
A Primer on Bayesian Inference
and applications to data analysis

PRESENTED BY

Patrick F. Knapp

Extreme Physics, Extreme Data Workshop, Leiden,
Netherlands

Sandia National Laboratories is a multimission
Laboratory managed and operated by National
Technology ft Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2020-0124C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.



2 I Outline

•Bayes' Theorem and its implications
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• Most likely values and confidence intervals

• Correlations

• How valuable is my data?

• Is my model good enough?

•Implementation

• Packages

• Using ML/DL to speed up



3 I Remember:All probabilities are conditional! This fact could save your life

IT§ OKAY! Lic-i-rNINC ONO( IOUS
ALROUT H5 AMERICANS A YURSO
THE DANCES OF DYING ARE ONLY
QNE fr,l Zeoctcco, GC). oiv!

THE ANNuNL CEATI-I RATE iqMONG
WHO MOW 71-1AT srPTISTIC ONE IN 51X.

Credit: https://xkcd.com/795/

P(lighting American) = 1.5e-7

P(lighting outside in a thunderstorm) >>
P(lighting American) !!

The product rule for conditional probabilities

P(X, YV) = P(X1Y, I)P(YV)



4 Bayes' Theorem

P(mlx, A)P(x1A) = P(xlm, A)P(rnIA)]

L _fr The stuff we already know



5 Bayes' Theorem

P(mlx, A)P(x1A) = P(xlm, A LNmIA)

-L The stuff we can measure



6 Bayes' Theorem

f(mlx,4-i(xIA) = p(xlm,Ap-i(m1A)
L The thing we want to know



7 Bayes' Theorem

P(mlx,A)P(xIA) = P(xlm,A)P(m1A)

Likelihood

PP(xlm, A)P(mH4)
LP(mdx, A) P(x1A) L 

t Posterior (AKA the answer)
Prior



The likelihood function is what probabilistically relates our model to
8 our observations

The likelihood function used
varies depending on the
application
o E.g. Single particle counting
with a y-spectrometer begs for
a Poisson distribution

o Signal processing with white
noise begs for a normal
distribution

P ( x

Multivariate Normal Distribution

N
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9
What about the priors?? How do we quantify our prior knowledge (or
ignorance)?

There is an overwhelming amount of information out there about
choosing priors
• MaxEnt methods for maximizing the ignorance of priors

• Uniform priors are often used as they (not always!) maximize ignorance

Remember: Its OK to use Gaussian priors
True, they can bias your answer

• But, they are mathematically simple (particularly for the linear posterior
approximation)

• You can truncate them to enforce hard constraints (e.g. density can't be
negative)

• There are methods to de-bias the solution in the event that the prior is more
informative than the data

seismic likelihood

desired constraint with iteration
oft • constraint without iteration

seismic loop

IL

gross thickness

bias without iteration
41-8

BxC AxC

gross thickness

Glinsky et al., Bayesian inversion whispers, THE LEADING EDGE MAY 2008
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I11 A linear approximation gives us deep insight into the problem at hand

In this approximation, finding the most likely value is a minimization problem

The full distribution can be approximated as a taylor series expansion

L loge (P(mlx, A))

VL m.. =0

L rr: L(m0) +

Linear because we retain only the first non-zero term in the expansion

M M
1 02 L

2 Orni 0111i
i= 1 j =1 1110

mo,i)(mj mo,j) + •••

Rewritten in matrix notation, shows that the posterior is approximated as a gaussian near the maximum

P(m1R, A) cx exp 2((rn — mo)TVVL(mo)(m — mo))



12 I The covariance matrix is defined by the hessian of L at the optimum

Useful solutions can be found by
deterministic optimization routines to find
the (e.g. Levenberg-Marquardt)

Calculate the hessian matrix at optimum point

This gives the full covariance matrix defining
a multivariate gaussian distribution

This distribution can be used to
Calculate the C.I.'s on the model parameters

. Sample the posterior diagnostic "fits" with
confidence intervals

OR to define the initial step size for an MCMC
sampler to map the nonlinear posterior

0
-2
i13

[vIVL(mo)]
ij

Its all in the gradients!

1



13 I A Simple, but relevant case: Neutron Time of Flight in ICF

Neutrons carry useful information about the temperature of the plasma producing

(YDD) them
0 ---,jib. ,-----VP

C) .........41"
40 ''',.

'------------ I
I n 1
% ,

I., ._ ..

2.45 MeV

A Source History

Mum...—

k _

bangtime

 .

Neutrons are born in the CM frame with 2.45 MeV

In the lab frame, they have a spread in velocities due to the Maxwellian distribution of
reactant velocities

When the burn duration is short this spread in velocities is detected as a spread in
arrival time at a detector (nTOF)

We would like to estimate the temperature of the plasma that produced the neutrons
with confidence intervals in the presence of additional nuisance parameters

Source Spectrum

FWHM a VT

2.45 MeV

Diagnostic
Forward model

time Arrival time



14 Using Bayes' theorem to estimate parameters of our model
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15 I Confidence intervals and Marginal Distributions
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The full Posterior for each of the parameters

•

Marginal posterior distribution for the temperature

P(T R, A) = dT dC dt.P(m1R, A)
to

2.433

temperature

Midi"

=L891

95% HPD

T 2.9 0.5 keV

3.372

2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00

Simply integrate the posterior over the nuisance
parameters

Correlations suggest that better knowledge of our
instrument would improve our inference of the
temperature

0 2 4
tau_burn

3
temperature

4 0.9 1.0
scale_ntof

—1.5 —1.0 —0.5
bangtime



16 I Lets examine a more complex model

T(r) = 71,[1_

1.0

a.) 0.8
ca

0.6
to_

0.4
o
CI)

0.2

0.0
0.0

Assumptions:
• Each slice has its own independent parameters characterizing a

static, isobaric hot spot surrounded by a liner
• Ideal gas EOS: PHS = (1 + (Z))nikBT
• All elements have same burn duration
• Electron and ion temperatures are equal
• X-ray emission is dominated by continuum (BF & FF)

0.2 0.4 0.6

(7-V1
_//)

0.8 1.0

X-ray Emission:

Model Parameters

{Tif = {Te}
{10-ae}
{PHs}
Mix}
{zinix}
{RHO

Elf Af f e 
PR.ekv 

gFF (Z) 
e—f2V /T

(1±(Z)Pi•-dflii 115/ 2

74
2 Af_b Lit no_ "72

IT= Zi + 
iD 

A

Neutron Emission:

PI-21S Tb f1f2 (ay) 
EE = 1 + 61,2 (1 + (Z))2Ti2 

L(E)

*Ballabio et al., NUCLEAR FUSION, Vol. 38, No. 11 (1998)

E f 

"

./1 .\/78)2

*I-0(E) = e 



Analysis is performed using Bayesian Parameter
estimation to determine the most likely hotspot
parameters

Bayesian Hierarchical Graph Model

Input Parameters

Cpmasureshift

missuneshift

•
mean_pressure

(mdiu-biti)
-adius_sMft

o_r_shift

pressure mean_rho r

urc

mean mdim

CO

(:-iempemture_AM

iempemme_shift

temperature

-adius temperature

mix_shift

mmn_lemperaftim mean_ m

Physics Model

hot_spot

scale_hpc t_s LVW
11111111111111141

cale_ sci CIZO
ade_sci ale_ntof

mean_pcd "willICIMNII \WIPP'

yield

mean_ntof

a

Synthetic
Observables

Experimental'
Observables I

• Bayesian parameter estimation is a well-established technique used in a
variety of fields*

• Analysis can be used to infer most likely parameters, correlations

between model parameters and/or data
• Can compute value of information to determine which data constrain

which parameters and how well

• Prior distribution is sampled
• Levenberg-Marquardt optimization

(with optional multiple starts) used

to determine the MAP solution

• By assuming a Gaussian form

this solution uniquely

determines the posterior
• MCMC sampling used to refine the

solution and determine if

posteriors show any non-linear
behavior

• Posterior distribution is sampled to
form the posterior diagnostic and
model parameter statistics (e.g.
mean, confidence interval, etc.)

*U. Von Toussaint, Rev. Mod. Phys. Vol. 83 (2011)



Bayesian Parameter estimation is an iterative process that
18 updates our assumptions based on observables

Experimental Data

Bayes' Theorem
Exoocva

P(m
a, A) = p(dm, A)P(mA)
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Outputs/Benefits:

• most likely parameter values

• confidence intervals

• correlations

• Value of information



We can use the posterior to determine which data are constraining
19 which model parameters

Cross-variance between model and data

C(rn,
d) SVD 

m 
-17T

md d

Decomposing the matrix gives the weight of each data
and model parameter in the strongest modes

This is a way of quantifying the value of information
(VOI)
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20 The posterior pdf's reveal correlations between the model parameters
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*Mix is relatively poorly determined

•Significant correlation with the
Pressure

X-ray Emission:

Ev = Af _f e P Re IC' v

Neutron Emission:

EE =

2 gFF (Z)
HS + (Z)

—hv/T

T5/2

f1f2(av)  (E)
(1 + (z))2Ti2 19'

•Neutrons and x-rays have the same dependence on
pressure, but not on mix

•We have local and global x-ray measurements, but only
global neutron measurements...
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101

Adding new information can affect the correlations in the posterior
pdf's, improving our ability to determine certain quantities

Reconstructed 1D

Neutron Image Data
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Motivated by diagnostic
developments and the previous
observation, we implemented a
simple 1D neutron image
model

This approach can be
formalized and extended to the
design and optimization of
diagnostics as well as
experiments**

**U. Von Toussaint, Rev. Mod. Phys.

Vol. 83 (2011)



Adding new information can affect the correlations in the posterior
22 pdf's, improving our ability to determine certain quantities
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23 I Finally, we can seek an answer to the question: Is my model good enough?

The traditional way: Model selection A new way: Causal Statistics

Z = P(RIA) = dml...dmNP (R1m, A)P (m1A)

Ozj

P(Ai) x

P(A3) Z 3

By calculating the evidence term, Z, we can see which
model is better supported by the data

What is P(n1)? What does n1 mean?

pressum_sWft lempemlum_shifi is_shift

This new branch of statistics seeks to evaluate the
probability of existence of a new node in the graph
network and what this node means
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There are many tools out there that can be used to construct these
25  models

Python has many packages available

pymc2, pymc3, (pymc4 under construction right now)
Significant differences in API between pymc2 and 3

. Basically, they all allow you to specify distributions on your parameters, pass them to a model to perform
operations on the parameters, and define statistics to compare model outputs to observations

o Defining these connections constructs a hierarchical graph model of your problem, the likelihood and
posterior are defined by this graph, Not by you explicitly

o We use pymc2, but it supports python 2, not 3 so we need to migrate our tools

. We also had to build in additional functionality into pymc (LM optimization, post-processing tools, etc.)

Tensorflow probability has some functionality available

. pymc4 is being built using tf as its backend to enable better integration w/ modern machine learning tools

Other packages include emcee, stan, R has extensive tools available

DAKOTA has some functionality available and works well with HPC and large multiphysics codes



26 How do we leverage modern ML tools within the Bayesian framework

The most straightforward way to do this is to
replace the physics and/or diagnostic models with
machine learned surrogatmulation
0 Conceptually straightforward

° Black-box like behavior

How do we propagate uncertainties through our new
blackbox?

D. Clark

This is most similar to the approach Jim Gaffney uses

DNN surrogate of
Multiphysics

radhydro code

• • •

Physics-7
Model,

• • •



27 There are a lot of choices about how to implement surrogates

Full end-to-end surrogate
O Experimental inputs to diagnostic outputs,
no intermediate steps

3 High training cost, risk of extrapolation,
diagnostics are directly linked to physics

Physics + Diagnostic Surrogates
' Separate surrogates for physics and

diagnostics

O Requires a means to link the two, could be a
learned latent space or full blown simulation
output

O More flexibility with diagnostics

Surrogate sub-modules
o Surrogates operate in better "confined
spaces,'

Have to integrate submodules in a stable and
sensible wahy

r Full end-to-end surrogate
Full Physics Surrogate

• • •

Physics Sub modules 

f
r

Diagnostic
surrogates

How do

We want

we account for uncertainties in every step of
the chain?

our surrogates to be fully probabilistic objects
to enable fully "Bayesian" analysis
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