Key Information

* Electromagnetic wave propagation in a nano-resonator
that has a temporally variant refractive index induces
frequency conversion of the confined photons.

* The conversion is dependent on the quality factor (Q) of
the resonator.

* All-dielectric metasurfaces give us: low absorption, high
damage threshold, tunable via optical pumping, Mie
modes for design flexibility.

* Breaking the resonator symmetry allows coupling
between bright and otherwise-dark modes that results 1n
Fano resonances of far higher Q than the original modes.

* The frequency conversion 1s not based on a material
nonlinearity and thus may be observed at low fluence.
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(a) Principle of frequency conversion
in a cavity. Probe photons exist in the
cavity at t, when the pump pulse (top) FDTD spectra of the metasurface.
reduces the index of the cavity as (b) ED & Fano: Color & Quiver show E field
shows. The probe is blue-shifted as MD: Color shows E field, Quiver shows H field

the index is reduced.
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Device Dimensions and SEMs are shown (top). a) shows the
transient reflectance dynamics of the Fano resonance as it is 05
pumped and recovers. b) shows the Fano resonance as it is 0
shifted due to pump-induced free carrier generation in the Yavelendth (nm)

resonator at a pump fluence of 150 pJ-cm™.
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Pump-Probe Reflectance Spectroscopy
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A broadband supercontinuum pulse is generated in the sapphire plate
which is used as a probe.
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Experimental transient reflectance spectra as a function of pump-probe time delay. The
fringes 1n the spectra between -1 and 0 ps are due to interference between the blue-
shifted probe and the incident probe. The right plot is zoomed-in at the region of interest.
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a & b show CMT spectra, with b showing various time delays from a. Right shows
experimental spectra from the above experimental maps. The observed fringes are a result of
interference between the blue-shifted probe and the incident probe.
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4 Coupled Mode Theory

Time Dependent CMT

* The dynamics of the system are well described by a
dynamic coupled-mode theory.

* In this analysis we modify standard coupled mode theory
for a single-mode metasurface to include a time dependent
central frequency and quality factor (loss).

a(t) +io®)a®) + [vr + Yur(O]a(t) = Vyrst (@), w(t) = wy+ [N(t) Aw,

Nmax
sy (t) =57 (t) —rra(t)

N (¢)
Vnr(t) = Ynr,0 + N Aan;
a(t) - complex mode amplitude, - A
1+ Erf[(t — 7)/Tpump]
w(t) - mode center frequency, N(t) = Npoy > ,

Y (t) - mode damping,
N (t) - carrier concentration, note: |An| o< N(t),
st (t) = sqexp(—iwgt — t? /Témbe) - incident broadband probe.
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* We have demonstrated a dielectric time-variant metasurface that exhibits
linear frequency conversion at NIR wavelengths.

* The frequency conversion 1s a result of the probe photons experiencing
an ultrafast shift in the refractive index of the GaAs resonator. The
quality factor of the resonator must be sufficiently high to observe this
effect, here we achieve this by breaking the resonator symmetry.

* The frequency conversion 1s not based on a material nonlinearity and

thus may be observed at low pump and probe fluence.

* The low required pump fluence (<150 uJ cm) is also due to the use of

direct-gap semiconductors having high linear absorption at 800 nm.

* The observed results indicate that frequency conversion metasurfaces are
a novel time-variant nonlinear platform that could be applied towards

various applications in ultrafast photonics.
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