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2 | Outline

- Native degrees-of-freedom
o What they are and why/how they are used

- Generalized Moving Least Squares (GMLS)
o Description and examples
o Extension to native fields
> Numerical examples

- The Compadre Toolkit
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3 I What are Native Degrees-of-Freedom (DoF)!?

Typical use cases

o Different codes may employ different discretizations of the same PDE due to different designs, e.g.,
o stabilized vs. compatible

> The same field may be represented differently in a coupled multi-physics simulation, e.g.,
o Raviart-Thomas (H(div)) velocity vs. nodal (H1) velocity in Darcy-Stokes coupling

> The field may be represented by the same type of discretization but on a different cell shape:
o Raviart-Thomas on tets, Raviart-Thomas on hexes and mimetic difference on polyhedrons

We consider a DoF type to be “native” to a code that uses it to represent its fields
(it is a relative term). This DoF type is non-native to any code that couples to the given code.

Compatible discretization spaces

] [ I l \_ Stokes /

DOF: Nodal Edge Face Cell
value circulation flux average




4+ | Research Problem

o Code coupling requires exchange of fields that may have different native DoF sets.
> The coupler should be able to reconstruct the necessary fields from their native DoFs.

> One option is to tell the coupler how each code reconstructs the fields internally, i.e., expose
FE bases, quadrature, etc. to the coupler.

> This may be impractical as codes may have multiple options to reconstruct from their native
DoFs and/or these options may change over the product’s lifecycle.

Research challenge:
Can we provide a field reconstruction capability that
> Accepts any reasonable native DoF type

o Reconstructs accurately a field from that type without having to know the internal
reconstruction procedure for each code utilizing this DoF type

Our solution:

Extend Generalized Moving Least Squares beyond point samples to enable
reconstruction from all basic types of DoFs in compatible discretizations




; | Climate Simulation Needs

- E3SM (Energy Exascale Earth System Model, previously ACME)

o Simulates the fully coupled Earth system at high-resolution (15-25 km, with additional
regional refinement where necessary)

Subsystem models include land, ocean, atmosphere, land ice, and sea ice

Discretization “zoo” for the various subsystem models, requiring a high-order accurate and
flexible data transfer capability

Heterogeneous architectures benefit from improved computation to communication ratio
(involves solution of many small but independent QPs)

Focus today is on transfer, recovery, or remap of primary field from Face (Raviart-Thomas)
basis field data and Edge (Nedelec) basis field data

o

o

o

o

Coupling

1 éi:‘i i @ Approaches for

i Next Generation

/A& Architectures

(CANGA)

oo ss

03333
9,

Q.. e

e %

3

e X

&,

0

19

&

15 7

52s7 4
o

=3 <=
==
‘.3.“
L0
{3
e
e
3
s

=55

3=

s

==

{2
7
3
!
3
=
>
{?
<
=

{2

¥

8t

8!

LY 3 Q.g
Seiqalg!
IS
533

=

=
=
—

=3
=

=

3=
SSSS

MPAS HOMME



¢ I Examples of Native Field Data

Raviart-Thomas (Face) elements

For low order Raviart-Thomas, data is contained at midpoints of

faces {f;} and represents either u(x;) - n(x;) or ff_ u(x) - n(x) df;.

Nedelec (Edge) elements

For low order Nedelec, data is contained at midpoints of edges |
{e.} and represents either u(x;) - t(x;) or fe_ u(x) - t(x) de; .



7 I Examples of Native Field Data

Cell-averaged (FV) degrees of freedom

For finite volume methods, data is stored as one value per cell
which represents the average of the solution over a cell.

ka u(x) dx

measure(Ty)




Generalized Moving Least Squares

Ingredients:
V, vV - a function space (e.g. continuous functions) and its dual
P = Span{pi}?zl cV - an approximation finite dimensional space, e.g. polynomials
A = {/\1 o /\N} cV* - a finite set of sampling functionals (e.g. point evaluations, integrals,
’ ’ normal components, tangent components, etc...)
reT CV? - a target functional (or a family of target functionals)
W(T, )\i) . (TU A) X (TU A) — R - a window function correlating functionals

(e.g. a radial kernel) determines the smoothness of reconstruction

Example, MLS case:

Point cloud X}, = {x;}*, C Q, with filling distance h = sup min_ |x — x].
XGQ ’izl,...,Nh

uEV:C’kH(Q), P:Hk(Q), Ai(u) = u(x;), 7 =u(x), W=W(x-—x)



Generalized Moving Least Squares

1. (GMLS Approximate) Constrained Optimization formulation:

h i i -
T (u) = a’_\(u),| qa- p = argmin > — :
( ) ZEZI)_C x { x} a’ il W(X, XZ)

ja’f?

s t.ome(@) = 3 aih(p). Ype P (Th(p) =

icls

2. (Practical Recipe) Least Squares formulation:

T2 (u) := Tx(Pz,u),| DPx,u = argmin ' (Ni(uw) — Ni(p)? W (x, %)




Reconstructing Vector Functions
(from projections along given directions)

Associate to each particle 7 a position x; and a unit vector v; € R%.

Sampling functional: Ai(a) == u(xy;) - v;

Filling distance h,, is the radius of the smallest ball that centered at any

point of Q) contains d particles whose versors vy, ..., vy contain a basis for R¢
with associated determinant bigger than w (| det|[vy,...,v4]| > w).
Vi [/ 3

V5 For h, < C(0,R,m,w), Vp € [II™]Y,
g L? i, € Ay, such that |A; (p)| > puwlp|

1,00

Other sampling functionals we considered:

1 1 1
/ a-t;, A () wonp N(w) = / uly) dy
il Je, Vil Jv,

)= “17




12 I Data Transfer from Face Elements (RT) to P1

Face normal (Raviart-Thomas) field data P1 Lagrange field data
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13 | Convergence Study | (Quasi-uniform mesh)

Mesh refinement sequence

1.0 A 1.0

Exact solution:

] _( sin(x)sin(y)
vl y) = (— sin(x) sin(y)) ’

0.4 0.4 A

0.2 0.2 1

0.0 0.0 1

Degree of basis for reconstruction: 4

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Regular Mesh

Face Elements (Raviart-Thomas) Edge Elements (Nedelec)
Integral Point Integral Point
h |2 Error Rate |2 Error Rate |2 Error Rate |2 Error Rate
0.02 6.64559E-05 - 7.28634E-05 - 4.94356E-05 - 6.77058E-05

0.01 4.78883E-06 3.79 4.58658E-06 3.99 2.34348E-06 4.40 2.5238E-06 4.75
0.005 8.4105E-08 5.83 8.22289E-08 5.80 7.40259E-08 4.98 6.62357E-08 5.25
0.0025 2.10075E-09 5.32 1.95143E-09 5.40 2.03705E-09 5.18 1.71913E-09 5.27

0.00125  5.11811E-11 5.36 4.7762E-11 8.35 4.57059E-11 5.48 4.04744E-11 5.41



14 | Convergence Study Il (Randomly rotated edges)

Exact solution:

v(x,y) = (

Degree of basis for reconstruction: 4

h
0.02
0.01

0.005
0.0025

0.00125

sin(x) sin(y)
— sin(x) sin(y)>

Refinement sequence
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Face Elements (Raviart-Thomas)

Integral

|2 Error
4.63995E-05
1.15421E-06
3.14008E-08
7.28335E-10
2.0614E-11

Rate

5.33
5.20
5.43
5.14

Point

|2 Error
4.86964E-05
1.31781E-06
2.78324E-08
6.65194E-10
1.81714E-11

0.2

Rate

5.21
5.57
5.39
5.19

0.4

0.6 0.8 1.0

Randomly Rotated Edges

Integral

|2 Error
5.27721E-05
1.02272E-06
3.11048E-08
6.69842E-10
2.02698E-11

Rate
5.69
5.04
5.54
5.05

Edge Elements (Nedelec)

Point

|2 Error
5.56072E-05
9.83186E-07
3.2778E-08
6.17752E-10
1.82303E-11

Rate

5.82
4.91
5.73
5.08

I D e -



15 | Convergence Study Ill (Blown-up edges from regular mesh)

Refinement sequence
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Degree of basis for reconstruction: 4

Dilated from Mesh

Face Elements (Raviart-Thomas) Edge Elements (Nedelec)

B s s B

Integral Point Integral Point
h |2 Error Rate |2 Error Rate |12 Error Rate |12 Error Rate
0.02 0.0018622 - 0.0019948 . 0.0025625 . 0.0026576
0.01 0.0001834 3.34 0.0001686 3.56 0.0001177 4.44 0.0001146 4.53
0.005 2.714E-06 6.08 2.587E-06 6.03 3.209E-06 5.20 2.988E-06 5.26
0.0025 6.61E-08 5.36 6.238E-08 5.37 8.03E-08 5.32 7.442E-08 5.33
0.00125 1.577E-09 5.39 1.463E-09 5.41 1.933E-09 5.38 1.775E-09 5.39



16 | Convergence Study IV (Blown-up randomly rotated edges)

Exact solution:

v(x,y) = (

Degree of basis for reconstruction: 4

h
0.02
0.01

0.005
0.0025
0.00125

sin(x) sin(y)
— sin(x) sin(y))

Face Elements (Raviart-Thomas)

Integral

(2 Error

0.0016478
5.777E-05
1.075E-06
2.647E-08
7.168E-10

Rate

4.83
5.75
5.34
521

Point

(2 Error

0.0017719
5.941E-05
1.039E-06
2.583E-08
6.746E-10

Rate

4.90
5.84
5.33
5.26

Integral

(2 Error

0.0016324
3.549E-05
1.03E-06
2.458E-08
7.279E-10

2.0 A
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0.0

Refinement sequence
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Randomly Rotated Edges from Dilated Mesh

|
%]

Edge Elements (Nedelec)

Rate

5.52
5.11
5.39
5.08

Point

(2 Error

0.0016149
3.466E-05
1.045E-06
2.388E-08
6.875E-10

Rate

5.54
5.05
5.45
5.12
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17 I Convergence Study V (Various configurations with Cell-Averaged)

Exact solution:

v(x,y) = cell average(sin(x) sin(y))

Degree of basis for reconstruction: 4

h
0.02
0.01

0.005
0.0025
0.00125

Quasi-Uniform Mesh

(2 Error

7.668E-08
1.294E-09
2.435E-11
6.001E-13
1.630E-14

Rate

5.89
5.73
5.34
5.20

Refinement sequence
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(2 Error

1.080E-06
2.317E-08
5.436E-10
1.360E-11
3.604E-13

Rate
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5.41
5.32
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(2 Error

1.032E-06
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Cell-Averaged (FV)

Rotated+Blown-Up Cells

Rate

5.43
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5.36
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18 I The Compadre Toolkit

Remap

- Remote remap of fields between codes with independent data distributions (domain
decomposition, halo search, neighbor search)

o Remap for targets not limited to point reconstruction (gradient, curl, divergence,
integrals, etc.., along with surface equivalents on manifolds)

- Remap from samples that are point evaluations, integrals over cells/edges/balls,
and native fields such as face normal velocities

> Sets up, solves, and applies solutions to GMLS problems
o Utilities for generating tangent space approximations for problems posed on manifolds

PDE Solution

- Same GMLS problem setup / solution application can be used as a stencil for degrees
of freedom (DoFs) to form a global linear system.

o Strong-form PDE solution support for assembly, boundary conditions, and source terms
(Laplacian, Laplace-Beltrami, Stokes, elastodynamics, shallow water, etc...)

- Weak-form PDE solution (Non-conforming polynomial shape functions)

> Block physics with block preconditioning (GMRES, CG, AMG, ILU, Jacobi, G-S, etc...
using Trilinos solver packages)

* =

AZ 1 A22 p fz




19 I Under the Hood [Adaptive neighbor search in | D]

1. Determine number of neighbors needed for unisolvency given degree of basis used for reconstruction
In 1D, with p =2 is just n = p+1 =3 ‘

2. Do KNN (k-nearest neighbors) search with a k-d tree for 3 neighbors
3. Identify nth neighbor, and its distance r,
4. Multiply r,, by some multiplier (~1.5) to ensure non-zero weighting kernel value for nth neighbor

5. Do radius search and keep all neighbors within distance 1.5r,

<+ Support size (window)
— Weighting Kernel

* Target Site
O Neighbors

— 0 o—*qo ® ; |



20 | Compadre Toolkit Info

- e e e e e e = = = = === ==

\ https://github.com/SNLComputation/compadre
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https://pypi.org/project/compadre/
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21 | Conclusions

> Native degrees-of-freedom can include complex representations of fields that are useful
due to benefits in regularity and/or compatibility, but coupling from one representation to
another can be challenging.

> Traditional interpolation schemes can not interpolate between many field representations.

> GMLS is a powerful tool for native fields due to the flexibility in choice of sampling
functional, allowing remap/reconstruction of commonly encountered H(grad), H(div), and
H(curl) bases, as well as cell averaged representations of data.

- Compadre Toolkit provides a massively parallel, performance portable solution for setting
up and solving GMLS problems. It runs on GPUs and also has a Python interface.
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