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2 I Overview

= Introduction to Spiking Neuromorphic Hardware
= Connections between SDEs and PDEs

" Generalized Feynman-Kac

= Application to Particle Transport

= Implementation Accuracy

" Conclusions




3 I What is “Spiking Neuromorphic Hardware’?

Biologically Inspired Computing

Graph Partitioning /




+ 1 Connecting PDEs
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u(t,x) = E[g(X)|X, = x]

Rigorous Probabilistic Connections

| Challenging Applications, Low Power Implementation |

[E[e_datB(Xt’ Yt) |X01 YO]

Low Power Particle Transport Simulation
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A Class of Integro-PDEs with a Probabilistic Interpretation

1
The IPDE-IVP U (6,2) =5 ) 36 Wik (600 + ) byt D (8%)
i,j i

+A(t, x) j (u(t,x + h(t, x,@)) — u(t, 1)) do(q; t, x)dg

+c(t,x)u(t,x) + f(t,x)

u(t,x) = g(x)
t t S
has solution u(t,x) = E [g(Xt) exp <j c(s,XS)ds) + f f(s,X;)exp <] c(u,Xu)du) ds| X, = x
0 0 0
where dXt = b(t, Xt)dt + O-(t, Xt)th + h(t, Xt' Q)dPt;,Q,t,Xt

and a, b, c, g, h, and f are all real valued, 4 < 0; further for each t and x that ¢, = 0 and fqbQ (q)dq so that

: t :
P(t; Q,t,x) is a Poisson process with rate — fo A(s, x)ds. We further require that a = 6o ', b, and h are all
defined so that the stochastic process X; has a unique solution that belongs almost surely to the domain of g.




A Class of Integro-PDEs with a Probabilistic Interpretation

1
The IPDE-IVP u (¢, x) = Ez @, (6, XUy (t, %) + Z b; (t, x)u,, (t, x)
i,j L

FA(E %) j (u(tx + h(t%,)) - u(t, ) do (@ £, x)dq

+c(t, x)ult,x) + f(t, x)
u(t,x) = g(x)

X0=x

u(t,x) = E [g(Xt) exp <]tc(s,XS)ds> + '[ f(s,X;)exp (jsc(u,Xu)du> ds
0 0 0

Application SDE Example

a Heat Equation dX; = odW;
ab,f European Option Pricing dS; = rS;dt + oS, dW;
b,A,h,c, f Particle Transport dXy = —vYidt; dY; = wy,dPey,
a,f Electrostatic Scalar Potential* dXt(i) = JedW,
b,c Pollutant Source dX, = vdt”

Deterioration

*steady state solution, “actually an ODE



Boltzmann Particle Transport Equation

" In one-dimension with constant energy, the angular flux density d(x,Q,t) is the
product of particle speed v and the angular density of particles at position X traveling in
direction Q at time t, N(x, Q, t).

" The angular flux density is assumed to satisty the Boltzmann transport equation:

1 Jdd Jdd
U at + ‘Qa_-l' (GS + Ga)q) fCD(x Q., t)O'S(x t)p(ﬂ’ - a))d_Q’ + 5

= Traditionally, the method of characteristics is employed to reduce this equation to an
integral equation of the second kind:

O=K>b+ S
where K 1s an integral operatort.

" This is then rewritten as the Neumann series

() ZZCDL', CDO =S,, CDL' =KCDL'_1,

with the physical interpretation that ®; is the angular flux of particles that have
undergone exactly 7 collisions.




8

Probabilistic Boltzmann Transport Equation

* The Boltzmann transport equation can be written in the general IPDE form through
the change of variable w = Q' — Q:

0P 5)9) 0P
Pl QE+ 0 - 6_Q+ vos(x,t) [ (CD(x,Q + w,t) — D(x, Q, t))p(a) - 0[|Q)dw

—vo,(x,t)® + vS.

" The generalized Feynman-Kac allows us to write the solution to the Boltzmann
equation with initial condition ®(x, ,0) = B(x, Q) as
d(x,0,t) =E (B(Xt, Y;) exp (—v fot o, (X, S)ds) |X0 =%, Yy = Q)
t t
+E (v Jy S(Xs, Yy, 8) exp (—v Jy aa(Xu,u)du) ds |X0 = 1,0 = Q),
where the underlying stochastic process is given by
dXt — —thdt
dYt = wYtht;Yt'




o0 1 _0Q 1

—=—-Q0—+= f(CD(x Q+w,t)—0(x, 0, t))p(w - 0]Q)dw — —Q

ot 2 ox 4
150x2 + ’ € L4
T2 110010

0 otherwise

9 | Proof of Concept Example
®(x,Q,0) =B(x,+1) = |

®(x,1,t) using SDE

o(x,1.1)

@(X,1,1)




o I Accuracy Stack for Neuromorphic Implementation

ut = f(t' u, ux' uxx)

u(t,x) = E[g(t, X¢)|Xy = x]

PDE and Solution Ground Truth

M
1 ) .
u(t,x) =~ MZ g(t.x}); Xél) =x
i1

We must sample paths from the stochastic
process, incurring sampling error on the

1
order of TR

X(t)

M
1 . .
u(jAt, x) = MZ g(jAt,Xj‘At); Xél) =x
i=1

We cannot sample the continuous paths
of X, so we approximate by a
discretization scheme. We incur error
based on this scheme.

X(t)

M
1 o
u(jAt, xi) = ME g(jAt,X}At); X(()l) = X
i=1

Further we limit the values the walk can
take. Denote the process by X which
assumes its values on a grid size of As. In
the best case scenario, the error accrued
in each time step is proportional to As/2

M
1 o
u(At, x;) ~ MZ 9(jat, Xjae); Xc()l) = Xk
i=1

Finally, we may need to set a max value
for the process, causing dependent on the
function g, the process, and the max value

set.

)

X(t

varies



i I Conclusions and Directions

Use Feynman-Kac style
equations to approximate
solutions via random walks.

Utilize application
specific, bespoke
random walk methods
to solve specialized
problems.

—

Explore a variety of
machine learning, deep
learning and other
neuromorphic suited
methods to solve
Riemann problems.

Use Ito Calculus to
relate certain linear
hyperbolic PDEs to
SDEs through clever
averaging.

_

Investigate new
Feynman-Kac style
formulas for vector
valued linear
PDEs/systems of
connected linear PDEs.

l

Example: Schrodinger operators

Hf = —=Af +Qf

where Q is not diagonal

Example: Chemotaxis R
u; = V(O ,Vu — y,uVv)
vy = D,Av + pu — v

a(P\ af PY
—|pU |+—| pU?+p |=0

Example: Sod Shock Tube

ot\ ' ox (E + p)U
—
Example:Wave Equations
0°u  ,0%u
EY R C a2 =0
ot 0x

Example: Linear Riemann Problem

0

ow_ |2 T|ow

ot  |— 0fox
Po

Non-Linear Example: Steady Flow for
Inviscid Fluids

- Not solvable with linear techniques,
but insight will be gained.

_/

Existing random walk
and Monte Carlo
Methods will work in
our framework.

Will require new

techniques to solve for

specific subclasses.

Under current
mvestlgatlon

.
|
|
l
|
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