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2 Overview

Introduction to Spiking Neuromorphic Hardware

■ Connections between SDEs and PDEs

■ Generalized Feynman-Kac

■ Application to Particle Transport

■ Implementation Accuracy

■ Conclusions



3 What is "Spiking Neuromorphic Hardware"?

Biologically Inspired Computing

Machine Learning /Al

Graph Partitioning / • tinn ation



4 Connecting PDEs and Random Walks
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Efficient Neuromorphic RW Implementation

c1Xt = µ.(t, Xt)dt + o- (t , Xt)dWt

ti 11.4".......46' -at = f Otx,uxx,

.41 1V
u(t,x) = IE [g (Xt) X0 = x]

Rigorous Probabilistic Connections

Low Power Particle Transport Simulation



5 I A Class of Integro-PDEs with a Probabilistic Interpretation

The IPDE-IVP

has solution

ut (t, x) = 
2 

aii (t, x)uxixi (t, x) + bi(t,x)uxi(t, x)
i

+A(t, x) f (u(t, x + h(t, x, q)) — u(t, x)) (/),Q(q; t, x)dq

+c(t, x)u(t, x) + f (t, x)
u(t, x) = g(x)

ft 
u(t, x) = IE [g(Xt) exp (I c(s, X s)ds) + f f (s, Xs) exp (I c(u,Xu)du) ds X o =

where dXt = b(t, X t)dt + a (t , t)diNt + h(t, t, Q)dPt;4,txt

and a, b , c, g ,h, and f are all real valued, A. < 0; further for each t and x that ch 0 and f ch(q)dq so that

P(t; Q, t, x) is a Poisson process with rate — fot A(s, x)ds. We further require that a = (To' , b, and h are all

defined so that the stochastic process Xt has a unique solution that belongs almost surely to the domain of g.



6 A Class of Integro-PDEs with a Probabilistic Interpretation

The IPDE-IVP ut (t, = 
2
1 ai (t, x)uxixi (t, x) + bi(t, x)uxi(t,

+A(t, f (u(t, x + h(t, x, q)) — u(t, x)) (/),Q(q; t, x)dq

+c(t, x)u(t, + f (t, x)
u(t,x) = g(x)

u(t,x)
ft 

= IE [g t ) exp (I c(s, X s)ds) + f f(s,Xs) exp (I c(u, X jdu) ds X o

Non-Zero Terms Application SDE Example

a Heat Equation

a, b, f European Option Pricing

dXt = adWt

dSt = r Stdt + aStdWt

b, h, c, f Particle Transport

a, f Electrostatic Scalar Potential*

b, c Pollutant Source
Deterioration

dXt = —vYtdt; dYt = wYtdPut

de) = -jdWt

dXt = vdtA

*steady state solution, ^actually an ODE _



7 Boltzmann Particle Transport Equation

• In one-dimension with constant energy, the angular flux density (13(x, SZ, t) is the
product of particle speed v and the angular density of particles at position x traveling in
direction SZ at time t, N (x, SZ, t).

• The angular flux density is assumed to satisfy the Boltzmann transport equation:
1 a cD a

+ 
• 
+ (as + (WI = f (13(x, t)as(x, t)par (0)dn' + S.

v a t a x

• Traditionally, the method of characteristics is employed to reduce this equation to an
integral equation of the second kind:

= + S',

where K is an integral operator.

• This is then rewritten as the Neumann series

cl) = (13 (Do = (Di =

with the physical interpretation that (Di is the angular flux of particles that have
undergone exactly i collisions.

•



8 Probabilistic Boltzmann Transport Equation

• The Boltzmann transport equation can be written in the general IPDE form through
the change of variable co = IV — II:
ail) an act,
at = —vfl— ax 

+ 0 + vas (x, t)f (0(x, II + co, t) — 0(x, fl, t))p(co —) 01.0.)dco
—vo-a(x, 00 + vS.

• The generalized Feynman-Kac allows us to write the solution to the Boltzmann
equation with initial condition (120(x, fl, 0) = B (x, fl) as

0 (x, fl, t) = E (B(Xt, Yt) exp (-1, .1: a-a (X s, s)ds) fro = x, yo = 11)

+IE ( t t
v fo S(Xs, Yz, s) exp (-1, fo aa(Xu, u)du) ds IX° = x, Yo = 11) ,

where the underlying stochastic process is given by
dX t = —Oltdt

dlit = wytdPtyt.



I9 Proof of Concept Example
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10 Accuracy Stack for Neuromorphic Implementation

ut = f (t,u,u,,u„)

u(t, x) = (t, xt)lx0 = x]

PDE and Solution Ground Truth
Liiimiombw0 5

M
1

u(t, x) —1g (t, XO; 4i) = x

i=1

We must sample paths from the stochastic
process, incurring sampling error on the

order of . —
VT/

M
1

u(j,o,t,x) il Ig(1,6,t,XjAt); = x

i=1

We cannot sample the continuous paths
of Xt, so we approximate by a

discretization scheme. We incur error
based on this scheme.

t

I I I I I I W I I I I I
Ot

M
1

xk) fejAt); 5(((:,1") = xk

i=1

Further we limit the values the walk can
take. Denote the process by fe which

assumes its values on a grid size of As. In
the best case scenario, the error accrued
in each time step is proportional to As/2

 1
1
—
2 
jAtAs 1

M
1

u(j,6,t,xk) --=•• m—Ig(I,AtiejAt); )e,:(;") = xk

i=1

Finally, we may need to set a max value
for the process, causing dependent on the
function g, the process, and the max value

set. /11111 
varies



ii Conclusions and Directions

1

I
. Use Feynman-Kac style

equations to approximate
solutions via random walks.

Utilize application
specific, bespoke

random walk methods
to solve specialized

problems.

Explore a variety of
machine learning, deep
learning and other
neuromorphic suited
methods to solve
Riemann problems.

Use Ito Calculus to
relate certain linear
hyperbolic PDEs to
SDEs through clever

averaging.

Investigate new
Feynman-Kac style
formulas for vector

valued linear
PDEs/systems of

connected linear PDEs.

►

Example: Schrodinger operators

Hf = —Af + Qf

where Q is not diagonal

Example: Chemotaxis

ut = V(DuVu - xuu712)
vt = + int - äv

Example: Sod Shock Tube

a

1

M

Existing random walk
and Monte Carlo
ethods will work in
our framework.

p a pU
Will require new

techniques to solve for

)+ pu2 = specific subclasses.
E x + p)U

Example:Wave Equations

a 2 u 
— C 

2 a 2 u

at2 ax2= 0

Example: Linear Riemann Problem

0aw _[a2
at

Po

Po aw
0  ax

\
Non-Linear Example: Steady Flow for
lnviscid Fluids
- Not solvable with linear techniques,
but insight will be gained.

Under current,
investigation.
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