, UNM)
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— SVS integral
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Extraction fails for non-Gaussian spectra and wavelengths
20 1| outside the second diode’s sensitivity

* Shots with a broad supercontinuum background or broad multipeaked spectra
are not well handled by the model (no DPP shot below, diode’s return constant
wavelength ~700 nm)

* The second SRS diode has effectively zero response below 690 nm because of
the color filter

* This means many of the lower density shots are unreliable (60 psi density
corresponds to ~680 nm scattering)

SVS, B18051004 SRS Wavelengths, B18041302
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Analysis of full diode dataset shows interesting trends, with
2 1 caveat that some shots are unreliable

» Co-injection shots consistently show scattering
corresponding to densities below the fill pressure,
indicating early gas/window expansion after the co-
injection pre-pulse

* SRS increases with intensity and then saturates
* Numbers may only be good to a factor of ~2-3x based on

comparison of select shots with SVS
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Plans to upgrade diode assembly to extend useful time
2 1 window and better constrain spectra

* Four diodes mounted on two lines of sight to scatter plate with beam-splitter
cubes allows fit of more spectral parameters

* Wavelength dependence achieved with different combinations of ND filters
* Each diode covers full range, preventing covariance matrix from diverging

SVS fiber
mount

External diode mounting LOS to scatter plate
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31 Summary

* Experiments on the Z Machine and related Z Backlighter facility support a wide
range of scientific interests and national needs, including laboratory
astrophysics, stockpile stewardship, inertial confinement fusion, materials
physics and high energy density science

* MagLIF provides a possible route to high yield ICF by using fuel preheat and
magnetization to relax requirements on implosion velocity and final hot spot
conditions

* Experiments on the Pecos target chamber support preheat objectives for the
MagLIF program and allow detailed diagnostics of high energy laser energy
deposition in a plasma target
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Questions?

e About the science?

* About Sandia and the Z Facility?

* About working in a national lab?

* About the SSGF fellowship (provided support for this internship)?




Backup Slides




s 1 Density depression

* The decrease in density during preheat may indicate thermally driven
expansion or filamentation (or both)

* This decrease shows a weak correlation with intensity, and differences in
preheat protocols

* Too preliminary to make conclusions: new diode array needed
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Initial MagLIF Design (60 psi)
DPP750 Config A (60 psi He)
DPP1100 Config A (60 psi)
DPP1100 co-injection (90 psi)
DPP1100 co-injection (120 psi)
Open circles: Gaussian model




