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Abstract. As computer architectures are rapidly evolving (e.g. those
designed for exascale), multiple portability frameworks have been devel-
oped to avoid new architecture-specific development and tuning. How-
ever, portability frameworks depend on compilers for auto-vectorization
and may lack support for explicit vectorization on heterogeneous plat-
forms. Alternatively, programmers can use intrinsics-based primitives to
achieve more efficient vectorization, but the lack of a GPU back-end for
these primitives makes such code non-portable. A unified, portable, Sin-
gle Instruction Multiple Data (SIMD) primitive proposed in this work,
allows intrinsics-based vectorization on CPUs and many-core architec-
tures such as Intel Knights Landing (KNL), and also facilitates Single
Instruction Multiple Threads (SIMT) based execution on GPUs. This uni-
fied primitive, coupled with the Kokkos portability ecosystem, makes it
possible to develop explicitly vectorized code, which is portable across
heterogeneous platforms. The new SIMD primitive is used on different ar-
chitectures to test the performance boost against hard-to-auto-vectorize
baseline, to measure the overhead against efficiently vectroized baseline,
and to evaluate the new feature called the “logical vector length” (LVL).
The sIMD primitive provides portability across cPUs and GPUs without
any performance degradation being observed experimentally.
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1 Introduction

Many different new computer architectures are being developed to potentially
improve floating point performance such as those being developed for exascale.
For example, Intel Haswell, Knights Landing (KNL), and Skylake processors sup-
port vector processing with a vector length of 512 bits. ARMv8.2-A processors
have a vector length of 2048 bits [29]. Nvidia, Intel and AMD GPUs may be part of
upcoming supercomputers [6,23]. Multiple performance portability frameworks
are being developed to avoid architecture-specific tuning of programs for ev-
ery new architecture. Such portability frameworks as Kokkos [5] and RAJA [12]
provide uniform APIs to shield a programmer from architectural details and
provide a new performant back-end for every new architecture to achieve the
performance portability. The Kokkos [5] library achieves performance portabil-
ity across CPUs and GPUs through the use of C++ template meta-programming.

Many pre-exascale and proposed exascale CPU and many-core architectures
increasingly rely on Vector Processing Units (VPUs) to provide faster perfor-
mance. VPUs are designed with Single Instruction Multiple Data (SIMD) capa-
bilities (Vector capabilities) that execute a single instruction on multiple data
elements of an array in parallel. SIMD constructs can enhance the performance
by amortizing costs of instruction fetch, decode, memory reads and writes [7].
The process of converting a scalar code (which processes one element at a time)
into a vector code (which can handle multiple elements of an array in parallel) is
known as the “Vectorization” or “SIMD transformation”. Thus, effective vector-
ization becomes very important for any performance portability tool, including
Kokkos, to extract the best possible performance on CPUs.

Another important class of supercomputers uses GPUs as accelerators (e.g.,
Summit, Sierra). The Single Instruction Multiple Threads (SIMT) execution
model of NVIDIA’S CUDA divides iterations of a data parallel kernel among mul-
tiple CUDA blocks and threads. A warp, a group of 32 CUDA threads, runs in
the SIMD mode similar to the VPU (an exception: the latest Volta GPUs allows
out of sync execution of warp threads). Any portable solution to vectorization
should allow both styles of vectorization without considerable effort from ap-
plication programmers. Furthermore, it is essential to distinguish between the
physical vector length (PVvL) in the hardware and the logical vector length (LVL)
as needed by the application usage. For example, Figure 1 (a) shows how Kokkos’
uniform APIs, Team, Thread and Vector [5], provide three levels of parallelism,
and how they are mapped to cPUs and Nvidia GPUs. At the third level, user-
provided C++11 lambda is called and loop indexes are passed to the lambda.

On Nvidia GPUS, the CUDA threads can be arranged in a three-dimensional
grid. Each thread is identified by a triplet of ids in three dimensions which are
accessed using “threadld.<x or y or z>". Consider the number of teams, threads
and vectors requested by a user are L, T and V, respectively. In this case, GPUSs,
“L” Kokkos Teams are mapped to “L” cUDA blocks. The cUDA block id is
mapped to the Kokkos team id. Each cUDA block is of the size VxTx1. The
CUDA threads within a block can be logically divided among T partitions of size
V (not to be confused with cuDA-provided Cooperative Groups). Each partition
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Fig. 1: Kokkos APIs and mapping to CPU and CUDA

is assigned with a unique threadldx.y ranging from 0 to T-1. Kokkos maps these
partitions to Kokkos threads and the Kokkos thread id to cuDA threadldx.y.
The threads within a partition are assigned a unique threadldx.x ranging from
0 to V-1. Kokkos Vectors get mapped to V threads within each partition. On a
cpU, the Kokkos Teams and Kokkos Threads are mapped to OpenMP thread
teams and OpenMP threads. Using the Kokkos Vector augments the user code
with the compiler directives, which helps the compiler in auto-vectorization. This
Kokkos design enables efficient SIMT execution on GPUs. However, successful au-
tomatic vectorization on CPUs depends on a lack of loop dependencies, minimal
execution path divergence in the code, and a countable number of iterations,
i.e., the number of iterations should be known before the loop begins execu-
tion [14]. Traditionally, compilers auto-vectorize loops that meet these criteria
but fail to auto-vectorize outer loops or codes having complex control flows,
such as nested if conditions or break statements. This problem can be addressed
by using SIMD primitive libraries that encapsulate architecture-specific intrinsic
data types and operators to achieve explicit vectorization without compromising
portability across CPUs. Several such libraries exist for cpus [17,20,27,32]. How-
ever, using SIMD primitive libraries would break the portability model as shown
in Figure 1 (b). Instead of calling the Kokkos-provided Vector, programmers
directly call the lambda from a Thread, and in turn invoke any SIMD primi-
tive libraries, which would map user data types and functions to platform spe-
cific intrinsics. This explicit vectorization can generate more efficient code where
compilers do a poor job. However, as far as the authors are aware no portable
SIMD primitive library provides a GPU back-end, except OpenCL, which sup-
ports vector data types on all devices [24]. Using such primitive libraries with
Kokkos, however, leads to compilation errors due to missing CUDA back-end
for the primitive. As a result, programmers are forced to make a compromise -
either achieve portability at the cost of mon-optimal CPU performance through
the compiler auto-vectorization or achieve the optimal CPU performance using
SIMD primitives, but maintain a separate version of code for GPU without using
SIMD primitive, thereby compromising portability. Maintaining a different code
for GPUs defeats the purpose of using Kokkos i.e., “performance portability”. In
order to remedy the situation, this work makes the following contributions:
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Heterogeneous Performance Portability: The primary contribution of this
work is to add a new CUDA back-end to the existing SIMD primitive in Kokkos and
make the SIMD primitive portable across heterogeneous platforms with Nvidia
GPuUs, for the first time. (More back-ends can be added to Kokkos and to the
primitive to support a wider range of heterogeneous platforms.) The CUDA back-
end is developed with the exact front-end interfaces as those built for the cpuU
back-end. Using these uniform interfaces, the application programmers can now
achieve efficient vectorization on the CPU without maintaining a separate GPU
version of the code, which was not possible before. Thus, the new SIMD primitive
provides GPU portability and requires only a few hundred lines of new code for
the GpU back-end.

Using the new portable SIMD primitive gives a speedup up to 7.8x on Intel
KNL and 2.2x on Cavium ThunderX2 (ARMv8.1) for kernels that are hard to
auto-vectorize. A comparison of the primitive with existing SIMD code (either
auto-vectorized CPU code or equivalent CUDA code) shows no overhead due to
the primitive. The portable primitive provides explicit vectorization capabilities,
without the need to maintain a separate GPU code. As the outer loop may now
be easily vectorized using the new primitive, more efficient code can be gener-
ated than auto-vectorization of the inner loop.

Logical Vector Length (LVL): Another feature of the new primitive is the
Logical Vector Length (LvL). Application developers can pass the desired vector
length as a template parameter (LVL) without considering underlying physical
vector length. The LVL can be used to write codes agnostic of physical vector
length (PVL), as explained in Section 3. Vectorizing the outer loop coupled with
the LVL automatically introduces the “unroll and jam [3]” transformations, with-
out any burden on programmers. These transformations can exploit instruction
level parallelism and data locality to provide speedups up-to 3x on KNL and 1.6x
on CUDA than the auto-vectorized / SIMT code.

Easy adoption: Introducing the portable SIMD type needs less than a 10%
change in user’s loop. Once the primitive is introduced, the code can be explic-
itly vectorized on CPUS and also ported to GPUs without any further changes.
Applicability to use cases: The new portable SIMD data type supports a
wide variety of computational science use cases, such as PDE assembly for com-
plex applications, 2D convolution, batched linear algebra, and ensemble sparse
matrix-vector multiplication as will be shown below.

2 Related Work

Vectorization has been studied from multiple perspectives: tools to identify vec-
torization opportunities [9]; portability frameworks using intermediate represen-
tations (IR) [26]; data parallel programming models [21] and data layout trans-
formations [8]. Existing methods for improving vectorization include compiler
directives, framework-based methods, tools to assist compilers [9], and language
extensions [21]. Compilers provide directives that help auto-vectorization, e.g.,
the Intel compiler’s #pragma vector directive instructs the compiler to override
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efficiency heuristics. Intel’s #pragma simd can be used to force vectorization (al-
though it has been deprecated in the 2018 version). #pragma ivdep instructs the
compiler to ignore assumed loop dependencies. OpenMP provides #pragma omp
simd, which is similar to #pragma simd. Even after specifying these directives,
complex control structures in a loop may prevent auto-vectorization. The LLVM
community is gradually developing more advanced vectorization capabilities such
as outer loop vectorization [30]. OpenCL [24], a portable parallel programming
standard, provides vector data types on all the supported devices. The maxi-
mum length of a vector data type in OpenCL is limited to 16, which may be
problematic for architectures with larger PvLs. On the other hand, the LVL im-
plemented in this work can be passed as a template argument and offers more
flexibility to users. In addition to Kokkos, there are other recently developed
performance portable libraries such as RAJA [12], Alpaka [33] and occa [22].
The SIMD vectorization support in RAJA is limited to using the execution pol-
icy rRAJA: :simd_exec, which adds #pragma omp simd to the code and relies on
compiler auto-vectorization [15]. Alpaka refactors user code to help the compiler
in auto-vectorization. OCCA also provides hints to enable auto-vectorization but
lacks any explicit SIMD support at present.

Multiple implementations of a SIMD primitive for CPUs such as the Vc vec-
torization library [20], the Unified Multi/Many-Core Environment (UME) frame-
work [17], and the Generic SIMD Library [32] enable an explicit vectorization
using architecture-specific SIMD intrinsics and operator overloading. KokkosKer-
nels [19] is a library that implements computational kernels for linear algebra
and graph operations using Kokkos. KokkosKernels uses a SIMD data type for
its batched linear algebra kernels [18]. Embedded ensemble propagation [27]
using the Stokhos package in Trilinos [28] for uncertainty quantification uses an-
other version of SIMD primitives that allows flexible vector lengths. Furthermore,
Phipps [27] addressed portability of this “ensemble type” to SIMT architectures.
Pai [26] addressed SIMT portability using Intermediate Representations (IR).

While all these efforts are successful, they do not yet provide the full range
of portability shown in this work.

3 Portable simd primitive

The portable SIMD primitive developed here sits on top of Kokkos, which provides
basic performance portability across a range of architectures. Figures 2, 3 and 4
present pseudo code of the portable SIMD primitive.

Common declarations: Figure 2 shows some common declarations used
to achieve portability. The PVL macro definition derives platform-specific vector
length, i.e., physical vector length (PvL). “simd_cpu” and “simd_gpu” are for-
ward declarations for CPU and CUDA primitives, respectively. They need a data
type and the logical vector length (LvL) as the template parameters. An alias
“simd” is created using std::conditional, which assigns “simd_cpu” to “simd” if
the targeted architecture (or the execution space in the Kokkos nomenclature)
is OpenMP and “simd_gpu” if the execution space is CUDA. The simd template
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// PVL: physical vector length
// LVL: logical vector length
// EL: element per vector lane

#define PVL ... //detect architecture-specific PVL
using namespace std;

// advanced declarations
template<typename T, int LVL, int EL=LVL/PVL>
struct simd_cpu; //for cpu

template<typename T, int LVL, int EL=LVL/PVL>
struct simd_gpu; //for gpu

template<typename T, int LVL, int EL=LVL/PVL>
struct gpu_temp;

// conditional aliases for Primitive and Temp
template<typename exe_space, typename T, int LVL>
using simd = typename conditional<
is_same<exe_space, OpenMP>::value,
simd_cpu<T, LVL>, simd_gpu<T, LVL> >::type;

template <typename exe_space, typename T, int LVL>
using Portable_Temp = typename std::conditional<
is_same<exe_space, OpenMP>::value,
simd_cpu<T, LVL>, gpu_temp<T, LVL>>::type;

Fig.2: Common declarations used in SIMD primitive

template<int LVL, int EL>
struct simd_cpu<double, LVL, EL>{

__m512d _d[EL]; // knl instrinsic for 8 doubles

Portable_Temp<exe_space, double, LVL> operator+ (const simd &x){

Portable_Temp<exe_space, double, LVL> y;
#pragma unroll (EL)
for (int i=0; i<EL; i++)
y._d[i] = _mm512_add_pd( _d[il, x._d[il);

return y;

}

//more operators and overloads

Ip

Fig. 3: SIMD primitive: KNL specialization for double

expands into respective definitions at compile time depending upon the execu-
tion space. As a result, both execution spaces can be used simultaneously, thus
giving portable and heterogeneous execution. The “Portable_Temp” alias and
“gpu_temp” type are used as a return type and are explained later.

CPU back-end: The cpU back-ends containing architecture-specific SIMD in-
trinsics are developed for Intel’s KNL and Cavium ThunderX2. Template spe-
cializations are used to create different definitions specific to a data type as
shown in Figure 3 (which is a specialization for double on KNL). Overloaded
operators invoke architecture-specific intrinsics to facilitate standard arithmetic
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template <typename T, int LVL, int EL>
struct gpu_temp{

T al[EL];

//more operators and overloads

1

template<typename T, int LVL, int EL>
struct simd{

T _d[LVL];

Portable_Temp<exe_space, T, LVL> operator+ (const simd &x){
Portable_Temp<exe_space, T, LVL> y;
#pragma unroll (EL)
for(int i=0; i<EL; i++){

int tid = i * blockDim.x + threadIdx.x;
y._d[i] = _d[tid] + x._d[tid]
}
return y;
5
//more operators and overloads

12

Fig. 4: SIMD primitive: CUDA definition

using namespace Kokkos;
typedef View<double*> dView;
void add_scalar(dView &A, dView&B, int n){
parallel_for (..., [&](team_member t){//team loop
parallel_for (..., [&](int tid){//thread loop
//calculate "start" and "end" for the thread
for(int i=start; i<end; i++)
for (int j=0; j<m; j++)
if (B[i] < 1.0)
B[il += A[j];
1
3ol
}

typedef simd<exe_space, double, SIMD_LVL> Double;
typedef Kokkos::View<Double*, KernelSpace> SimdView;

void add_vector (dView &A, dView&B_s, int n){
SimdView B(reinterpret_cast<Double *>(B_s.data()));
parallel_for (..., [&](team_member t){//team loop

parallel_for (..., [&](int tid){//thread loop
//calculate "start" and "end" for the thread
for (int i=start; i<end/SIMD_LVL; i++)
for(int j=0; j<n; j++)
B[i] = if_else( (B[i]<1.0), (B[il+A[jl1), B[il);
3
il
}

Fig. 5: Example usage of the SIMD primitive: Conditional addition of arrays without
(top) and with SIMD primitive.

operations, math library functions, if_else condition (as shown in the example
later). The new primitive can support bitwise permutation operations such as
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shuffle and has been verified with some preliminary experiments. One such ex-
ample of an overloaded operator is shown in Figure 3. The operator+ calls the
intrinsic function “_mmb512_add_pd”, which performs the addition of eight dou-
bles stored in the intrinsic data type -_mmb512 in a simd manner. The return
data type of the operator+ is “Portable_Temp”. When the execution space is
OpenMP, Portable_Temp is set to “simd_cpu” itself, which simply returns an
intrinsic data type wrapped in the primitive. The KNL specific back-end from
Kokkos::Batched::Vector is reused, and the functionalities of the LvL and alias
definition based on the execution space are added on top of it. A new back-end
was added for ThunderX2 using ARMv8.1 intrinsics.
Logical vector length: Users can pass the desired vector length as the template
parameter “LVL”. The LVL iterations are evenly distributed among the physical
vector lanes by the primitive. As shown in operator+ (Figure 3), each vector lane
iterates over EL iterations, where “EL=LVL/PVL”, e.g., if PVL=8 and LVL=16,
then EL=2, i.e. each vector lane will process two elements. Thus LVL, allows users
to write vector length agnostic code. In use cases, such as the 2D convolution
kernel presented in this work later, using LVL improved performance up to 3x.
CUDA back-end and Portable_Temp: Finally, a new CUDA back-end is
added with the same front-end APIs as used in the CPU back-end, making the
primitive portable, as shown in Figure 4. The common front-end APIs present
a unified user interface across heterogeneous platforms, which allows users to
maintain a single portable version of the code and yet achieve effective vector-
ization. The portability of the primitive avoids the development of two different
versions as required prior to this work. The common front-end APIs include
structures “simd” and “Portable_Temp”, declared in Figure 2, along with their
member functions. Whenever a programmer switches to the CUDA execution
space, “simd” alias refers to “simd_gpu” and expands into an CUDA definition
of the SIMD primitive. To emulate the CPU execution model of SIMD process-
ing, the ¢PU back-end contains an array of “logical vector length” number of
elements (double _d [LvL]). These elements divided among the PVL number of
CUDA threads along the x dimension. (The PVL is auto-detected based on a plat-
form.) CUDA assigns unique threadldx.x to each thread ranging from 0 to PVL-1
(as explained in Section 1.) Each cUDA thread within operator+ (Figure 4) adds
different elements the array _d indexed by “tid =i * blockDim.x + threadIdx.x”.
(In this case blockDim.x represents the number CUDA threads along x dimen-
sion, which is set to PvL.) Together, the PVL number of CUDA threads process
a chunk of PVL number of elements in a SIMT manner. Each CUDA thread ex-
ecute EL number of iterations (loop variable i). Thus, the primitive processes
LVL=PVL*EL number of elements within array _d. Offsetting by threadIldx.x al-
lows coalesced access and improves the memory bandwidth utilization.
However, the CUDA back-end needed an additional development of gpu_temp
to be used as a return type. Consider a temporary variable of a type “sIMD” used
in the CPU code. The declaration is executed by the scalar CPU thread and the
elements of the variable are automatically divided among CPU vector lanes by
the intrinsic function. Thus each vector lane is assigned with only “EL=LvL/PVL”
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number of elements. However, when used inside a CUDA kernel, each CUDA thread
i.e., each vector lane, declares its own instance of the SIMD variable. Each in-
stance contains LVL elements and results into allocating PVLXLVL elements. The
problem can be fixed by setting the alias Portable_Temp to the type “gpu_temp”.
“gpu_temp” holds only EL elements - exactly those needed by the vector lane.
Thus, the total number of elements is still LvL. As a result, the CUDA implementa-
tion of the SIMD primitive needs combinations of operands: (SIMD, SIMD), (SIMD,
Portable_Temp), (Portable_Temp, sSIMD) and (Portable_Temp, Portable_Temp).
Two alternatives to avoid Portable_Temp were considered. The PVL can be
set to 1 (or EL). One can even use CUDA-supported vector types such as float2
and float4. Both options will solve the return type problem mentioned earlier as
each vector lanes processes 1 / 2 / 4 elements and returns the same number of
elements as opposed to elements getting shared by vector lanes. Using CUDA vec-
tor types can slightly improve the bandwidth utilization due to vectorized load
and store. CUDA, however, lacks any vectorized instructions for floating point
operations, and the computations on these vector types get serialized. Thus, us-
ing either of these options will remove the third level of parallelism (i.e., Kokkos
Vector). Hence, the Portable_Temp construct was chosen.
Example usage: Figure 5 shows an example of vectorization using the portable
SIMD primitive and Kokkos, but without showing Kokkos-specific details. Kokkos
View is a portable data structure used to allocate two arrays, A and B. Ele-
ments of A are added into each element of B until B reaches 1. The scalar code
(add_scalar function) does not get auto-vectorized due to a dependency between
if(B[i]<1.0) condition and addition. (Of course, adding #pragma simd or inter-
changing loops helps in this example, but may not always work.) The add_vector
function, a vectorized version of add_scalar, shows how the SIMD primitive can
vectorize the outer loop. Array A is cast from double to simd<double>, the num-
ber of iterations of the outer loop is factored by the LvL, and the “if” condition
is replaced by an if_else operator. The statement calls four overloaded operators,
namely, <, 4, if_else and =. Vectorizing across the outer loop works because the
outer loop iterations are not dependent on each other. If the LVL is increased to
2*pVvL, the loop gets unrolled by a factor of two and each vector lane processes
on two iterations consecutively. As the main computations usually take place in
the innermost loop, the unrolled outer loop automatically gets jammed with the
inner loop. Users can simply set LvL=nxPVL and the primitive unrolls the outer
loop by a factor of n. Because the iterations of the outer loop are independent
of each other, the transformation can exploit instruction level parallelism.

4 Experiments

Experimental Platforms: A node of Intel KNL with 64 cores, 16GB of High
Bandwidth Memory (or MCDRAM) configured in flat quadrant mode and 192GB
RAM was used to test the CPU version. Each KNL core consists of two VPUs with a
vector length of 512 bits. Thus, using the double precision floating point numbers
allows a vector length of 8. The codes were compiled with the Intel compiler suite
2018 with the optimization flags -O3 -xMIC-AVX512 -std=c++11 -fopenmp.
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Tests were also run on a single node of the Astra cluster at Sandia National
Laboratories. Fach Astra node provides 128 GB of high bandwidth memory
and two Cavium ThunderX2 CN99xx processors with 28 cores each. Cavium
ThunderX2 is an ARMv8.1-based processor with a vector length of 128 bits. It
can execute two double precision operations with a single SIMD instruction. The
GNU 7.2.0 compiler suite was used to compile applications with the flags -O3
-std=c++11 -mtune=thunderx2t99 -mcpu=thunderx2t99 -fopenmp.

The NVIDIA P100 ¢PU with Compute Capability 6.0, 3584 CUDA cores, 16GB
of High Bandwidth Memory and 48 KB of shared Memory per SM was used to
test the GPU performance. The applications were compiled using gec v4.9.2 and
nvee (from cUDA v 9.1) with the optimization flags -O3 -std=c++411 —expt-
extended-lambda —expt-relaxed-constexpr.

Use Goal Baseline Expected Performance

case CPU GPU

PDE CPU: Achieve effective CPU: not Near ideal No extra
Vectorization for the vectorized; GPU: [speedup. speedup.
complex, hard to vectorize |Ported to CUDA. No new
code; GPU: Find out the overhead.

overhead for a performance
sensitive portable kernel.

2dConv |Evaluate the benefit of LvL |CPU: Small extra  |Small
by comparing it with a auto-vectorized; |speedup due |extra
baseline already running in |GPU: Ported to |to LVL. speedup
SIMD mode. CUDA. due to

LVL.

GEMM tF}ind O.ut.t.he %verhead of R Nis exhs o essh
the anltlve y comparing P spesdup, No |spesdup,
it with a baseline already  |vectorized; GPU:

SpMV e new No new
running in SIMD mode Ported to CUDA.

. overhead. overhead.

efficiently.

Table 1: Summary of use cases, goals and expectations.

JrBaselines are written using Kokkos for two reasons: first to make the code portable and second to
measure the overhead of the primitive only. If the baseline is written using raw cuDA or OpenMP,
then the performance measurements will include the overhead of both Kokkos and the primitive.

Use cases and Ezxperimental setup: The primary aim of the portabil-
ity libraries such as Kokkos is to enable “performance portable” programming.
The portable code gets compiled and executed on the heterogeneous platforms
without making any platform-specific changes and also provides performance
close to the native implementations (such as using raw CUDA or using vector
intrinsics). However, it is essential to understand that Kokkos or the SIMD prim-
itive is not a magic construct to provide an extra performance boost. When the
baseline itself is efficiently vectorized or has an efficient CUDA implementation,
using Kokkos or the primitive can provide portability, but will not provide extra
speedup. Considering these factors, different use cases are chosen to test the per-
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Algorithm 1 CharOx Loop Structure, Holmen [10]

1: for all patches
2: for all Gaussian quadrature nodes
3: Kokkos::parallel_for cells in a patch //Can cells loop be vectorized?

4: Compute reaction constants.

5: Nested loops over reactions and species.

6: Multiple loops over reactions and species.

7 Nested loops over reactions and species.

8: while residual < threshold do //indefinite number of iterations
9: Multiple loops over reactions.

10: Nested loops over reactions and species.
11: Compute a matrix inverse.

12: Multiple loop over reactions.

13: end while

14: Loop over reactions.

15: end Kokkos::parallel_for

formance of the SIMD primitive for different scenarios. Table 1 summarizes the
four different kernels used in the evaluation. Of the four use cases, first two are
not efficiently vectorized and are chosen to demonstrate the effectiveness of the
primitive, whereas last two are efficiently vectorized and are chosen to measure
the overhead of the primitive.

Use cases were implemented using Kokkos - first without using the SIMD prim-
itive and then using it. A typical transformation from scalar code to vectorized
code using the portable SIMD primitive needs casting of legacy data structures
and variables and updating any conditional assignments. Some algorithm spe-
cific use cases need a special handling, e.g., the while loop discussed in Section
4.1. All the arithmetic operations and math library functions remain untouched.
For all four kernels, less than 10% of the lines of code were modified to introduce
the SIMD primitive and this did not require any complex code transformations or
new data structures, which is typically needed to auto-vectorize a complex code.
The use of Kokkos and the SIMD primitive allows the same code to be compiled
on the different target platforms. Various combinations of the number of threads
were tested and the best timing was chosen. Each experiment was repeated at
least 100 times, and the averages timings were used to compute the speedups.

4.1 PDE Assembly

Uintah [2] is a massively parallel asynchronous multi-task runtime that can be
used to solve complex multi-physics problems. It is being used for the multi-scale
and multi-physics combustion simulation of a coal boiler under DoE’s PSAAP 11
project and has been successfully scaled to 256k cores on Titan and 512k cores
on MIRA [2]. One of the longest running kernels within Uintah is CharOx. Tt
simulates the char oxidation of coal particles by modeling multiple chemical re-
actions and physical phenomenon involved in the process [1,11,25]. The CharOx
kernel consists over of 350 lines of code, reads around 30 arrays, updates five ar-
rays, and performs compute-intensive double precision floating point arithmetic
operations, such as exponentials, trigonometric functions, and divisions in nested



12 Sahasrabudhe et al.

loops about 300 to 500 times for every cell. As shown in Algorithm 1, the main
cell iterator loop contains different loops over reactions and species, each with
multiple levels of nesting. The Newton Raphson Solve loop has an undetermined
number of iterations and contains more nested loops. The iterations of the cell
iterator loop are not dependent on each other. Hence, vectorizing the cell itera-
tor loop can potentially give a maximum speedup.

Auto-vectorization: On the KNL platform, the Intel compiler auto-vectorizes
some of the innermost loops only. Vectorization of the cell iterator loop can be
forced by adding the “#pragma simd” directive. However, this provides only 4.3z
speedup, whereas the ideal speedup for the double precision on KNL is 8x, assum-
ing the majority of the code is scalar. (Unfortunately, the pragma is deprecated
in Intel compilers from 2018 onwards, and its replacement “#pragma vector”
fails to “force” vectorize the cell loop.) An inspection of the vectorization re-
port and assembly code shows gather/scatter instructions generated for every
read /write to the global arrays. These gather and scatter instructions are the
reason for the speedup of 4.3x. To maintain the halo region, Uintah internally
offsets all elements in its data structures with a constant value. All cells have the
same offset. Thus the stride between elements is always one, but the compiler
cannot deduce this and generates gather instructions. However, using the SIMD
primitive calls SIMD intrinsics that explicitly generate move instructions rather
than gather and makes vectorization efficient.

The GNU compilers used on the ThunderX2 platform did not vectorize the
cell iterator loop even after adding vectorization hint directives.

On the GPU, the size and the complexity of the kernel substantially increases
register usage. Profiling shows that 255 registers are used by every thread within
a block, thereby preventing the simultaneous execution of multiple blocks on a
single Streaming Multiprocessor (SM). This results in poor occupancy of the SMs
(only up to 12%). Hence, the SIMD primitive must not add additional overhead
in terms of registers, memory, or execution dependency, and the GPU perfor-
mance must not be compromised to gain CPU performance. Apart from casting
data structures and variables to those based on the portable SIMD primitive,
the Newton-Raphson solver [10] used to solve oxidation equations for every cell
needed special handling. The solver iterates until the equations converge. In the
vectorized version, the vector of cells iterates until all cells within the vector
converge. Although the technique needs extra iterations for a few cells, it works
faster than executing solver iterations sequentially in a scalar mode.

The experiments were carried out using a total of 64 patches with two patch
sizes - 16% and 323. The CharOx kernel is invoked five times for every patch.
With 64 patches, the kernel is executed 320 times in every timestep. The simu-
lation was run for 10 timesteps, and the average loop execution time over 3200
calls was recorded. The shear complexity of this loop appears to provide a dis-
tinctive and unusual challenge for performance portability.

Goal: This use case shows a particular instance where the compiler does a poor
job in auto-vetorizing the code on the CPU, but the CUDA code works efficiently
on the GPU. It is thus important to ensure that improving CPU performance us-
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ing the primitive does not degrade GPU performance. The kernel is large and
complex enough to cause a register spill on the GPU even without using the
SIMD primitive. Thus, adding sSiMD will help us to understand the performance
of sensitive kernels on GPU and associated overhead, if any.

Expectation: The code performs double precision floating point operations.
Hence, the speedups close to 8x and 2x are expected on KNL and ThunderX2,
respectively. These are the ideal speedups for double precision computations on
these platforms considering the respective vector lengths of 512 bits and 128 bits.
The GPU code already runs in a SIMT mode, and hence the new primitive will pro-
vide portability without a performance boost. However, portability should not
cause any significant overhead either. Ideally, GPU performance should remain
the same with and without SIMD.

4.2 2D Convolution

Algorithm 2 Algorithm for a 2D Convolution Kernel

for b in 0:mini-batches
for co in O:output filters
for i in 0:M //image rows
for j in 0:M //image columns
for ci in O:input channels
for fi in 0:F //filter rows
for fj in O:F //filter columns
out(b, co, i, j) += in(b, ci, i-F/2+1, j-F/2+{j) * filter(co, ci, fi, fj)

2D convolution [4] (as shown in Algorithm 2) is a heavily used operation
in deep neural networks. The algorithm multiplies a batch of images (in) with a
filter (filter) by sliding the filter over the image to accumulate the result (out).
The operation is repeated for multiple filters. This algorithm has a high arith-
metic intensity. Using the SIMD primitive provides an opportunity to exploit the
spatial locality for all three variables: When the “i” loop is parallelized across the
Kokkos threads and the “j” loop across the SIMD lanes, every “filter” element is
reused for the “LVL” number of “j” iterations. Also, two levels of parallelism help
reusing elements in different rows “in” and “out” (similar to a stencil block). Of
course, these improvements can be obtained manually without using the prim-
itive. However, using the primitive introduces these transformations implicitly
and improves the programmability, portability and the maintenance of the code.
The mini-batch loop in the original code is parallelized across OpenMP
threads/cuDpA blocks. The code is then auto-vectorized across the j loop us-
ing the directive #pragma simd on CPU and mapping the x dimension CUDA
threads across the j loop on a GPU. #pragma unroll was used to unroll the full
lengths of the fi and fj loops. The code was then converted into a SIMD primitive
code instead of using #pragma simd. Different combinations of mini batch sizes
(3584 and 7168), filter sizes (3x3, 5x5 and 7x7), number of input (3, 5 and 10)
and output channels (3, 5 and 10) were tested for different values of the LVL.
Goal: Evaluate the effectiveness of the LVL against the vectorized baseline.
Expectation: As the baseline is efficiently auto-vectorized, using SIMD prim-
itive with LvL=pPVL will not perform any better. However, setting LVvL=2*PVL
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Name Rows |Columns|Nonzeros Execution time (ms)

Nonzeros| mkl |baseline|cusparse|baseline
KNL| KNL P100 P100

HV15R |2017169| 2017169 |283073458| 275 147 160 123
ML_Geer |1504002| 1504002 |110686677| 105 44 54 37
RMO7R | 381689 | 381689 | 37464962 | 46 25 23 14
ML _Laplace| 377002 | 377002 | 27582698 | 34 11 13 9

Table 2: sparse matrices used for ensemble SpMV and comparison of the baseline
Kokkos version with Intel’s mkl and Nvidia cusparse libraries for ensemble size = 64.

or 4*pVL should give speedups on both cPU and GPU due to instruction level
parallelism and data reuse.

4.3 Compact gemm

The general matrix-matrix multiplication (GEMM) on a batch of small, dense,
matrices is widely used within scientific computing and deep learning. Thread-
parallel GEMM operations over collections of matrices organized in an interleaved
fashion can be made efficient and portable using the SIMD primitive [18]. This
approach is implemented within KokkosKernels, and used in a large-scale CFD
code called SPARC [13]. The KokkosKernels’ batched GEMM kernel achieves per-
formance comparable or sometimes better than vendor provided libraries such
as Intel’s math kernel library (mkl) and Nvidia’s cuBLAS [18, 31]. KokkosKer-
nels maintains two versions of batched GEMM - the CPU version which uses an
intrinsics-based SIMD primitive, and a CUDA version, which does not have a SIMD
primitive. The only change needed in the kernel to utilize the portable SIMD
primitive was to map the matrix dimension to the siIMD dimension by casting
matrices from Kokkos views of doubles to Kokkos views of the SIMD primitive.
Thus, each CPU thread (or a section of a CUDA warp) carried out each operation
on the LVL number of matrices in SIMD fashion. Both kernels had the same tiling
optimizations with tile sizes of 3 x 3 and 5 x 5 to extract spatial and temporal
locality among matrix elements. Experiments were carried out using four matrix
sizes: 3 x 3, 5 x 5, 10 x 10 and 15 x 15 using a batch of 16,384 matrices on all
three platforms.

Goal: The goal is to compare the performances of the new SIMD primitive and
the existing high performance explicitly vectorized code on cpPU. Any perfor-
mance degradation will reveal the associated overheads, if any.

Expectation: The SIMD primitive should perform as well as the code without
the SIMD primitive on both CPU and GPU. Neither a performance boost nor any
extra overhead is expected.

4.4 Embedded Ensemble Propagation

This kernel is heavily used in the uncertainty quantification of predictive simula-
tions which, involve evaluation of simulation codes on multiple realizations of in-
put parameters. The efficiently auto-vectorized baseline kernel multiplies a sparse
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matrix by an ensemble of vectors with matrix rows distributed across threads
and vectors distributed across SIMD lanes. Vectors are arranged in an interleaved
fashion similar to batched GEMM. This design, introduced by Phipps [27], allows
the reuse of matrix values across all vectors and provides up-to 4x speedups
over traditional batched sparse matrix-vector multiplication. Instead of repeat-
ing Phipps’ experiments, the vectorized ensemble version itself is used as a base-
line. Compared to the vendor-provided libraries, i.e., Intel’s mkl and Nvidia’s
cusparse, the baseline kernels exhibit 1.8x to 3x speedup on KNL and 1.3x to
1.6x on P100, respectively (See Table 2). These observations are in line with
Phipps’ experiments. This baseline kernel is converted to use our SIMD type by
casting data structures from double to those using the SIMD primitive and set-
ting the LVL equal to the ensemble length. Hence, any performance degradation
from baseline can show the shortcomings in the LVL implementation.

Goal: The goal is to find out any overhead associated with the SIMD primitive
by evaluating its performance against the highly optimized baseline that imple-
ments the same design and parallelism pattern but without using the primitive.
Expectation: The code with the SIMD primitive should perform as well as the
baseline on CPU and GPU. No performance boost and no overhead is expected.

5 Results and Performance Analysis

The rows in Figure 6 show the results of four use cases, and the columns indicate
three platforms. Each plot shows execution time along with the speedup com-
pared to the baseline. The baseline is either the auto-vectorized code (AV) or
the code with no SIMD primitive (NSP) colored in cyan. Results of using the SIMD
primitive with different values of the LvL are represented by “Sp”. As mentioned
earlier, the experiments have three goals: a) Find out performance improvement
when the code is not efficiently vectorized (PDE and 2dConv cases), b) Ensure
that performance improvement on one platform, does not hamper the perfor-
mance on another platform (PDE), and c¢) Measure the overhead of the new
primitive against the efficiently vectorized baseline, where the expected speedup
is 1x (GEMM and SpMV). The performance of each use case is analyzed below.

The vectorized code (Av and SP) both executes fewer instructions than the
scalar code, but the vector instructions execute more slowly than the scalar
counterparts, consuming more cycles. Hence, the Instructions Per Cycle (IPC)
count does not reflect the exact speedup. Similarly, KNL hardware counters do not
accurately measure floating point operations (FLOPs), and numbers often get
skewed while measuring floating point instructions (FLIPs) [16]. Hence, simple
counts such as the total number of instructions and cache hits are used here for
performance analysis. The performance metrics and events are collected using
Intel vtune amplifier, Nvidia nvprof, and the PAPI library.

5.1 PDE Assembly

The KNL plot in Figure 6 (a) shows the SP version that achieves 5.7x and 7.8x
speedups over AV for mesh patch sizes of 163 and 323, respectively. Analysis of
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(d) Ensemble SpMV: Execution time in milliseconds vs data sets

Fig. 6: Comparison of execution times along with speedups for different kernels on differ-
ent architectures. Speedup “1x” indicates zero new overhead due to the new primitive.
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the 163 patch problem shows the number of instructions (INST_RETIRED.ANY)
executed reduced from 1273 million for the AV code to 204 million for the sp
code (Table 3). Similarly, L1 cache data misses (PAPI_L1_DCM) decreased from
2.4 million for AV to 1.2 million for the sp. In this case, some of the cache lines
are evicted over the course of one iteration due to the complex operations and
the 30+ different arrays used in the kernel. When the next iteration starts, at
least some of the memory is missing from the L1 cache due to earlier evictions.
However, the vectorized code can take advantage of entire cache lines, and all
eight double elements from the 64 bytes cache lines can be read by eight vector
lanes, thus fully utilizing data fetched in a cache line. The increased cache line
efficiency along with vectorization provides near optimal speedup.

The P100 results show the NSpP and sp both performing equally well. As the
NSP running on the GPU runs in SIMT mode, the SP does not provide any extra
level of parallelism and cannot provide an extra boost. These results showing
1x speedup are important in showing that the sP does not create any overhead
on a GPU, even when the NSP kernel causes register spilling. All the metrics
collected by nvprof showed similar values in this case. Increasing the value of
LVL to 2xPVL slowed down the performance by 1.5x, because the increased LVL
increased register spilling (evident from increased local memory accesses).

The sp version of CharOx kernel boosted performance by 2.2x and 2.3x for
patch sizes of 163 and 322, respectively, on ThunderX2. The ThunderX2 metrics
show a similar trend as that observed on KNL. The total number of instructions
executed are reduced from 4253.8 million for the NSP to 1823.1 million for the
SP. Again, vectorization reduced the number of cache misses from 5.7 million
to 1.5 million, which provided super-linear speedups up to 2.3x where the PVL
supported by the hardware for double precision is only 2.

Intel KNL Cavium ThunderX2
number of in-|L1 cache data|number of in-|L1 cache data
structions misses structions misses

No SIMD primitive 1273 24 4253 5.7
SIMD primitive 204 1.2 1823 1.5

Table 3: Performance metrics for CharOx. (counts in millions)
5.2 2D Convolution

Figure 6 (b) shows speedups up to 3x on KNL and 1.6x on P100 for the 2D
Convolution kernel shown in Algorithm 2. The input image size, the number
of input and output channels were set to 64x64, 3 and 10, respectively. The
image was padded by filter size / 2 number of cells. The baseline NSP and the
SP with LvL=PVL perform equally well as both get efficiently vectorized. Setting
LVL=2xPVL and 4xPVL gives better results on both KNL and P100.

Line number 8 of Algorithm 2 multiplies “in” with “filter” and accumulates
the result in “out”. Vectorizing the j loop coalesces accesses for “in” and “out”.
“filter” is independent of the j dimension, and hence the value is reused across all
vector lanes. When the LVL is set to 2xPVL (or 4xPVL), the same filter value gets
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reused across twice (or four times) the PVL elements. An assembly instruction
inspection shows the register containing “filter” was reused across multiple fma
operations. All these fma operations are independent of each other and can
exploit instruction level parallelism. This “unroll and jam” transformation can
be introduced by simply increasing the value of LVL. Using LVL in this case can
save developers having to manually perform “unroll and jam” - especially for
larger codes - and maintain readability of the code.

Intel KNL Nvidia P100
number of| number of|lnumber of|number of|L2 cache
instructions |memory loads |instructions |memory loads|hit rate
No SIMD primitive (6.2 3 9.8 1.3 25%
SIMD primitive 2.6 2 6.8 0.8 83%

Table 4: Performance metrics for 2DCov. (counts in billion)

The reuse of the “filter” values across the j iterations reduced the number of
memory loads from 3 billion for the NSP to 2 billion for the SP with LvL=4xPVL on
KNL and from 1.3 billion to 0.8 billion on the P100. The number of instructions
executed reduced by 2.3x and 1.4x on KNL and P100 platforms, respectively.
The L2 cache hit rate improved on the P100 from 25% to 83%. Additionally,
the number of control flow instructions executed was reduced by a factor of
3.5 on the P100 due to outer loop unrolling (see Table 4). The effectiveness
of the primitive and LVL can be judged from the fact that the naive code in
Algorithm 2 with the SIMD primitive and LvL=4xPVL was only 20% slower than
the highly tuned cuDNN library by Nvidia as shown in Table 5. A small fix
to use GPU’s constant memory to store the filter gave additional boost and the
naive code performed equally well as the cuDNN library. Thus, the primitive can
help application programmers who may focus on the algorithms and applications
rather than spending time on specialized performance improvement techniques
such as tiling, loop unrolling, using shared memory, etc.

Filter size|cuDNN|simd primitive|simd primitive LVL=4XPVL
LVL=4XPVL with constant memory
3x3 11 13 11
5x5 24 31 25
=7 49 59 47

Table 5: Performance comparison with Nvidia cuDNN. Execution time in milliseconds

Unfortunately, experiments for 2D Convolution could not be conducted on
ThunderX2 because the Astra cluster was moved to a restricted domain by
Sandia National Laboratories.

5.3 Compact gemm

Figure 6 (c) shows that the NSp and SP versions perform equally well on the
KNL and P100 (speedup is 1x) and that the sP does not create any overhead.
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These results are as expected because KokkosKernels (the NSP version) contains
explicitly vectorized code for KNL and Kokkos code tuned explicitly for GpUs.
These observations are confirmed by the same number of instructions executed
by the NSP and SP versions - 23 million on KNL and 20 million on P100.

However, the ThunderX2 results show an improvement of up to 1.3x. The
architecture-specific intrinsic back-end for ThunderX2 had not yet been updated
in the KokkosKernels, and it falls back to an emulated back-end using arrays
and “for” loops. Although this NSP version gets auto-vectorized by the com-
piler, the sp leads to more efficient vectorization. The NSP version executes 146
million instructions whereas the Sp version executes 114 million instructions on
ThunderX2.

5.4 Embedded Ensemble Propagation

The kernel is evaluated using 13 matrices from the University of Florida sparse
matrix collection. However, results from only four matrices (listed in Table 2)
that represent the general trend are presented for the sake of brevity. Sparse
matrix-vector ensemble multiplication results on the GPU shown in Figure 6 (d)
indicate both versions, NSP and spP, perform equally on the P100 GpU. Both the
versions are efficiently ported to the SIMT model and use the same ensemble logic
for data reuse. Therefore, the matching GPU performance for both versions meets
our expectation and indicates that the primitive does not cause any overhead.
More surprising were speedups up to 1.3x on KNL and and 1.1x ThunderX2.
Profiling showed about 10% to 20% reduction in the number of instructions
executed for different sparse matrices and different ensemble sizes. While the
FLOPs were, of course, the same for both versions, an assembly code inspection
revealed the reason behind the speedups. The result of matrix - vector ensemble
multiplication is also a vector ensemble. The design by Phipps et al. [27] fetches
a matrix element and multiplies all vectors with it to avoid repeated accesses
to matrix elements, which are costly when the sparse matrix is stored in the
“compressed row storage” format. Although the Phipps design performs faster
than the traditional batched multiplication, it has to repeatedly fetch elements
from the resultant vector ensemble to do the accumulation. In the NSP version,
the compiler generates three vector instructions for every vector operation: (i)
a fetch of the result ensemble from memory to a vector register, (ii) a vectored
fused-multiply-add (fma) on the result stored in a vector register with a vector
from memory and a matrix element stored in vector register, and (iii) a store
of the result from the vector register in the memory. When the sP is used, the
ensemble length is mapped to the LvL. This mapping helps the compiler to
deduce the array length and number of registers. Hence, for N=64, all result
elements get loaded into eight vector registers only once, and fma operations are
repeated on these registers. Hence, using the SP eliminates the need to transfer
the result back and forth from the memory and takes only one store to move the
accumulated result from the vector registers to the memory. Thus, one load and
one store are saved for every fma operation, resulting in a more efficient code.
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6 Assigning the optimal LVL value

The LVL value depends on register availability and levels of parallelism, both
dictated by the algorithm and hardware. If the LVL is set to 2xPVL or 4xPVL,
the compiler can usually allocate the structure into registers. Then the code can
take advantage of instruction level parallelism, if supported by the hardware,
as observed in the cases of 2DCov and SpMV. When, however, the LVL was set
to 8xPVL, the compiler allocated the structure into memory instead of registers
and so hampered the performance of 2DCov with extra loads and stores. The
CharOx kernel is very complicated and register spilling happens even in the
NSP. Therefore, setting LVL=2xPVL, increased the register pressure further and
resulted in slower execution in contrast to other use cases. The second factor in
choosing the right LVL is the number of levels of parallelism an algorithm can
offer. If the both levels of parallelism, thread level and SIMD level, are applied
to the same loop (as in GEMM or CharOx), then increasing the LVL effectively
increases the workload per thread and decreases the degree of parallelism avail-
able, which can cause a load imbalance among cores. The GEMM kernels were
hand-tuned to unroll and jam along matrix rows and columns. The optimization
gave enough workload to fully exploit available instruction level parallelism. As
a result, increasing the LVL did not provide any further advantage.

7 Conclusion and Future Work

This study describes a portable SIMD data type whose primary benefit is to
achieve vectorization in a portable manner on architectures with vPUs and GPUSs.
This capability has a potential to be useful for massive applications that use
Kokkos to extract performance from future architectures (including exascale ar-
chitectures), without explicitly tuning the user code for every new architecture.
The largest benefits the SIMD primitive were observed in the most complex ker-
nel, which was hard to auto-vectorize. Performance boosts of up to 7.8x on
KNL and 2.2x on Cavium ThunderX2 can be observed for double precision ker-
nels (PDE). For the kernels which are vectorized/ported to GPUSs, the new SIMD
primitive results in the speedups up-to 3x on KNL, 1.6x on P100 and 1.1x on
ThunderX2 due to more efficient vectorization (SpMV), cache reuse (2dConv),
instruction level parallelism (2dConv) and loop unrolling (2dConv and SpMV).
The comparison with efficiently vectorized kernels showed minimal overhead for
PDE and zero overhead for GEMM and SpMV kernels. The new primitive makes
outer loop vectorization easier (as shown with CharOx, SpMV and 2dConv).
The PDE example proved that performance on one platform can be improved
without compromising the performance on another platform.

The Kokkos-based design will make it easier to port this SIMD primitive to
future GPU exascale architectures such as A21, and Frontier. The Kokkos pro-
filing interface can possibly be extended to profile the primitive-based code in
the future. Preliminary experiments showed that the new primitive can be easily
extended to both OpenACC and OpenMP 4.5. It will be interesting to compare
the performance of OpenACC, OpenMP 4.5 / 5.0 (in the future), and Kokkos.
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