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21 Outline

oStatus of the US program

■Options for geologic disposal in the US and other nations
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I Spent Nuclear Fuel and High-Level RadioactiveWaste Disposal: The Goal

"There has been, for
decades, a worldwide
consensus in the
nuclear technical
community for
disposal through
geological isolation
of high-level waste
(HLW), including
spent nuclear fuel
(SNF)."

"Geological disposal
remains the only
long-term solution
available."

National Research Council, 2001
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4 Geologic Disposal in the US: The Reality

Commercial SNF is in Temporary Storage at 75 Reactor Sites in 33 States

oPool storage provides cooling and
shielding of radiation

• Primary risks for spent fuel pools
are associated with loss of the
cooling and shielding water

•US pools have reached capacity limits
and utilities have implemented dry
storage

oSome facilities have shutdown and all
that remains is "stranded" fuel at an
independent spent fuel storage
installation (ISFSI)
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Map of the US commercial SNF storage from Bonano et al. 2018
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51 US Projections of SNF and HLW

Projection
assumes full
license
renewals and
no new
reactor
construction
or disposal
(Bonano et
al., 2018)
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Volumes shown in m3 assuming
constant rate of nuclear power
generation and packaging of
future commercial SNF in
existing designs of dual-

purpose canisters.

Approx. 80,000 MTHM (metric tons heavy metal) of commercial SNF in storage in the US as of Dec. 2017
Approx. 30,000 MTHM in dry storage at reactor sites, in approximately 2,800 cask/canister systems as of
Dec. 2017
• Balance in pools, mainly at reactors

Approx. 2200 MTHM of SNF generated nationwide each year
• Approximately 160 new dry storage canisters are loaded each year in the US
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6 Geologic Disposal in the US: The Reality (cont.) 0-0
DOE-managed SNF and HLW is in Temporary Storage at 5 Sites in 5 States

Hanford
-9,700 Canisters (Projected)

•••••... 

TOTAL
"3,175 Canisters (2010)
-19,865-21,365 Canisters (Total Projected)

Idaho
-3,590-5,090 Canisters (Projected)

West Valley
275 Canisters (2010)

Canisters - HLW Canisters tor Disposal

HLW at West Valley is
owned by New York State

ivannah River
"2.900 Canisters (2010)
-6.300 Canisters (Total Projected)

DOE-Managed
HLW

DOE-Managed SNF

—2,458 Metric Tons

Source: Marcinowski, F., "Overview of DOE's Spent
Nuclear Fuel and High-Level Waste," presentation
to the Blue Ribbon Commission on America's
Nuclear Future, March, 25, 2010, Washington, DC.

[2,13....._ 
Hanford

0 MTHM
Defense: -2,102 MTHM

Non-Defense: -27 MTHM

[ Fort St Vrain, CO -)
Non-Defense: -15 I * _

MTHM 

Idaho
-280 MTMM

Defense: -36 MTHM
Non-Defense: -246 MTHM

TOTAL
"2,458 MTHM
Defense: "2,149 MTHM
Non-Defense: -309 MTHM

"3,500 DOE Canisters

—20,000 total
canisters

(projected)

MTHM - Metric Tons Heavy Metal

Other Domestic Sites
-2 MTHM

Defense: <1 MTHM

Non-Defense: -2 MTHM

Savannah River
30 MTHM

Defense: -10 MTHM
..flon-Defense: -19 MTHM„,
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7 I Observations on Current Practice

oCurrent practice is safe and secure
• Extending current practice raises data needs; e.g., canister integrity, fuel integrity,
aging management practices

oCurrent practice is optimized for reactor site operations
• Occupational dose

• Operational efficiency of the reactor

• Cost-effective on-site safety

oCurrent practice is not optimized for transportation or disposal

• Thermal load, package size, and package design

Placing spent fuel in dry storage in dual purpose canisters (DPCs) commits the
US to some combination of three options

1) Repackaging spent fuel in the future

2) Constructing one or more repositories that can accommodate DPCs

3) Storing spent fuel at surface facilities indefinitely, repackaging as needed

Each option is technically feasible, but none is what was originally planned
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I Spent Nuclear Fuel and High-Level Radioactive8 Waste Disposal: The Goal

"There has been, for
decades, a worldwide
consensus in the
nuclear technical
community for
disposal through
geological isolation
of high-level waste
(HLW), including
spent nuclear fuel
(SNF)."

"Geological disposal
remains the only
long-term solution
available."

National Research Council, 2001
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9 Status of Deep Geologic Disposal Programs World-Wide

Finland Granitic Gneiss Construction license granted
2015. Operations application
to be submitted in 2020

Sweden Granite License application submitted
2011

France Argillite Disposal operations planned for
2025

Canada Granite, sedimentary rock Candidate sites being identified

China Granite Repository proposed in 2050

Russia

Germany

USA

Granite, gneiss

Salt, other

Salt (transuranic waste at the
Waste Isolation Pilot Plant)
Volcanic Tuff (Yucca Mountain)

Licensing planned for 2029

Uncertain

WIPP: operating
Yucca Mountain: suspended

Others: Belgium (clay), Korea (granite), Japan (sedimentary rock, granite), UK (uncertain), Spain
(uncertain), Switzerland (clay), Czech Republic (granitic rock), all nations with nuclear power.

Source: Information from Faybishenko et al., 2016
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1 After Decades of Repository Science and
Engineering,What Do We Have?

NRepository programs in multiple nations
Belgium, Canada, China, Czech Republic, Finland, France, Germany, Japan,

Korea, Russia, Spain, Sweden, Switzerland, United Kingdom, United States

oDetailed safety assessments have been published for multiple disposal

concepts, e.g.,
Switzerland: Opalinus Clay, 2002
France; Dossier 2005 Argile, 2005

USA: Yucca Mountain License Application for a repository in tuff, 2008

Sweden: Forsmark site in granite, 2011

Finland: Safety Case for Olkiluoto site in gneiss, 2012

Canada: Hypothetical repository in carbonate, 2013

•One deep mined repository has been in operation for transuranic waste

(the Waste Isolation Pilot Plant in the US) since 1999

First order conclusions about geologic disposal
• There are multiple approaches to achieving safe geologic isolation
• Estimated long-term doses are very low for each of the disposal

concepts that have been analyzed in detail

• Safe isolation can be achieved for both SNF and HLW
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11 How Repositories Work

Natural

barriers

prevent or

delay water
from

reaching

waste form

1
Engineered

barriers

prevent or

delay water

from

reaching

waste form

11
Overall performance relies on
multiple components; different
disposal concepts emphasize

different barriers

Slow
degradation

of waste form

limits

exposure to

water

Isolation mechanisms may differ
for different nuclides in different

disposal concepts

1
Near Field:

water
chemistry

limits aqueous

concentrations

1
Natural and

engineered
barriers

prevent or

delay

transport of

radionuclides

to the human

environment
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121 Commercial Spent Nuclear Fuel Decay
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Contributors to Total Dose:
13 Meuse / Haute Marne Site (France)
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14 I Contributors to Total Dose:
Forsmark site (Sweden)
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Figure 13-18. Far-field mean annual effective dose for the same case as in Figure 134 7. The legends are
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SKB 2011, Long-term safety for the final repository for spent
nuclear fuel at Forsmark, Technical Report TR-11-01

Disposal concept with
advective transport in the
far-field: Fractured Granite

Long- term peak dose
dominated by Ra-226

Once corrosion failure
occurs, dose is primarily
controlled by fuel
dissolution and diffusion
through buffer rather
than far-field
retardation

1
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Contributors to Total Dose:
15 Hypothetical Site (Canada)
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Diffusion-dominated
disposal concept: spent
fuel disposal in unfractured
carbonate host rock

Long-lived copper waste
packages and long diffusive
transport path

All waste packages
assumed to fail at 60,000
years for this simulation;
primary barriers are slow
dissolution of SNF and long
diffusion paths

Major contributor to peak
dose is 1-129
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16 I Contributors to Total Dose:
Yucca Mountain (USA)
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17 I Conclusions

Deep geologic disposal remains the preferred approach for
permanent isolation of SNF and HLW

Interim storage of commercial SNF occurs in the US at all
operating reactor sites
o The existing inventory of SNF exceeds the legal capacity of the
proposed Yucca Mountain repository

o Interim storage will continue for decades longer than originally
envisioned

Interim storage of DOE -managed SNF and HLW in the US
continues at multiple sites

Multiple geologic disposal options are technically feasible,
including the proposed site at Yucca Mountain, Nevada
o Different disposal concepts rely on different combinations of engineered
and natural barriers to achieve isolation
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20  Timeline of the U.S. Repository Program

Nuclear Waste Policy

Amendments Act

selects Yucca

Mountain as sole site

for further

characterization

Nuclear Waste
Policy Act of

1982

1
1987

Yucca Mountain Site

Recommendation

Site is designated by DOE

and President G.W. Bush

as suitable for repository

development and
licensing

February

2002

Yucca Mountain

Repository License

Application

submitted to the

NRC
June 3,

2008

Present Day

Repository program

remains suspended,

but law is unchanged

SNF continues to

accumulate in dry storage

at commercial reactor

sites; HLW remains in

storage at DOE sites

1982 1986 201 2018

January

31, 1998

DOE fails to open a

repository by the

statutory deadline

-fcm••

2010

Obama Administration

decides Yucca Mountain is

not workable;

Project suspended

Spent nuclear fuel

continues to be generated

at —2,200 MTHM/yr

Today
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2,1 Current Status of the US Program
• 2008: Yucca Mountain Repository License Application submitted

• 2009: Department of Energy (DOE) determines Yucca Mountain to be unworkable

2010: Last year of funding for Yucca Mountain project

2012: Blue Ribbon Commission on America's Nuclear Future completes its
recommendations, including a call for a consent-based process to identify alternative
storage and disposal sites

2013: Federal Court of Appeals orders Nuclear Regulatory Commission (NRC) to
complete its staff review of the Yucca Mountain application with remaining funds

2015: NRC staff completes Yucca Mountain review, finds that "the DOE has
demonstrated compliance with the NRC regulatory requirements" for both preclosure
and postclosure safety

2015: DOE begins consideration of a separate repository for defense high-level wastes
and initiates first phase of public interactions planning for a consent-based siting
process for both storage and disposal facilities. (Both activities terminated 2017.)

- 2016-17: Private sector applications to the NRC for consolidated interim storage (Waste
Control Specialists in Andrews, TX and Holtec in Eddy/Lea Counties, NM)

2018: Yucca Mountain licensing process remains suspended, and approximately 300
technical contentions remain to be heard before a licensing board can reach a decision
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221 Dry Storage Systems for Spent Nuclear Fuel

Dual purpose canister (DPC)

• A canister that is certified for both
storage and transportation of
spent nuclear fuel

Dry cask/canister storage systems

• The most common type of dry
storage cask system is the vertical
cask/canister system shown above,
in which the inner stainless steel
canister is removed from the
storage overpack before being
placed in a shielded transportation
cask for transport

Can be constructed both above
and below grade

• Horizontal bunker-type systems
and vaults are also in use

Some older fuel is also stored as "bare
fuel" in casks with bolted lids; few sites
continue to load these systems

Multiple vendors provide NRC-certified dry
storage systems to utilities
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231 Current Storage and Transportation R&D

Spent fuel integrity

• Current tests and analyses indicate that spent fuel is more robust
than was previously thought

• The DOE/EPR1 High Burnup Confirmatory Data Project will obtain
data after 10 years of dry storage to confirm current test and

Photo: energy.gov

analysis results from parallel hot cell testing of "sister rods"

Storage system integrity

• Stress corrosion cracking of canisters may be a concern in some parts
of the country, and more work is needed in analysis and detection

• Monitoring and Aging Management practices at storage sites will be
important to confirm storage system performance during extended Photo: nrc gov

service

Spent fuel transportability following extended storage

• The realistic stresses fuel experiences due to vibration and shock
during normal transportation are far below yield and fatigue limits
for cladding

Cm0 0   awe t5;s0

Energy.gov/pictures
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24 1

What it may take to License a Repository

SASSANI AGU FALL MEETING DEC 2018



Short History of Yucca Mountain
25

LicensinR 
Support
Network License

Application
Complete
2008

Congress
Approved Site

2002

President

Comprehensive basis, including Recommended Site

DOE Environmental Impact 
2002

Statement, Site Suitability Secretary
Evaluation Recommended Site

2002

Environmental
Assessment YM only site

to be characterized

1987

Nuclear Waste
Policy Act

1982

Viability
Assessment
Complete
1998

Updated License License to
Application Receive Et Possess

Waste

Construction
Authorization

Hearings

Construction
Authorization

Hearings Suspended 2010 I

Action required by: Department of Energy/President Congress NRC

1
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26  What does a Repository License Application Look Like?

The 2008 Yucca Mountain License Application
(LA) included

17 volumes; 8,646 pages
198 supporting documents (-38,000

pages) submitted with the
application

Nuclear Regulatory Commission (NRC) staff
issued approximately 673 formal requests for
additional information

Approximately 305 contentions admitted for
adjudication by the NRC Atomic Licensing
and Safety Board

(nearly all remain unresolved)

NRC Licensing process originally anticipated
to take 3-4 years for a decision on
construction authorization

U.S.NRC
ates Nuclear Regulatory

ing People and the En
'Wet

The DOE's 1996
Compl iance
Certification
Application to the
Environmental
Protection Agency (EPA)
for the Waste Isolation
Pilot Plant (WIPP) was
-72,000 pages,
including appendices
and supporting
references
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27 What is in a License Application?

• General Information
- General Description

- Proposed Schedules for Construction,
Receipt and Emplacement of Waste

- Physical Protection Plan

- Material Control and Accounting
Program

- Site Characterization

• Safety Analysis Report
- Repository Safety Before Permanent

Closure

- Repository Safety After Permanent
Closure

- Research and Development Program to
Resolve Safety Questions

- Performance Confirmation Program

- Management Systems

U.S. DEPARTMENT OF ENERGY

OM, OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT

DOEAW-0573 Rev 0

June 2008

Yucca Mountain Repository License Application

GENERAL INFORMATION

Repository Safety after Permanent Closure is
addressed in 3,456 of the 8,646 pages in the
2008 Yucca Mountain License Application

U.S. DEPARTMENT Of ENERGY

OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT

DOE/RW-0573 Rev 0

June 2008

Yucca Mountain Repository License Application

SAFETY ANALYSIS REPORT

Chapter 1:
Repository Safety

Before Permanent Closure
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28 Postclosure Safety Requirements

For Yucca Mountain, EPA standards and NRC regulations
define:
O A requirement for a probabilistic "performance assessment"
o Compliance limits for estimated mean annual dose and groundwater

concentrations for

i Individual protection

. Individual protection following human intrusion

. Groundwater protection

o The scope of the total system performance assessment (TSPA) model

. Criteria for identifying the features, events, and processes (FEPs) that must be considered
in the TSPA

. Characteristics of the "Reasonably Maximally Exposed Individual" (RMEI)

O A requirement for the identification and description of multiple barriers

that contribute to waste isolation
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29 
I Defining the Scope of the Performance
Assessment

The EPA defines "Performance Assessment" (40 CFR 197.12;
restated by the NRC at 10 CFR 63.2)

`Peormance assessment means an analysis that:
(1) Identifies the features, events, processes, (except human intrusion), and sequences
of events and processes (except human intrusion) that might affect the Yucca
Mountain disposal system and their probabilities of occurring;

(2) Examines the effects of those features, events, processes, and sequences of
events and processes upon the performance of the Yucca Mountain disposal system;
and

(3) Estimates the annual committed effective dose equivalent incurred by the
reasonably maximally exposed individual, including the associated uncertainties, as a
result of releases caused by all significant features, events, processes, and sequences
of events and processes, weighted by their probability of occurrence."
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30 
1 Defining the Scope of the Performance
Assessment

The EPA defines "Probabili " and "Consequence" criteria that
determine what must be included in performance assessment (40
CFR 197.36, restated by the NRC at 10 CFR 63.342)

"The DOE's performance assessments...shall not include consideration of
very unlikely features, events, or processes, i.e., those that are estimated to
have less than one chance in 100,000,000 per year of occurring"

• • •

"DOE's performance assessments need not evaluate the impacts resulting
from features, events, and processes or sequences of events and processes
with a higher chance of occurring if the results of the performance
assessments would not be changed significantly in the initial 10,000-year
period after disposal."
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31 How Much Can a Performance
Assessment Reasonably
Include? FEP Analysis

374 FEPs evaluated for the YM LA
(SNL 2008a,b)

O 222 excluded from the TSPA

- 152 included in the TSPA
o Full documentation provided with the LA

Four scenario classes defined for TSPA
analysis

Formal proof of completeness is not
possible for an analysis of the future

Rigorous and iterative review can
provide confidence that the chosen
scenarios are representative and include
the necessary FEPs

Scenario
Development

Implementation

Identify and Classify FEPs Potentially
Important to Postclosure Performance,

Including Input from International Radioactive
Waste Disposal Programs

Screen List of FEPs Using Probability,
Consequence, and NRC Regulations to

Determine Inclusion and Exclusion

Construct Nominal and Disruptive Events
Scenario Classes from Retained FEPs

.

Construct Calculation of Total
Mean Annual Dose

Specify the Implementation of Nominal
and Disruptive Events Scenario Classes

in TSPA

00817DC 0240.ai
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32 1

TSPA-LA Scenarios

Four scenario classes divided into seven modeling cases

Nominal Scenario Class 
• Nominal Modeling Case (included
with Seismic Ground Motion for
1,000,000-yr analyses)

Early Failure Scenario Class 
• Waste Package Modeling Case
• Drip Shield Modeling Case

Igneous Scenario Class 
• Intrusion Modeling Case
• Eruption Modeling Case

Seismic Scenario Class 
• Ground Motion Modeling Case

• Fault Displacement Modeling Ca
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33 1 Regulatory Basis for Uncertainty Analysis
"The NRC will determine compliance, based upon the arithmetic mean of the
projected doses from DOE's performance assessments for the period within 1
million years after disposal" (EPA 40 CFR 197.13(a), restated by the NRC at 10
CFR 63.303)

"The DOE must demonstrate, using performance assessment, that there is a
reasonable expectation that ... " [estimated doses will be below specified limits]
(EPA 40 CFR 197.20(a), restated by the NRC at 10 CFR 63.111(a))

"Reasonable expectation means that NRC is satisfied that compliance will be
achieved based upon the full record before it. Characteristics of reasonable
expectation include that it:
o (a) Requires less than absolute proof because absolute proof is impossible to attain for disposal
due to the uncertainty of projecting long-term performance;

o (b) Accounts for the inherently greater uncertainties in making long-term projections of the
performance of the Yucca Mountain disposal system;

o (c) Does not exclude important parameters from assessments and analyses simply because they
are difficult to precisely quantify to a high degree of confidence; and

. (d) Focuses performance assessments and analyses upon the full range of defensible and
reasonable parameter distributions rather than only upon extreme physical situations and
parameter values." (EPA 40 CFR 197.14, restated by the NRC at 10 CFR 63.304)
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34  Major Long-Term Processes Active at Yucca Mountain

Precipitation infiltrates and percolates downward through the unsaturated zone

° Multiple processes degrade engineered barriers, including the waste form

• Radionuclides are mobilized by seepage water and percolate
downward to the water table

• Lateral transport in the saturated zone leads to biosphere exposure at
springs or withdrawal wells

• Seismicity and volcanism may disrupt the system over geologic time
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35 1
Total System Performance Assessment Architecture
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36 1 Postclosure Science Supporting the TSPA

TSPA-LA Model
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AD 01, Figure 6-1 (SNL 2008c)
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„ I Uncertainty in Yucca Mountain TSPA

Aleatory Uncertainty

- Inherent randomness in events that could occur in the future

- Alternative descriptors: irreducible, stochastic, intrinsic, type A

- Examples:

> Time and size of an igneous event

> Time and size of a seismic event

Epistemic uncertainty

- Lack of knowledge about appropriate value to use for a quantity assumed to have a
fixed value

- Alternative descriptors: reducible, subjective, state of knowledge, type B

- Examples:

> Spatially averaged permeabilities, porosities, sorption coefficients, ...

> Rates defining Poisson processes
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38 I Uncertainty in YM TSPA (cont.)

Epistemic uncertainty incorporated through Latin hypercube sampling of
cumulative distribution functions and Monte Carlo simulation with multiple
realizations

(approx. 400 uncertain epistemic parameters in TSPA-LA)
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39  Example: Calculation of Expected Eruptive Dose
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40 1
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41 I Long-Term Performance ofYucca Mountain
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42 Closing thoughts regarding Repository Licensing

40 CFR 191 (EPA 1985)

"Because of the long time period involved and the nature of the events and processes of interest,
there will inevitably be substantial uncertainties in projecting disposal system performance. Proof of
the future performance of a disposal system is not to be had in the ordinary sense of the word in
situations that deal with much shorter time frames. Instead, what is required is a reasonable
expectation, on the basis of the record before the implementing agency, that compliance with
§191.13 (a) will be achieved." (40 CFR 191.13(b)) [emphasis added]

"Substantial uncertainties are likely to be encountered in making these predictions. In fact, sole
reliance on these numerical predictions to determine compliance may not be appropriate; the
implementing agencies may choose to supplement such predictions with qualitative judgments as
well." (40 CFR 191 Appendix B (now Appendix C))

There is much more to licensing a repository than quantitative postclosure safety assessment
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