SAND2018- 13634 PE

Sandia National Laboratories

12 December 2018

Dynamic Loading Response of CaF,
under Shock and Shockless Compression

Seth Root

Sandia National Laboratories
Albuquerque, NM, United States

sroot@sandia.gov

Sandia National Laboratories is a multimission laboratory managed and operated
by National Technology and Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International Inc. for the U.S. Department of

Energy's National Nuclear Security Administration under contract DE-NA0003525.




Calcium Fluoride

* The fluorite structure and associated pressure-induced transitions are common
to many compounds

* At ambient conditions, Calcium Fluoride (CaF,) crystallizes into the fluorite
structure

e Static compression at ambient temperatures shows two solid-solid phase
transitions: fluorite - cotunnite - Ni,In

* CaF, has an orientation dependent elastic behavior

* CaF, samples are cheap, well-characterized, and easy to acquire in multiple
orientations

62-80 GPa

Fluorite Cotunnite




e CaF, Phase Diagram

* Extended phase diagram is undetermined determined

* Phase diagrams determined using QMD combined with limited static compression
work below 30 GPa and elevated temperatures

* Both suggest two super ionic phases and a high P-T phase

* The high P-T phase does not correspond to the Ni,In phase

* Location and range of the Ni,In phase is unknown
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Prior Shock Compression Work

* Observation of fluorite = cotunnite phase along Hugoniot in wave profile! and x-
ray diffraction? experiments (~12 GPa)

e Al'tshuler et al measured the Hugoniot to 250 GPa (no uncertainties listed)
 Monotonic increase to 100 Gpa, but becomes highly incompressible above 100 GPa

* They attributed the incompressibility to F-F repulsion
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Collaboration Objectives

* Develop a data-driven, multiphase equation of state

- Understand phase diagram over a broad range of pressure and
temperature

- Understand the kinetics of the phase transitions

- Using shock, shock-ramp, shockless, static compression
methods

- Using density functional theory methods

* Develop or validate a constitutive model
- Examine the dynamics of the constitutive response
- Orientation, temperature, loading rate dependencies

- Using shock and shockless compression methods
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Sandia’s Experimental Platforms

* Guns: Single stage air, single stage powder, and two-stage launchers
* THOR: Pulsed power with controllable current pulses

» Z machine: Shock, shockless, and shock/ramp loading methods
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Anode Platform
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* Shock compression with flyers
- Upto45km/s

* Shockless Compression
- Quasi-isentropic loading

* Samples are 100s of um to a few mm
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Z Experiments Along the Hugoniot

Single crystal CaF, [111]
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Z Experimental Results

 Measured the Hugoniot from 250 GPa to 950 GPa
* One shot at 65 — 85 GPa — consistent with Al’tshuler data below 100 GPa

 Hugoniot determined using Monte Carlo impedance matching

- Data show a monotonically increasing trend above 250 GPa

« Data deviate from the <110 GPa Al’tshuler fit

« Data are not consistent with the observed incompressible behavior
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Two-Stage Experimental Results

« Two-stage experiments using Ta impactors

and [111] CaF2

* Impact velocities from 4.7 km/s to 7 km/s

 Transit time measurement with Monte Carlo

impedance matching to Ta

| » VISAR
\ Quartz

* Higher pressure data (~200 GPa) consistent with the Z data

- Data between 100 GPa and 150 GPa show a slope change suggesting a phase

transition
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Density Functional Theory Simulations

* Use DFT-MD to assess the CaF, Hugoniot at high pressures and

temperatures
* DFT-MD simulations performed using VASP 5.4.1*

 Electronic states occupied according to Mermin’s finite-temperature
formulation

 Calculate energy and pressure for a given density and finite temperature

- Satisfy the Hugoniot Condition: 2(E — Eref )— (P + Pef eref — V) =0

¥

» Atoms/Simulation: Fluorite, Cotunnite, and Liquid = 96; Ni2ln = 108
* PBEsol exchange correlation functional

* Energy cutoff is 900eV

« Checked for convergence: number of atoms, energy cutoff, etc

« VASP PAW potentials: Ca_sv_GW_31Mar2010 (10e-), F_GW_19Mar2012 (7e-)

* G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993) and Phys. Rev. B 49, 14251 (1994). m
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Fyree DFT Results and Comparison

* DFT Liquid Hugoniot is consistent with the Z data above 200 GPa

* DFT simulations do not show Al’tshuler incompressibility
e Simulations on the liquid are consistent with the slope change between 100 GPa
and 150 GPa
* Simulations on Ni,In phase are also consistent
* Cotunnite simulations melt at a density of 5.5 g/cm3
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DFT Results and Comparison

DFT Liquid Hugoniot is consistent with the Z data above 200 GPa

Simulations on the liquid are consistent with the slope change between
100 GPa and 150 GPa

Simulations on Ni,In phase are also consistent

Cotunnite simulations melt at a density of 5.5 g/cm3

CaF, is likely melting, but further work is needed
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Temperature (kK)

Hugoniot Temperatures
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Calcium Fluoride Phase Diagram

* The extended phase diagram is unknown

* Both Carzola and Nelson predict a high pressure, high temperature phase 0

* Both Carzola and Nelson predict a super-ionic phase

* Dorfman’s results show a high pressure phase starting around 62 GPa

* Comparison of QVID and phase
boundary extrapolations
suggest the melt boundary is
lower than Carzola and Nelson

predict 4

()

* Extrapolations are not 2
unique o

£

* Range of the 0 phase is 2

undetermined

* Location and range of the Ni,In
phase are undetermined
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Shockless Compression Experiments

* Preliminary experiments and analysis

* Used THOR to drive increasing loading rates into CaF2 [111] to examine elastic
precursor behavior

* Comparison of [100] and [111] compressed above fluorite — cotunnite phase
transition

Al panel
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Shockless Compression Experiments

* Preliminary experiments and analysis

* Used THOR to drive increasing loading rates into CaF, [111]

* As loading rate increases, elastic precursor qualitatively looks like

earlier shock work
* Lowering the loading rate
changes the elastic peak

* Lowering rate also lowers
the peak stress state
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Shockless Compression Experiments

* Preliminary experiments and analysis
* Used THOR to drive CaF2 above the fluorite-cotunnite transition
* High loading rate: both [111] and[100] show a sharp elastic precursor

- Contrasts with Sekine’s results on [100]

 Phase transition shows at velocities
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Summary
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Collaboration Objectives and Questions

Phase Transitions and Phase Diagram
* Develop a data-driven, multiphase equation of state for CaF,

* Understand phase diagram over a broad range of pressure and temperature
* Understand the kinetics of the phase transitions

- The Hugoniot below 100 GPa is complicated by multiple wave structures — can we
understand these?

- Along the Hugoniot, does melt start from the cotunnite phase or do other solid
phases exist?

- What does the extended phase diagram look like?
- Shock, Shock-Ramp, and DAC experiments and DFT-QMD calculations

Elastic — Plastic Behavior

 Examine the dynamics of the constitutive response and develop or validate a
constitutive model

- How does loading rate and peak stress affect elastic precursor behavior?

- Temperature and orientation effects on the elastic precursor?

- Shock and shockless compression experiments i Sanda
dtiona
Laboratories
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Melting Transition

« CaF, is likely melting
« CaF, becomes less compressible between 100 — 150 GPa range

« Dorfman’s data show the Ni,In transition has a volume reduction
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Fluorite phase Hugoniot calculations

Al'tshuler elt al (1972)
Expt., Hasegawa et al (1984)
Z Data, this work
2-stage, this work
10 L @© QMD, Liquid
QMD, Ni2In phase

O e » =&

®

® QMD, Cotunnite phase
) 5 QMD, Fluorite phase
=
< 3 .
% 0?2 -
-] )
6 =]

Al'tshuler Fit
Z Data Fit > 250 GPa ]

5 6

-
N
w -
N

C

p (km/s)

Sandia
. » National

=) Laboratories



