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3 u Remember: All probabilities are conditional! This fact could save your life

el

Y

P(lighting | American) = 1.5e-7

P(lighting | outside in a thunderstorm) >>
P(lighting | American) !!

WHOA! WE SHOULD GET INSIDE!

ot
i .‘":&

IT5 OKAY! LIGHTNING ONCY KILLS The product rule for conditional probabilities

ABOUT Y5 AMERICANS A YEAR, SO
THE CHANCES OF DYING ARE ONLY

ONE IN 7000000, LET'S GO ON! P(X,Y|I)=PX|Y,I)P(Y|I)

0o

oy

THE ANNUAL DEATH RATE AMONG FEORLE
WHO KNOW THAT STARTISTIC 1S ONE IN SIX.

Credit: https://xkcd.com/795/



4 | Bayes’ Theorem

P(m|x, A)P(x|A) = P(X|m, AJP(m|A)

|—> The stuff we already know




5 | Bayes’ Theorem

P(m|x, A)YP(X|A) =|P(X\m, A)P(m|A)

\—V The stuff we can measure




6 | Bayes’ Theorem

P(m|x, A)P(x|A) = P(Xm, A)P(m|A)

L> The thing we want to know



7 1 Bayes’ Theorem

P (m

X

, A)P(X|A) = P(X[m, A)P(m]|A)

P(m|x, A)

L> Posterior (

I—> Likelihood

P(x|m, A)

P(m|A)

PR L.

AKA the answer)



The likelihood function is what probabilistically relates our model to
g8 | our observations

Multivariate Normal Distribution

varies depending on the
application

N
The likelihood function used P(f‘ﬁ ; A) X H €EXP
1=1

> E.g. Single particle counting
with a y-spectrometer begs for

a Poisson distribution Poisson Distribution

o Signal processing with white
noise begs for a normal M

distribution — D ]in e_Dk _
P(Nm, A) = || , Dy = f(xy, )
k=1

Nip.!



. | What about the priors!?? How do we quantify our prior knowledge (or

ignorance)!?

There is an overwhelming amount of information out there about
choosing priors

> MaxEnt methods for maximizing the ighorance of priors

> Uniform priors are often used as they (not always!) maximize ighorance

Remember: Its OK to use Gaussian priors
° True, they can bias your answer

° But, they are mathematically simple (particularly for the /Znear posterior
approximation)

> You can truncate them to enforce hard constraints (e.g. density can’t be
negative)

° There are methods to de-bias the solution in the event that the prior is more
informative than the data

Glinsky et al., Bayesian inversion whispers, THE LEADING EDGE MAY 2008

0

L

desired constraint with iteration

seismic likelihood constraint without iteration
Pard \b_ ;
= ~
e Vi \ f \
S / \ I
a / / \
” N
<:‘1> gross thickness
seismic loop
bias with‘:]it. iteration
=
B BxC AxC
(4]
L
o
Q.

gross thickness
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1 | A linear approximation gives us deep insight into the problem at hand

In this approximation, finding the most likely value is a minimization problem

The full distribution can be approximated as a taylor series expansion

L=lo m|x, A
e (P( ‘ ¢ )) Linear because we retain only the first non-zero term in the expansion

VL[ =0 /
L~ L(M,) + - S‘S‘ L

< Om;0m; |

(mi o moai)(mj N mO,j) —|_ v

Rewritten in matrix notation, shows that the posterior is approximated as a gaussian near the maximum

P(mlxX, A) x exp (%(m —1m,) ' VVL(m,)(m — mo))



12 I The covariance matrix is defined by the hessian of L at the optimum

Useful solutions can be found by

deterministic optimization routines to find _ - -1
the (e.g. Levenberg-Marquardt) 9

Calculate the hessian matrix at optimum point O-i : J — VVL (mO )

This gives the full covariance matrix defining - - 1,

a multivariate gaussian distribution

This distribution can be used to

° Calculate the C.I’s on the model parameters

> Sample the posterior diagnostic “fits” with

confidence intervals Its all in the gradients!

> OR to define the initial step size for an MCMC
sampler to map the nonlinear posterior




13 I A Simple, but relevant case: Neutron Time of Flight in ICF

>/}

Source History

Thburn
—> |e—

’~

S

]
\\_ d’l

2.45 MeV

.

A

Neutrons carry useful information about the temperature of the plasma producing
them

Neutrons are born in the CM frame with 2.45 MeV

In the lab frame, they have a spread in velocities due to the Maxwellian distribution of
reactant velocities

When the burn duration is short this spread in velocities is detected as a spread in
arrival time at a detector (n'TOF)

We would like to estimate the temperature of the plasma that produced the neutrons
with confidence intervals in the presence of additional nuisance parameters

Source Spectrum 1 )
Amplitude

Diagnostic

// |

I
bangtime

v

v

> Forward model 7/ ]
time Arrival time

2.45 MeV



14 I Using Bayes’ theorem to estimate parameters of our model

\ ..
/ Objective
Defined as a distribution

Parameters I Forward Model
Defined as | Deterministic, e.g.
distributions II inputs =» outputs

I Data

Mean and Distribution of Posterior Fits

|
|
|
Temperature || :
I |
|
|
|
I

Burn |

Duration \';b Neutron
|

Time of - eeemn s |Likelihood
Flight

({3 Bang”
time

Ty e o o o o e o o o o o e

el

Scalar !
! Posterior -3 —2 ~1 0 1
'l AN time [s] le—38
N e e e e e __/\ ______ > \_________/
A 4
A (F (M) — x3)?
P(m|x, A) o | [ exp (— 5T >N(MT, o1 )N (br, 00 )N (114, 01, )N (e o)

I D e
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Confidence intervals and Marginal Distributions

The full Posterior for each of the parameters

-

0 2 4
tau_burn

temperature

0.9 1.0
scale_ntof

-1.5 =10 =05
bangtime

Marginal posterior distribution for the temperature

P(TIX, A) = / dr / dcC / dt,P (Mm%, A)
T C P

temperature

mean=2.891

T'=29=x0.5 keV
95% HPD

2.433 3.372
2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00

Simply integrate the posterior over the nuisance
parameters

Correlations suggest that better knowledge of our
instrument would improve our inference of the
temperature
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Lets examine a more complex model

N slices

=) -(7) (k) ]
Tc' R Model Parameters

{Tl} — {Te}
{pRe}
{Pus}
{fmix}
{ka}
{Rus}

Assumptions:

Each slice has its own independent parameters characterizing a
static, isobaric hot spot surrounded by a liner

Ideal gas EOS: Pyg = (1 + (Z))nikpT

All elements have same burn duration

Electron and ion temperatures are equal

X-ray emission 1s dominated by continuum (BF & FF)

*Ballabio et al., NUCLEAR FUSION, Vol. 38, No. 11 (1998)

X-ray Emission:

” gFF —hv/T
Ey:Af—fe p eHyTbPHS QZ ’le T5/2

jiE J_z Z2Jr Af b Z RyZ2/T
JD Ap s T

Neutron Emission:

Pigmo,  fifa(ov) 1(E)

€Ep —

1+610 (14 (Z))2T2"°

1o(B) = e VE VB



Analysis is performed using Bayesian Parameter
estimation to determine the most likely hotspot

parameters

Bayesian Hierarchical Graph Model

Input Parameters

pressure_shift

r mix
ho! )PW‘M?%" cale_sci Keale_ntof Synthetic
ield i Observables

\
mean_tipc mean_pcd n_sci mean_ntof
mu mu nu mu
@ @ ° Experimental
Observables

t
mean_n_y

Bayesian parameter estimation is a well-established technique used in a
variety of fields*

Analysis can be used to infer most likely parameters, correlations
between model parameters and/or data

Can compute value of information to determine which data constrain
which parameters and how well

Prior distribution is sampled
Levenberg-Marquardt optimization
(with optional multiple starts) used
to determine the MAP solution
* By assuming a Gaussian form
this solution uniquely
determines the posterior
MCMC sampling used to refine the
solution and determine 1f
posteriors show any non-linear
behavior
Posterior distribution is sampled to
form the posterior diagnostic and
model parameter statistics (e.g
mean, confidence interval, etc.)

*U. Von Toussaint, Rev. Mod. Phys. Vol. 83 (2011)




Bayesian Parameter estimation is an iterative process that
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Bayes’ Theorem

Proposed Stagnation Conditions

Prior Distribution )
m

Model Parameters

P(m|A)

m-<

Experimental Data

Axial Distance fcm]
- s o

Radial Distance [cm)]

X-ray/Neutron Yield Post [J]

10°

8000

6

updates our assumptions based on observables

PCD Signal [V]
=
i
I
5

S}

{1\ FWHM = 1.9 ns

L
3.105
Time lusl

Synthetic Data

“ﬂ*&ﬂhmﬂe

4
-,

10° 10?
X-ray/Neutron Yield Data [J]

311

height (mm)

O = N W A U O N O

e s ocoe66aao

radius (mm)

Likelihood

Posterior Distribution

m

Outputs/Benefits:

* most likely parameter values
* confidence intervals

* correlations

* Value of information
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We can use the posterior to determine which data are constraining

which model parameters

Cross-variance between model and data

SVD

C(m,d) = U,V

Decomposing the matrix gives the weight of each data
and model parameter in the strongest modes

This 1s a way of quantifying the value of information

(VOI)

weight of znorm

nTOF

PCD

sci

TIPC

CCA, data norm by measurment error

Yield

=3
Q
@

pR

mix




20 I The posterior pdf’s reveal correlations between the model parameters

*Mix is relatively poorly determined

=
(o2}
1

O 14
| . . . ’
Lz *Significant correlation with the
O sl Pressure
o 6
E a4t
g L[
3.5 . .
to X-ray Emission:
o' 2.5 e—hl//T
£ 2 €, = As_pe PRerv g ————
2 1 v | )T
O (]
S 1.0}
0.5 brior=blue, post=rec Neutron Emission:

2
S =)
I

b Jifa(ov)
=g, 1+ (zerE e D)

mix_0
o))
I

*Neutrons and x-rays have the same dependence on
pressure, but not on mix

O N & W 0 O N «
—

< &
- o~ |_|

@w un ) Q9
B o ™

temperature_0 pressure 0

*We have local and global x-ray measurements, but only
global neutron measurements...
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n Image Post [n/cm]

1011

Adding new information can affect the correlations in the posterior

pdf’s, improving our ability to determine certain quantities

Neutron Image Data

Reconstructed 1D

|+§1 |§1 Nuetron Imager |

'10|11

n Image Data [n/cm]

Mix Fraction [%]

10

Posterior pdf

w/0 n-Img
w/ n-Img

] | ] ] .y ] ]
0.6 0.8 1.0 1.2 14 1.6 1.8
Pressure [Gbar]

*Motivated by diagnostic
developments and the previous
observation, we implemented a
simple 1D neutron image
model

*This approach can be
formalized and extended to the
design and optimization of
diagnostics as well as
experiments**

**+U. Von Toussaint, Rev. Mod. Phys.
Vol. 83 (2011)

|
|
|



Adding new information can affect the correlations in the posterior
22 I pdf’s, improving our ability to determine certain quantities

(a) 1.3 - | | | | I (b) 5.5 - | | | | L
IS — Input
1.2 s —  Without -
~

*As expected we find a dramatic
improvement in accuracy and
confidence of the mix prediction

Pressure |Gbar]
Temperature [keV]

*There 1s an additional

00 0l 02 03 04 05 00 01 02 03 04 05 improvement in the accuracy of
Position {cm Position [cm :
(om] (om] the pressure inference
(c) (d) 5. - I | | | I
— 4.5 - A Sl . .
g — 4.0 - = :
< S T~
=0 2 35 - — I — — -
& oy
5 S 30- i
g = V\_xﬁy\
3 &, R e A
e » 2.5 - ~ B
§ 2 2 O - Sl N -~ o i
= =
1 5 - =~ ~ N N B
0.6 = 1 1 | | ™ 1.0 = | 1 1 | I
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
Position [cm] Position [em]

I D e



23 | Finally, we can seek an answer to the question: Is my model good enough?

The traditional way: Model selection A new way: Causal Statistics

What is P(n,)? What does n; mean?
Z =PE|A) = / dm;...dmyP(X|m, A)P(m|A) an

L4
\\\\\

_ P(A)  Z;
Y= D4, " 7,

By calculating the evidence term, Z, we can see which
model is better supported by the data This new branch of statistics seeks to evaluate the

probability of existence of a new node in the graph
network and what this node means
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There are many tools out there that can be used to construct these
models

Python has many packages available

pymc2, pymc3, (pymc4 under construction right now)
o Significant differences in API between pymc2 and 3

> Basically, they all allow you to specify distributions on your parameters, pass them to a model to perform
operations on the parameters, and define statistics to compare model outputs to observations

> Defining these connections constructs a hierarchical graph model of your problem, the likelthood and
posterior are defined by this graph, Not by you explicitly

> We use pymc2, but it supports python 2, not 3 so we need to migrate our tools

> We also had to build in additional functionality into pymc (LM optimization, post-processing tools, etc.)

Tensorflow probability has some functionality available

° pymc4 is being built using tf as its backend to enable better integration w/ modern machine learning tools

Other packages include emcee, stan, R has extensive tools available

DAKOTA has some functionality available and works well with HPC and large multiphysics codes



26 I How do we leverage modern ML tools within the Bayesian framework

The most straightforward way to do this is to
replace the physics and/or diagnostic models with
machine learned surrogatesmulation

> Conceptually straightforward

o Black-box like behavior \ \

> How do we propagate uncertainties through our new Physics

blackbox? Model

D. Clark

This is most similar to the approach Jim Gattney uses

DNN surrogate of
Multiphysics
radhydro code




27 I There are a lot of choices about how to implement surrogates

7]
—
[7)
>
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o
=
(@)
S
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Q2
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O
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Computation speec

Full end-to-end surrogate

> BExperimental inputs to diagnostic outputs,
no intermediate steps

> High training cost, risk of extrapolation,
diagnostics are directly linked to physics

Physics + Diagnostic Surrogates
° Separate surrogates for physics and
diagnostics

> Requires a means to link the two, could be a
learned latent space or full blown simulation
output

> More flexibility with diagnostics

Surrogate sub-modules

° Surrogates operate in better “confined
spaces”

> Have to integrate submodules in a stable and
sensible wahy

/ Full end-to-end surrogate

Full Physics Surrogate

a )

\KPhysics Sub modules /

"

~

/

\_

Diagnostic
surrogates

\

),

How do we account for uncertainties in every step of
the chain?

We want our surrogates to be fully probabilistic objects
to enable fully “Bayesian” analysis

B s s B



