

Solving IPDEs on Spiking Neuromorphic Hardware

Presented by

J. Darby Smith, Brad Aimone, Brian Franke, Aaron Hill, Richard Lehoucq,
Ojas Parekh, Leah Reeder, William Severa

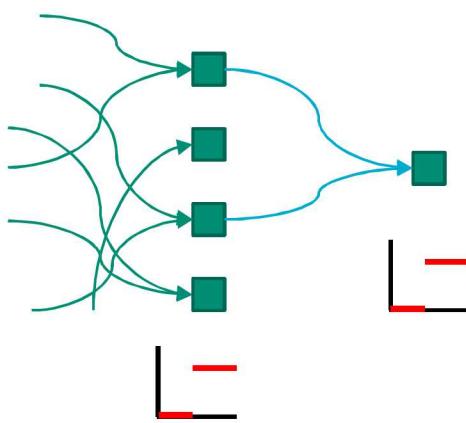
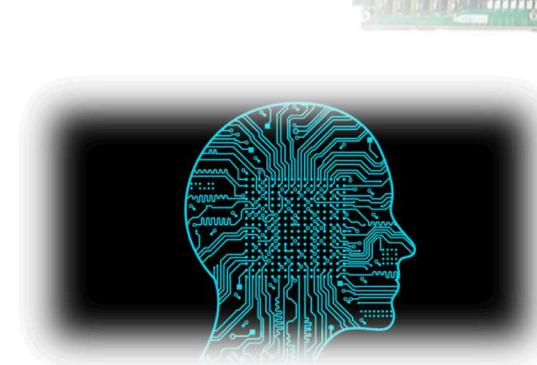
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Overview

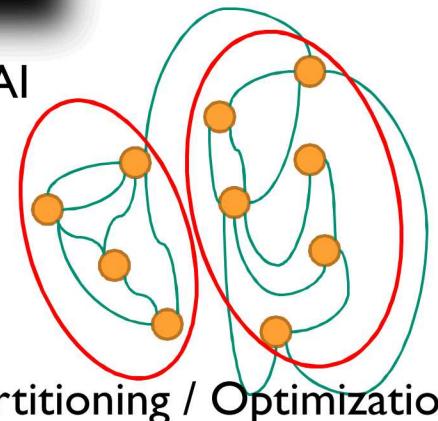
- Introduction to Spiking Neuromorphic Hardware
- Connections between SDEs and PDEs
- Generalized Feynman-Kac
- Application to Particle Transport
- Implementation Accuracy
- Conclusions

What is “Spiking Neuromorphic Hardware”?

Biologically Inspired Computing

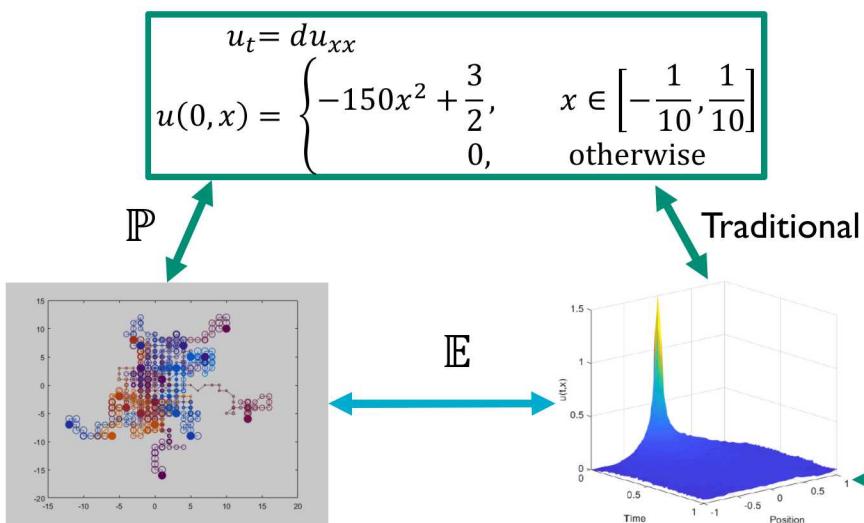
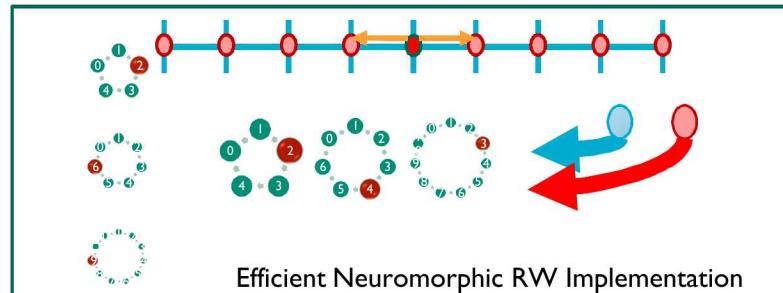
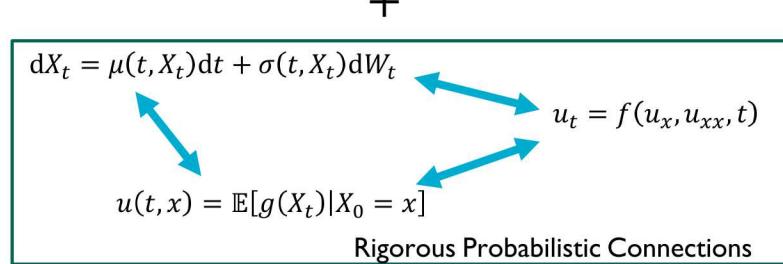
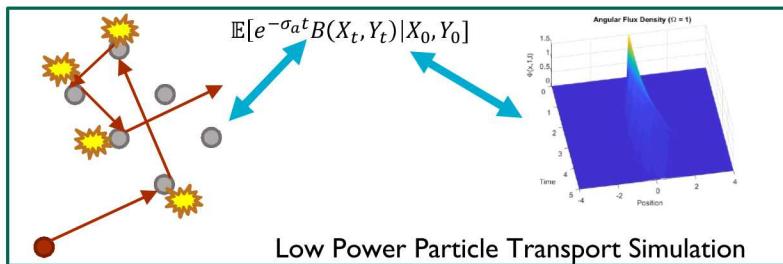
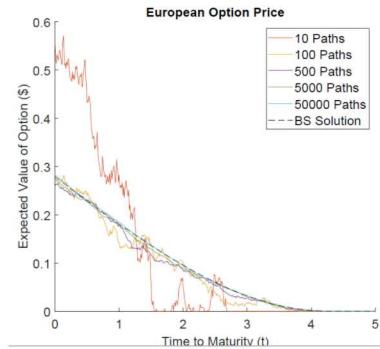


Machine Learning / AI



Graph Partitioning / Optimization

Connecting PDEs and Random Walks



A Class of Integro-PDEs with a Probabilistic Interpretation

The IPDE-IVP

$$\begin{aligned}
 u_t(t, \mathbf{x}) &= \frac{1}{2} \sum_{i,j} a_{i,j}(t, \mathbf{x}) u_{x_i x_j}(t, \mathbf{x}) + \sum_i b_i(t, \mathbf{x}) u_{x_i}(t, \mathbf{x}) \\
 &\quad + \lambda(t, \mathbf{x}) \int (u(t, \mathbf{x} + h(t, \mathbf{x}, q)) - u(t, \mathbf{x})) \phi_Q(q; t, \mathbf{x}) dq \\
 &\quad + c(t, \mathbf{x}) u(t, \mathbf{x}) + f(t, \mathbf{x}) \\
 u(t, \mathbf{x}) &= g(\mathbf{x})
 \end{aligned}$$

has solution

$$u(t, \mathbf{x}) = \mathbb{E} \left[g(\mathbf{X}_t) \exp \left(\int_0^t c(s, \mathbf{X}_s) ds \right) + \int_0^t f(s, \mathbf{X}_s) \exp \left(\int_0^s c(u, \mathbf{X}_u) du \right) ds \middle| \mathbf{X}_0 = \mathbf{x} \right]$$

where

$$d\mathbf{X}_t = b(t, \mathbf{X}_t) dt + \sigma(t, \mathbf{X}_t) dW_t + h(t, \mathbf{X}_t, Q) dP_{t;Q,t,\mathbf{X}_t}$$

and a, b, c, g, h , and f are all real valued, $\lambda < 0$; further for each t and \mathbf{x} that $\phi_Q \geq 0$ and $\int \phi_Q(q) dq$ so that $P(t; Q, t, \mathbf{x})$ is a Poisson process with rate $-\int_0^t \lambda(s, \mathbf{x}) ds$. We further require that $a = \sigma \sigma^\top$, b , and h are all defined so that the stochastic process \mathbf{X}_t has a unique solution that belongs almost surely to the domain of g .

A Class of Integro-PDEs with a Probabilistic Interpretation

The IPDE-IVP

$$\begin{aligned}
 u_t(t, \mathbf{x}) &= \frac{1}{2} \sum_{i,j} a_{i,j}(t, \mathbf{x}) u_{x_i x_j}(t, \mathbf{x}) + \sum_i b_i(t, \mathbf{x}) u_{x_i}(t, \mathbf{x}) \\
 &\quad + \lambda(t, \mathbf{x}) \int (u(t, \mathbf{x} + h(t, \mathbf{x}, q)) - u(t, \mathbf{x})) \phi_Q(q; t, \mathbf{x}) dq \\
 &\quad + c(t, \mathbf{x}) u(t, \mathbf{x}) + f(t, \mathbf{x}) \\
 u(t, \mathbf{x}) &= g(\mathbf{x})
 \end{aligned}$$

$$u(t, \mathbf{x}) = \mathbb{E} \left[g(\mathbf{X}_t) \exp \left(\int_0^t c(s, \mathbf{X}_s) ds \right) + \int_0^t f(s, \mathbf{X}_s) \exp \left(\int_0^s c(u, \mathbf{X}_u) du \right) ds \middle| \mathbf{X}_0 = \mathbf{x} \right]$$

Non-Zero Terms	Application	SDE Example
a	Heat Equation	$dX_t = \sigma dW_t$
a, b, f	European Option Pricing	$dS_t = rS_t dt + \sigma S_t dW_t$
b, λ, h, c, f	Particle Transport	$dX_t = -vY_t dt; \quad dY_t = \omega_{Y_t} dP_{t; Y_t}$
a, f	Electrostatic Scalar Potential*	$dX_t^{(i)} = \sqrt{\varepsilon} dW_t$
b, c	Pollutant Source Deterioration	$dX_t = v dt^{\wedge}$

Boltzmann Particle Transport Equation

- In one-dimension with constant energy, the **angular flux density** $\Phi(x, \Omega, t)$ is the product of particle speed v and the angular density of particles at position x traveling in direction Ω at time t , $N(x, \Omega, t)$.

- The angular flux density is assumed to satisfy the Boltzmann transport equation:

$$\frac{1}{v} \frac{\partial \Phi}{\partial t} + \Omega \frac{\partial \Phi}{\partial x} + (\sigma_s + \sigma_a) \Phi = \int \Phi(x, \Omega', t) \sigma_s(x, t) p(\Omega' \rightarrow \omega) d\Omega' + S.$$

- Traditionally, the method of characteristics is employed to reduce this equation to an integral equation of the second kind:

$$\Phi = \mathbf{K}\Phi + S',$$

where \mathbf{K} is an integral operator.

- This is then rewritten as the Neumann series

$$\Phi = \sum \Phi_i, \quad \Phi_0 = S', \quad \Phi_i = \mathbf{K}\Phi_{i-1},$$

with the physical interpretation that Φ_i is the angular flux of particles that have undergone exactly i collisions.

Probabilistic Boltzmann Transport Equation

- The Boltzmann transport equation can be written in the general IPDE form through the change of variable $\omega = \Omega' - \Omega$:

$$\frac{\partial \Phi}{\partial t} = -v\Omega \frac{\partial \Omega}{\partial x} + 0 \cdot \frac{\partial \Phi}{\partial \Omega} + v\sigma_s(x, t) \int (\Phi(x, \Omega + \omega, t) - \Phi(x, \Omega, t)) p(\omega \rightarrow 0 | \Omega) d\omega - v\sigma_a(x, t)\Phi + vS.$$

- The generalized Feynman-Kac allows us to write the solution to the Boltzmann equation with initial condition $\Phi(x, \Omega, 0) = B(x, \Omega)$ as

$$\Phi(x, \Omega, t) = \mathbb{E} \left(B(X_t, Y_t) \exp \left(-v \int_0^t \sigma_a(X_s, s) ds \right) \middle| X_0 = x, Y_0 = \Omega \right) + \mathbb{E} \left(v \int_0^t S(X_s, Y_s, s) \exp \left(-v \int_0^t \sigma_a(X_u, u) du \right) ds \middle| X_0 = x, Y_0 = \Omega \right),$$

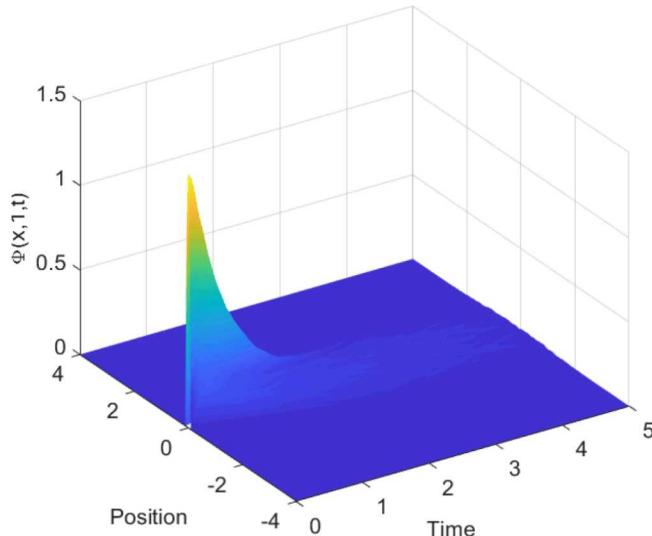
where the underlying stochastic process is given by

$$\begin{aligned} dX_t &= -vY_t dt \\ dY_t &= \omega_{Y_t} dP_{t;Y_t}. \end{aligned}$$

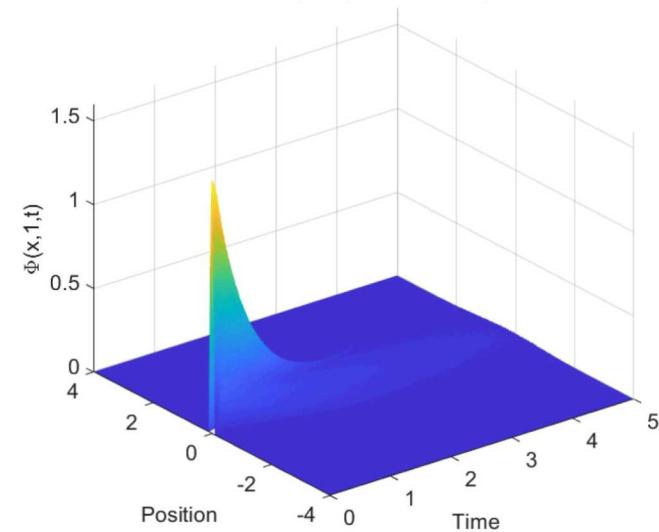
9 Proof of Concept Example

$$\frac{\partial \Phi}{\partial t} = -\frac{1}{2}\Omega \frac{\partial \Omega}{\partial x} + \frac{5}{2} \int (\Phi(x, \Omega + \omega, t) - \Phi(x, \Omega, t)) p(\omega \rightarrow 0 | \Omega) d\omega - \frac{1}{4}\Omega$$
$$\Phi(x, \Omega, 0) = B(x, \pm 1) = \begin{cases} -150x^2 + \frac{3}{2} & x \in \left[-\frac{1}{10}, \frac{1}{10}\right] \\ 0 & \text{otherwise} \end{cases}$$

$\Phi(x, 1, t)$ using SDE



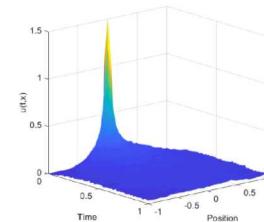
$\Phi(x, 1, t)$ using Neumann Series



Accuracy Stack for Neuromorphic Implementation

$$u_t = f(t, u, u_x, u_{xx})$$

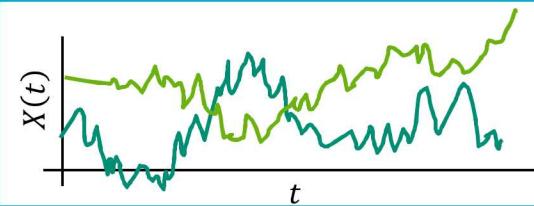
PDE and Solution Ground Truth



$$u(t, x) = \mathbb{E}[g(t, X_t) | X_0 = x]$$

$$u(t, x) \approx \frac{1}{M} \sum_{i=1}^M g(t, X_t^i); \quad X_0^{(i)} = x$$

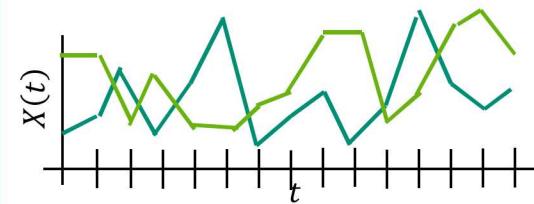
We must sample paths from the stochastic process, incurring sampling error on the order of $\frac{1}{\sqrt{M}}$.



$$\frac{1}{\sqrt{M}}$$

$$u(j\Delta t, x) \approx \frac{1}{M} \sum_{i=1}^M g(j\Delta t, X_{j\Delta t}^i); \quad X_0^{(i)} = x$$

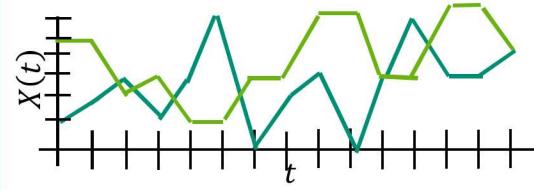
We cannot sample the continuous paths of X_t , so we approximate by a discretization scheme. We incur error based on this scheme.



$$\sqrt{\Delta t}$$

$$u(j\Delta t, x_k) \approx \frac{1}{M} \sum_{i=1}^M g(j\Delta t, \hat{X}_{j\Delta t}^i); \quad \hat{X}_0^{(i)} = x_k$$

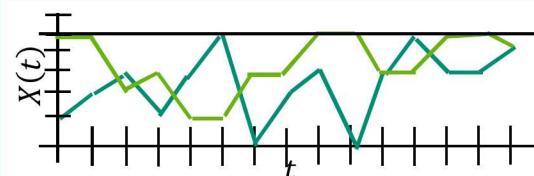
Further we limit the values the walk can take. Denote the process by \hat{X} which assumes its values on a grid size of Δs . In the best case scenario, the error accrued in each time step is proportional to $\Delta s/2$



$$\frac{1}{2} j\Delta t \Delta s$$

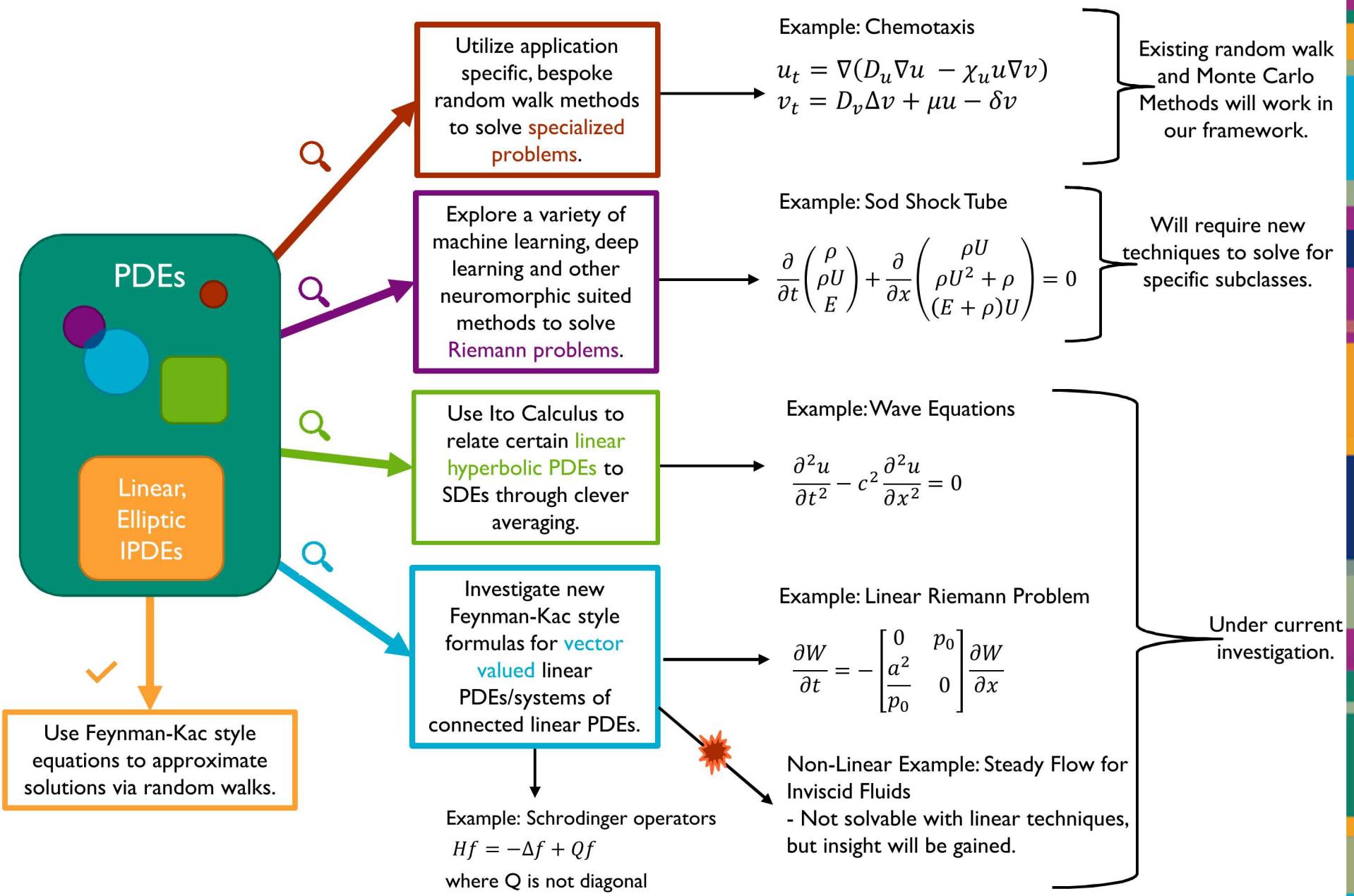
$$u(j\Delta t, x_k) \approx \frac{1}{M} \sum_{i=1}^M g(j\Delta t, \check{X}_{j\Delta t}^i); \quad \check{X}_0^{(i)} = x_k$$

Finally, we may need to set a max value for the process, causing dependent on the function g , the process, and the max value set.



varies

Conclusions and Directions



Selected References

■ Random Walks with Spiking Neuromorphic Hardware

- Severa, W., Lehoucq, R., Parekh, O. and Aimone, J.B., Spiking Neural Algorithms for Markov Process Random Walk. in *2018 International Joint Conference on Neural Networks (IJCNN)* (2018), IEEE, 1-8.

■ Non-AI Applications of Spiking Neuromorphic Hardware

- Aimone, J.B., Parekh, O., Phillips, C.A., Pinar, A., Severa, W. and Xu, H., Dynamic Programming with Spiking Neural Computing. in *Proceedings of the International Conference on Neuromorphic Systems*, (2019), ACM, 20.
- Parekh, O., Phillips, C.A., James, C.D., and Aimone, J.B., Constant-Depth and Subcubic-Size Threshold Circuits for Matrix Multiplication. in *Proceedings of the 30th Symposium on Parallelism in Algorithms and Architectures*, (2018), ACM, 67-76.
- Schuman, C.D., Hamilton, K., Mintz T., Adnan, M.M., Ku, B.W., Lim, S.K. and Rose, G.S., Shortest Path and Neighborhood Subgraph Extraction on a Spiking Memristive Neuromorphic Implementation. in *Proceedings of the 7th Annual Neuro-inspired Computation Elements Workshop*, (2019), ACM, 3.

■ Generalized Feynman-Kac

- Grigoriu, M. (2013), *Stochastic Calculus: Applications in Science and Engineering*, Springer Science & Business Media.

■ Boltzmann Transport Equation and Neumann Expansion

- Dupree, S. & Fraley, S. (2002), *A Monte Carlo Primer: A Practical Approach to Radiation Transport*, number v. 1, Springer US.