
ro 1
Sandia
National
Laboratories CURENT NewYorkPower

CENTER FOR ULTRA-WIDE-AREA RESILIENT
ELECTRIC ENERGY TRANSMISSION NETWORKS

Authority

Voltage Control Performance Evaluation using
Synchrophasor Data

January 2020

Joe H. Chow, Christoph Lackner Felipe Wilches-Bernal Atena Darvishi

Rensselaer Polytechnic Institute Sandia National Laboratories New York Power Authority

Troy, NY, USA Albuquerque, NM, USA White Plains, NY, USA

T
THE UNIVERSITY OF

TENNESSEE Northeastern
KNOXVILLE

.Relisselaer TU S KE G E E

SAND2020-0003C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.



Overview
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• Voltage Regulation

• Proposed Algorithm

• Performance Evaluation Results
I During Disturbances

I During Ambient Operation
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Motivations

• Current approach:
• Use PMU data for model parameter identification and verification
• Difficulties:
• The small time constants associated with machine subtransient

circuits are not readily identifiable (requires higher PMU
sampling rate)

• Some equipment (such as wind turbines) have multiple control
modes and it may not be clear as to which mode is in operation

• Parameter identification tends to be a manual tuning process
(assisted by power system simulation software with playback
capability)



Voltage Regulation

• Voltage Regulation Loop creates A14,

response in reactive power injection
based on change in terminal voltage

• Some converter-based equipment
models can be separated into active
and reactive part
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Voltage Regulation

• A simplified mode can be used to estimate
• Droop
• Time constant

• Voltage vs Q plots show regulation
• Control parameters only effect model at lower
frequencies,

reactive
power
droop

capacitive inductive 

(a) Fast Regulation

reactive
power
droop

capacitive inductive 

0
(b) Slow Regulation

15

10

5

0

-5

-10

20

-10

—No Exciter
--Ka = 15, Ta = 10ms\NINtrez--
—Ka = 15, Ta 50ms -41Ir 
—Ka = 15, Ta =

--Ka = 15, Ta = 200ms

0.01 0.1 1 10
Frequency (rad/s)

(a) Effect of TA

100

—No Exciter
—Ka = 10, Ta = 100ms
—Ka — 15, Ta 100ms
—Ka = 20. Ta = 100ms
—Ka = 22, Ta = 100nis

0.01 0.1 1 10
Frequency (rad/s)

(b) Effect of KA

100



Voltage Regulation: Voltage vs Q plot

Raw data Processed data



Proposed Algorithm

• Four-Stage Algorithm

I Initial data processing

I Dynamics separation
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I Frequency component selection

I Dynamic model estimation
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Initial Data Processing

• Removes bad data xprnu(t)

• Replaces missing data

• Based on a 2nd order median-filter
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• 182

Dynamics Separation

• Separates Signal into 3 components

I Quasi-Steady-State (QSS)

• Due to slow moving operating condition (e.g. load changes, AGC, dispatch)

I Dynamic Component

• Due to control systems

I Noise

• Based on Empirical mean Decomposition (EMD) and linear filtering
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Dynamics Separation
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Frequency Component Selection and Model Estimation

• Frequency Component Selection

Based on linear filter

Only parts of the signal affected by the control parameters are used

• Model Estimation

Numerical Optimization of Mean Square Error (MSE)

Estimates Gain (Droop) and Time Constant
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STATCOM Performance Evaluation Results Disturbance Data

Event Droop (%) T (ms)

1 3.175 106.06
2 2.884 4.08
3 3.217 3.88
4 2.883 88.11
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Generator Performance Evaluation Results Disturbance Data

Event Droop (%) T (rns)

1 30.533 1904.50
2 17.929 4761.68
3 18.917 4305.19
4 17.281 5086.73
5 16.770 506.72

6 10.170 491.00
7 10.799 1646.64
8 18.749 874.44 1.042
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STATCOM Performance Evaluation Results - Ambient Data

Dataset Droop (%) T (rns)

1 2.652 20.28
2 2.847 42.89
3 3.469 27.91
4 3.809 3.55
5 3.212 4.04
6 3.589 1.53
7 2.844 3.54
8 7 128 32.64

9 2.836 24.00
10 4.697 0.76
11 2.005 4.70
12 3.123 47.30
13 2.620 4.01

14 3.489 2.58
15 2.768 3.80
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Generator Performance Evaluation Results Ambient Data

Dataset Droop a) T (ms)

1 6.514 561.73
2 12.161 509.35
3 20.055 1477.96
4 15.076 1033.97
5 18.029 989.40
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Conclusions

• Voltage control performance can be monitored using voltage and
reactive power signals measured at the equipment output

• Proposed Algorithm can work on
I Disturbance data

I Ambient operation data

• Performance estimates for
I STATCOM

I Excitation systems for synchronous generators

• Future Work
I Use algorithm to estimate control performance of wind turbine generators

1 Implement real time control performance evaluation
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