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"'tr.. Calcium Fluoride

• The fluorite structure and associated pressure-induced transitions are common
to many compounds

• At ambient conditions, Calcium Fluoride (CaF2) crystallizes into the fluorite
structure

• Static compression at ambient temperatures shows two solid-solid phase
transitions: fluorite 4 cotunnite 4 Ni2ln

• CaF2 has an orientation dependent elastic behavior

• CaF2 samples are cheap, well-characterized, and easy to acquire in multiple
orientations
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"la* CaF2 Phase Diagram

• Extended phase diagram is undetermined determined

• Phase diagrams determined using QMD combined with limited static compression
work below 30 GPa and elevated temperatures

• Both suggest two super ionic phases and a high P-T phase

• The high P-T phase does not correspond to the Ni2ln phase

• Location and range of the Ni2ln phase is unknown
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ImpLAP,
1-g4gte. Prior Shock Compression Work

• Observation of fluorite 4 cotunnite phase along Hugoniot in wave profilel and x-
ray diffraction2 experiments (-12 GPa)

• Al'tshuler et al measured the Hugoniot to 250 GPa (no uncertainties listed)

• Monotonic increase to 100 Gpa, but becomes highly incompressible above 100 GPa

• They attributed the incompressibility to F-F repulsion
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NEP'

• Develop a data-driven, multiphase equation of state

- Understand phase diagram over a broad range of pressure and
temperature

- Understand the kinetics of the phase transitions

- Using shock, shock-ramp, shockless, static compression
methods

- Using density functional theory methods

• Develop or validate a constitutive model

- Examine the dynamics of the constitutive response

- Orientation, temperature, loading rate dependencies

- Using shock and shockless compression methods
Sandia
National
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rywigP'-Arwte Sandia's Experimental Platforms
• Guns: Single stage air, single stage powder, and two-stage launchers

• THOR: Pulsed power with controllable current pulses

• Z machine: Shock, shockless, and shock/ramp loading methods

Sandia 2-stage
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"CZ. Z Experiments Along the Hugoniot

• Single crystal CaF2 [111]

• Initial density = 3.18 g/cm3

• CaF2 backed by various windows

for release measurements

• Z machine shocklessly accelerate
Aluminum flyers

• Flyer Velocities: 12 to 28 km/s

• Generating steady shocks in CaF2

• At impact velocities < 18 km/s
the shock front is not reflective

• VISAR measures impact velocity,
shock velocities and transit times
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Z Experimental Results

• Measured the Hugoniot from 250 GPa to 950 GPa

• One shot at 65 - 85 GPa - consistent with Al'tshuler data below 100 GPa

• Hugoniot determined using Monte Carlo impedance matching

• Data show a monotonically increasing trend above 250 GPa

• Data deviate from the <110 GPa Al'tshuler fit

• Data are not consistent with the observed incompressible behavior
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Two-Stage Experimental Results

• Two-stage experiments using Ta impactors
and [111] CaF2

• impact velocities from 4.7 km/s to 7 km/s

• Transit time measurement with Monte Carlo

VISAR

h Quartz

Ta Flyer CaF2T
a Foil

impedance matching to Ta

• Higher pressure data (-200 GPa) consistent with the Z data

• Data between 100 GPa and 150 GPa show a slope change suggesting a phase
transition
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PI/Itilf, Density Functional Theory Simulations

• Use DFT-MD to assess the CaF2 Hugoniot at high pressures and
temperatures

• DFT-MD simulations performed using VASP 5.4.1*

• Electronic states occupied according to Mermin's finite-temperature
formulation

• Calculate energy and pressure for a given density and finite temperature

• Satisfy the Hugoniot Condition: 2(E —Eref)  P PrefXV f— V) —

• Atoms/Simulation: Fluorite, Cotunnite, and Liquid = 96; Ni2ln = 108

• PBEsoI exchange correlation functional

• Energy cutoff is 900eV

• Checked for convergence: number of atoms, energy cutoff, etc

• VASP PAW potentials: Ca_sv_GW_31Mar2010 (10e-), F_GW_19Mar2012 (7e-)

• G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993) and Phys. Rev. B 49, 14251 (1994).
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DFT Results and Comparison

• DFT Liquid Hugoniot is consistent with the Z data above 200 GPa

• DFT simulations do not show Al'tshuler incompressibility

• Simulations on the liquid are consistent with the slope change between 100 GPa

and 150 GPa

• Simulations on Ni2ln phase are also consistent

• Cotunnite simulations melt at a density of 5.5 g/cm3
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DFT Results and Comparison

• DFT Liquid Hugoniot is consistent with the Z data above 200 GPa

• Simulations on the liquid are consistent with the slope change between
100 GPa and 150 GPa

• Simulations on Ni2ln phase are also consistent

• Cotunnite simulations melt at a density of 5.5 g/cm3

• CaF2 is likely melting, but further work is needed
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"tr.. Hugoniot Temperatures

• Z has temperature measurement capability

• Hugoniot temperature easily measured using

decaying shocks at OMEGA facility

• The QMD provides temperature automatically

• QMD and OMEGA temperatures are in good

agreement
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inptimP,
"44.1... Calcium Fluoride Phase Diagram

• The extended phase diagram is unknown

• Both Carzola and Nelson predict a high pressure, high temperature phase 6

• Both Carzola and Nelson predict a super-ionic phase

• Dorfman's results show a high pressure phase starting around 62 GPa

• Comparison of QMD and phase
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mow-44gte Shockless Compression Experiments

• Preliminary experiments and analysis

• Used THOR to drive increasing loading rates into CaF2 [111] to examine elastic
precursor behavior

• Comparison of [100] and [111] compressed above fluorite — cotunnite phase
transition
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"tit. Shockless Compression Experiments

• Preliminary experiments and analysis

• Used THOR to drive increasing loading rates into CaF2 [111]

• As loading rate increases, elastic precursor qualitatively looks like
earlier shock work

• Lowering the loading rate
changes the elastic peak

• Lowering rate also lowers
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"11414 Shockless Compression Experiments

• Preliminary experiments and analysis

• Used THOR to drive CaF2 above the fluorite-cotunnite transition

• High loading rate: both [111] and[100] show a sharp elastic precursor

- Contrasts with Sekine's results on [100]

• Phase transition shows at velocities
near 1000 m/s

• Under static compression the
transition reduces volume by —6%
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Summary

• Shock compressed CaF2 from 65 GPa
to 950 GPa

• Above 200 GPa, CaF2 is likely melted

• DFT simulations in liquid state are
consistent with the Z data > 200 GPa

• Between 100 and 150 GPa, the QMD

results using solid CaF2 and liquid

are consistent with the data

• Further DFT work is needed
comparison of Gibbs energies

• Phase boundaries are undetermined

• Loading rate affects the behavior of
the elastic precursor
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"IMe Collaboration Objectives and Questions
Phase Transitions and Phase Diagram 
• Develop a data-driven, multiphase equation of state for CaF2

• Understand phase diagram over a broad range of pressure and temperature

• Understand the kinetics of the phase transitions

- The Hugoniot below 100 GPa is complicated by multiple wave structures — can we
understand these?

- Along the Hugoniot, does melt start from the cotunnite phase or do other solid
phases exist?

What does the extended phase diagram look like?

Shock, Shock-Ramp, and DAC experiments and DFT-QMD calculations

Elastic Plastic Behavior 

• Examine the dynamics of the constitutive response and develop or validate a
constitutive model

- How does loading rate and peak stress affect elastic precursor behavior?

- Temperature and orientation effects on the elastic precursor?

- Shock and shockless compression experiments Sandia
National
Laboratories
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Melting Transition
• CaF2 is likely melting

• CaF2 becomes less compressible between 100 - 150 GPa range

• Dorfman's data show the Ni2ln transition has a volume reduction
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"ji"4,21:i
Fluorite phase Hugoniot calculations
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