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3 What is Infrasound?

Low-frequency sound (0.01 — 20 Hz)

Can travel thousands of kilometers
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What is Infrasound? 0

Sources of Infrasound
Meteors
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Supersonic aircraft

Aurora
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reentry
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Problem

Nearly impossible to categorize
events by eye

Infrasound propagates through a
dynamic atmosphere

o Signals from the same event can look
very different

• Distance from source to sensor

• Frequency content

Atmospheric conditions

Analysts require ground truth

O Seismic, satellite, etc.

The Infrasound Categorization

Calbuco Volcano, Chile, 2nd Eruption

2 3 4 5 6

Time (hours after 04:00 UTC)

7 8



6 
Why Machine Learning and Deep
Learning?

Previous attempts in graduate school used cross correlation:

. Only —30% accuracy

. Limited to one location — Sakurajima Volcano

Other studies using ML on infrasound data have shown promising results:

o

Author(s) # Events
(Train/

Classifications Station Layout Avg. Source
to Sensor

Method Accuracy

Test) Distance

Ham and
Park, 2002

246/210 Event type:
volcano, mountain
waves, impulsive,
"no event"

Single station Some > 250
km, others
unknown

NN 100%

Cannata et 665/610 Volcano vent Network < 5 km SVM 88%
al., 2011 location

Thuring et
al., 2015

29/30 Avalanche Single station < 5 km SVM 57%
detection

Li et al., 88/15 Event type: Single station unknown SVM 86%
2016 eathquake,

volcano, tsunami
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Catalog

Labeled infrasound event catalog

. IMS catalog with local, regional,
and global events

717 events

. Recorded at multiple stations

. Each station consists of at least 3
sensors

. Some events have multiple
subevents

Variety of events

. Suffers from class imbalance

. Complex/diverse labels in some
of the classes

A Global, Labeled, Infrasound Event Tgi

Catalog of Events [
volcano

unknown

- rocket
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8 Event Class Imbalance oil

- Aircraft

- Anthropogenic

Avalanche

■ Bolide

■ Cultural Noise

- Earthquake

■ Chemical Explosion

■ Mine Blast

■ Rocket

■ Volcano

■ Unknown
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Classes

1. Earthquakes

2. Chemical explosions

3. Mining explosions

Volcanic eruptions

Focus on Four Most Abundant

fb.1

47% 

23%

- Earthquake

- Chemical Explosion

Mine Blast

• Volcano



10
Classes

Most common event types
for the IMS

Of interest for monitoring
purposes

New catalog:
519 events

More balanced, lacking
volcanic eruptions

Most events detected at
global distance 250 km)

Focus on Four Most Abundant

Volcano

Mining Event

Earthquake

Chemical Explosion



„, Two Approaches to a Solution

Method 1: SVM

2 feature extraction methods:
Spectral Entropy (Li et al., 2016)
o Wavelet Singular Spectrum Entropy

o Wavelet Power Spectrum Entropy

o Wavelet Energy Spectrum Entropy

Physical Features
O Amplitude (mean, max, rms, std)
O Energy

o Duration

O Fundamental frequency

o Number of zero crossings

o Spectral analysis (spread, centroid)

o Skewness around fundamental
frequency

o Source to sensor distance

O SNR

Method 2: CNN

o Demonstrated success on a
variety of analogous tasks

o Testing in seismic domain
indicates that performs nearly as
well as RNN (LSTM) for
sequences of similar length, but
is more compact

O Higher capacity to model the
data
0 Limited training data in this study



1, SVM Dataset

615 stations recorded 519 events

Signal duration encompasses all
phases
• Detrended

o Data was time-shifted and averaged for
each station

4-fold cross validation
• Initially randomly chose 25% of each
class for each partition (4 fixed
partitions)

O 64 mining events

o 38 chemical explosions

o 26 volcanic eruptions

O 25 earthquakes

CB

Bolide

110H2

04060tiv"Aia.,

Mean

0-

20'00 4coo bcuu
Num. Samples

IC 0 uo 120u 0



13 What is a SupportVector Machine 0
(SVM)?

Supervised machine learning
o Requires labeled data, cannot cluster data on its own

Commonly used for classification and regression analysis

Model aims to identify a set of hyperplanes that maximize the distance
between the nearest data points in each category
o Can be linear or nonlinear (requires a kernel trick)

2

o

-2

-4

-6

-8

4

https://medium.com/machine-learning-101/chapter-2-svm-support-vector-machine-theory-f0812effc72



1„ SVM Results Spectral Entropy

50-60% accuracy

Many false classifications as mining
events
• Predicts mining events correctly 77%
of the time

o Often predicts other classes as mining
events

Very bad at categorizing
earthquakes
• Often categorized as explosions or mining
events

Request for more "physical"
features that have been used with
seismic

Test Accuracy: 60.655738 %

I 0 {

CI 4

- 0.3

- 0.2

0.1

0.0



15, SVM Results — "Physical" Features 0

30-40% accuracy

Everything categorized as a mining
event

These features do not describe the
waveforms

Test Accuracy: 36.065574 %
1.0

eci - 0.00 0.00 1 00 0.00

0.8

ex - 0.00 0.00 1 00 0.00
0.6

mine 0.00 0.00 1.00 0.00 0.4

0.2

volcano 0.00 0.00 1 OC) 0.00

0.0



16. CNN Dataset
615 stations recorded 519 events
o Only top 4 classes

Fixed signal duration to 475 sec (2 std
median signal length)
• Detrended

o Tapered (1%)

o Normalized spectrogram computed for CNN
0 Temporal resolution: 1 time bin = 60 seconds

o Data was time-shifted and averaged for each
station

4-fold cross validation
o Initially randomly chose 25% of each class for
each partition (4 fixed partitions)

• 64 mining events

o 38 chemical explosions

o 26 volcanic eruptions

• 25 earthquakes
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What is a Convolutional Neural
Network (CNN)?
Deep, feed-forward artificial neural network

Proven highly competent at solving complex big data problems, especially
in image domains.

Typically requires large amounts of data

Hidden layers, known as convolutional layers
o Receives input, transforms that input, and then passes it on to the next layer

o Filters applied to each layer (edge detector, shape detector, etc.), which help
identify patterns

Input Image

Edge or Corner (

Convolution Layer - Convolution • Max Poolng

Obtect Detector

1

Multiple Convolution Layers Fully Connected Layer

https://www.researchgate.net/Illustration-of-Convolutional-Neural-Network-CNN-Archttecture_fig3_322477802



1, CNN Results

Current best model:
• CNN

• Best performance 60-70%:

• Not as good at classifying earthquakes

Binary tests show that the method
outperforms multiclass model pairs
except for with earthquakes and
explosions
• No clear way to leverage binary models
for multiclass classification

Test Accuracy: 56.209150326797385 %

0.37 0.25 0.16

m n e - 0.04 0.79 0.02

!=i3 - 0.18 0.20

0.08 0.25 0.09

0.22

0.14

0.15



19 Conclusions ■

Ham and
Park, 2002

Cannata et
al., 2011

Thuring et
al., 2015

Li et al.,
2016

This study

# Events Classifications Station Layout Source to Method Accuracy
(Train/ Sensor
Test) Distances

246/210 Event type: volcano,
mountain waves,
impulsive, "no
event"

Single station Some > 250
km, others
unknown

NN 100%

665/610 Volcano vent Network < 15 km SVM 88%
location

29/30 Avalanche detection Single station < 15 km SVM 57%

88/15 Event type: Single station unknown SVM 86%
earthquake,
volcano, tsunami

462/153 Event type:
earthquake,
volcano, chemical
explosion, mining
event

Single station and
2+ stations

< 15 km
15 - 250 km
> 250 km

SVM,
CNN

50-60%



2. Conclusions

Highest accuracies 60-70%
O SVM seems to outperform CNN

CNN and SVM both struggle with earthquake and explosion categories
o Need to understand what is different between the two classes in order to get better
accuracies

Physical features taken from seismology do not transfer over to infrasound
o Constantly changing atmosphere introduces complications
o Waveforms do not contain same obvious patterns for event types

Future Work:

Analyze SVM feature importance

Test analyst vs. CNN accuracies



21 Distance Tests 0

Distance bins: <15 km, 15-250 km, and > 250 km

<15 km: 3 examples

15-250 km: 183 examples, most are mining events

> 250 km: 429 examples, most are chemical explosions

• CNN results on binned data:

• Prone to overfitting due to small training set vs. number of model parameters (path effects,
site responses, etc.)

• Predicting distance with the model:

• 80 % accuracy between regional and global

•Using two prediction tasks (event class + distance class):

• Doesn't seem to offer any advantage for event classification, but also doesn't hurt

• Results are the same (avg. — 50%)


