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Schneider’s Transition Journey UL

BS from Caltech in 1981

Navy Ocean Systems Center from 1981-83
= Worked on torpedoes.

MS from Caltech in 1984

PhD from Caltech in 1989 Manooch  Dan Lang
= Low speed turbulent spot studies.  koochesfahani
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Boeing/AFOSR Mach-6 Quiet Tunnel® .

= Evolved from a small university research tunnel to a national asset

= Small experiments with 1-2 oscilloscopes evolved to complex cases
with many sensors (10+oscilloscopes) and advanced diagnostics




Sandia National Labs ) e,

= Schneider wanted to compare wind-tunnel experiments to
flight data, so began to look for available data in the mid 90s

= |nspired by comment that flight data was not repeatable.
= |n 1998, Schneider presented a summary of unclassified flight
data he had found at an AIAA conference in Albuquerque

= Dave Kuntz (retired SNL) saw the presentation and commented on the
data included within it!
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Sandia National Labs ) e,

This eventually lead to a continuing partnership with Sandia
National Labs, beginning in 2002.
=  Wrote 2 classified reports summarizing flight data
= This is no small task (there are A LOT of old reports)
= Advises on transition-related projects.
= Backpacks
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Internships at Sandia UL

Encourages students to work with and collaborate with
industry and research laboratories!

| applied for internship at SNL as an undergrad in 2006

= No funding was available for an experimental summer internship
= Resume emailed out to SNL department
= Schneider saw it and hired me as a summer intern at Purdue.

= Returned to Purdue in 2007 for a Masters and PhD

= Combined research with a 5 year year-round graduate internship at SNL
throughout grad school. :




SNL Internship Project
(and MS/PhD Work)

Vehicle vibration is a maximum
when a reentry vehicle undergoes
laminar to turbulence boundary-
layer transition.

= Pressure fluctuations peak during
boundary-layer transition.

= Need to model fluctuations and spatial

distribution to define the vehicle
environments.

= Need to understand how component

response is generated as a result of
these environments.
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Turbulent Spot Pressure Loading

Transitional pressure loading is generated by intermittent turbulent
spots in the boundary layer.

= |ndividual spots contain broadband turbulent pressure fluctuations
= |ntermittent passage of spots drives lower frequency vibration.
= Spots grow and merge into a fully turbulent boundary layer.

%0 0.1 0.2 0.3 04 0.5 0.6 0.7

Pressure footprint of turbulent spot, Mach 6




Turbulent Spot Pressure Loading (O}

Not possible without quiet tunnel nozzle wall

= Allows long working length for large spots to
develop.

= Can obtain high spatial resolution with
arrays of sensors.

Provided Sandia needed parameters for

modeling turbulent spot pressure

fluctuations during hypersonic transition.

= Spot convection velocities

= Spanwise spreading angle

= Pressure footprint of spot




Transition Statistics ==

Seven degree stainless-steel sharp cone.

= Axial and spanwise arrays of high-frequency pressure transducers.
= Directly beneath schlieren viewing area in some cases.

= Model traveled back and forth between Purdue and Sandia.
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Model installed in the Sandia
Hypersonic Wind Tunnel.

Axial pressure-transducer array.




Mach 5 Measurements, Re = 9.75 x 105/m (@) &x.

Schlieren Videos

x=0.355m
Intermittent formation of second-mode %= 01.385
wave packets that then break down to

isolated turbulent spots.

= Observed in both schlieren videos and
simultaneous pressure measurements.

Disturbances are surrounded by a smooth
laminar boundary layer.

= To model this behavior, need to be able
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Mach 5 Transition Statistics ) =,

Developed techniques to separate
waves from turbulence in both
pressure measurements and schlieren

videos. 1 — .
= Compute separate statistics for 081_ ."
instability waves and turbulent ; o uo®
spots. go_a__ ¢ .:
= Both measurement techniques E | .
show reasonable agreement. 27 )
Waves remain a small part of o2k .°
transitional region. : :.;:.._:ﬂ.k_ e
Turbulent intermittency rises rapidly 832 o034 0 033(mc)>4 04 042 04 ods
through transition.
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Computation of Boundary-Layer Statistics, )
Mach 8, Re =9.74 x 10°/m

Schlieren Videos

35
Flow alternates between second-mode

waves and turbulence.

= Smooth, laminar boundary layer not 254
observed in transitional region. 2}
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Natural Transition Statistics: Intermittenc{l! .

Instability waves
= Significant part of the flow prior

to development of turbulent .
spots. [ At .
- .
Turbulent spots TN o7
) - > i :\ .
= Gradually begin to dominate SosF N 4.
flow. = 0 ¥
. : : g 04} L
= Turbulent intermittency rises as E e N,
instability wave intermittency oz fF "’i-....k
decreases. [o® R 5
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Natural Transition Statistics: Burst Rate

Burst-rate computations

shows flow switches between 251
turbulence and waves. i ‘°~°
B veoe
= Equal burst rate for instability 'g o v .‘
waves and turbulence. E y /o %
= High burst rate when intermittency 8 : io‘.
: 8 '
is near 0.5. 5 10} 90 2
= Burst rate decreases as spots 'g ™ e,
merge into turbulence at locations o 5 o
further downstream.
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Tie spot statistics to pressure loading @i

Tie statistics to pressure fluctuations measured during transition
= Lower frequency fluctuations from passage of intermittent turbulent spots.
Could also study second-mode wave growth and breakdown leading to the spot

formation.
= Compared under noisy and quiet flow thanks to Purdue/SNL collaboration.
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107k Quiet Flow, x = 0.490 m, Re/m = 10.3 x 10° :
— _B B
F10°F 6
Qw } [
3 10° -
10~11 :
5_ ——

10»12- PRI TR NI N T ST NS B
0 200 400 600 800 1000 =
f (kHz) i

[ 9 ST N N N T |

: 02 0.25 03 0.35 0.4 0.45 05

Comparison of second-mode waves X (m)

under noisy and quiet flow (BAM6QT)

Pressure Fluctuations during Transition
—————————————————————————————————————————————————————————————————————————————————————————————————————————————————————



Both Purdue and Sandia Benefit... ),

Purdue/SNL collaboration allowed:

= Access to quiet tunnel results

= Wider Mach number range for noisy results (Mach 5, 6, 8, and 14)
= Access to SNL expertise and computations

= |nternship experience

Graduation in 2012

= Took a full-time job at Sandia

= No more Indiana! Or so | thought....

Back to Indiana for 4 SNL sponsored wind tunnel tests between
2013 and 2017.

L




What is the vibrational response to =
this environment?

Designed a cone with integrated thin panel that will

vibrate from flow excitation.

= Boundary layer characterized using pressure sensors
upstream and downstream of panel.

= Panel response measured inside with accelerometers.

A spark perturber is used to create

periodic turbulent spots in the

boundary layer.

= Simplified validation case for
modeling and simulation.

@hAccelerometers.,
~ (inside) .




Initial Testing

7| Netora

We started testing at Mach 5 and 8 at Sandia, in noisy flow.
= No matter what we did, there was no effect of the turbulent spots we were

generating.
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Tunnel noise matters! ) e,

= Turns out tunnel noise strongly excites the panel structural modes
= |n a noisy tunnel, an isolated spot has no effect on the panel response.
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Back to Indiana.... again UL

Needed quiet flow to study the isolated effect of turbulent
spots on the panel
= Returned to Purdue for a quiet flow tunnel entry.

= Gave us great datal
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Computational Efforts: Simple

Validation Case R
—

Loading from
Single Spots




Computational Efforts: Flight-like Case

Loading from
Multiple Spots

Applied Force - Magnitude (IbF)
0.000e+00 0.0037 0.0075 0.011 1.500e-02

Predicted Structural Response
25
20
15

Acceleration - Magnitude (in/sA2)
0.000e+00 1375 2750 4125 5.500e+03




PO to Purdue: 7| Neoora

Laboratories
Quiet Flow Turbulence Measurements on a Flared Cone

Laminar fluctuations are a reflection of tunnel noise but what’s the effect on
turbulent pressure spectra?

® Funded Purdue to compare turbulent spectra under noisy and quiet flow.
= Brandon Chenowyth

= Turns out it is a fairly limited effect

= Limited to low frequencies!
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Another solution: Bring out another Purdue Intern! Vs,

Josh Edelman
= Temperature-Sensitive Paint (TSP)
implementation at SNL
= Crossflow Studies at Purdue and
Sandia National Labs
= How do trends compare between
Mach numbers?
= Can we connect noisy and quiet
wind tunnel data?
= Validation case for SNL computations.

I .
8 8.5 9 9.5 10 105 1 115

Heat Transfer, KW/m?
Flow —




Purdue Academic Alliance ) 2=

More formal collaboration framework now in place.

= Partnership between Sandia, Purdue Propulsion,
and the BAM6QT to developed advanced laser-
based diagnostics (FLEET).

Additional SNL interns/alumni from Purdue!

PURDUE UNIVERSITY

= Katie Gray
= Clayton Smith




Team Schneider! y T
» Lockheed-Martin — Craig Skoch ock e /

= NASA Langley — Shann Rufer / Amanda Chou
= BAE Systems — Erick Swanson
= AFRL - Matt Borg

=  Notre Dame — Tom Juliano

= Sandia National Labs — Katya Casper
= Applied Physics Lab — Brad Wheaton / Dennis Berridge
= Raytheon — Chris Ward

= USAFA — Roger Greenwood N
=  Purdue — Brandon Chynoweth

= Boeing — Matthew Lakebrink

=  DARPA contractor —Josh Edelman

JOHNS HOPKINS

APPLIED PHYSICS LABORATORY

Many other MS Students and Mach 4 prototype alumni not listed here!
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Separating Instability Waves from Turbulence @)=

Separate instability waves from turbulence using a wavelet transform
technique, and the frequency range of fluctuations.
= Technique does a reasonable job separating the two regions.

= Can see evidence of waves at leading and trailing edges of turbulent
disturbances.

15 e Wave Region
- - Turbulent Region
- — x=0355m
1.25 P ———— x=0.365m
- —— x=0376 m
i e ¥x=0.396 m
1 ;,_,"— : N
2075 S
L i
05|
025 F
0 [ A . . ] . . i : ] i . . . ] i ; . . ]
0.00065 0.0007 0.00075 0.0008 0.00085
t(s)




Response to Periodic Spots at Detuned ™ e

Frequencies
Ratio response to baseline  f-27kh:
response measured under - Mode Matched — 237
% B = 3.3 kHz
a laminar boundary layer. \ — Turbulent Boundary Layer

= Largest panel response when
forcing frequency matches a
structural natural frequency.
= 200 times larger than under
a laminar boundary layer!

= Smaller responses at detuned
frequencies.

Worse-case scenario for
component response.

150 |
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Flight-Like Environments

Spot forcing distributions corresponds to elevated vibrational

th

frequencies over a broad, high-frequency range during transition.

= Vibrations drop for turbulent flow as burst rate decreases.

Re = 7.5 x 10%m, Downstream
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Sandia

Mach 5 & 8, Smooth Cone B

Re =6.3e6 /m, M =5
Roughness: Smooth Cone

3.87°

Re =11.3e6/m M =8
Roughness: Smooth Cone

3.88°




