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2 Motivation

• Solid rocket motor components (nozzles and thrust vanes) need to withstand high temperatures.
• Temperature, material properties, and flow properties determine erosion rates.
• Measuring 2D temperature under realistic testing conditions, even at small scales, is challenging.

• Long experiments and large flow rates are needed to simulate a full grain burn.
• Large vacuum chamber is needed to simulate full grain burns at high altitudes.
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3 Overview

• Imaging pyrometry can estimate surface
temperatures and visualize erosion.

• Existing imaging pyrometry methods use
multiple cameras, require careful alignment,
and need image registration.

• Proposed Soluuon: uevelup compact imaging
pyrometry system with low-realignment
requirements.
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4 I Rocket Motor System

Vane

Solid
Rocket
Motor

Nozzle

Solid
Rocket
Propellant

Test Platform Ignitor

• Propellants (non-metalized) with 10 to 45 second burn times
• Thrust vanes reduce efficiency but provide ability to steer
• Materials

• Rhenium, melting temperature -3458K
• Tungsten, melting temperature -3695K

• Diagnostics
• Temperature sensitive paint - May not survive the higher

temperatures, would change the vane geometry
• Fluorescence or absorption - External illumination needed.
• Emission spectroscopy or Pyrometry - Can be measured with the same

technique if materials are gray or similar.
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5 li Sandia National Labs High Altitude Chamber (HAC) Facility

• 27-foot (-8 m) diameter vacuum sphere
• 1 of 3 vacuum spheres for SNL hypersonic wind tunnel
• Simulate altitudes 230,000 feet (70,000 m, 35 mTorr)
• -20 min to pump down
• Applications:

• Explosive and pyrotechnic testing
• Ejection, inflation, and free-fall testing
• Testing centrifuge to 600 rpm
• Test articles up to 1-ton and 60" diameter



6 Experimental Setup
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• Emission above -800 K can be measured in the visible Et near IR range
• Brimrose Acousto-Optic Tunable Filter (VA310-.55-1.0, 550 to 1000 nm, 1.5 to 7 nm, f/8 max lens aperture)
• Near IR Camera (Manta G-145 NIR, 12-bit, 1388 x 1038 pixels, 6.45 pm pixel size, 33 dB gain max)
• Synchronized at 9 Hz (LabVIEW, Brimrose, and camera communications)
• AOTF pyrometer placed inside vacuum-proof box
• Line-scan infrared spectrometer (Spectralline model ES200, 1.2 to 4.6 pm range)
• Visible spectrometer (Ocean Optics USB2000+) and power cables placed in instrumentation chamber



7 I Imaging Considerations

• Choose wavelengths to avoid any non-gray
emission peaks Camera

• Several wavelengths were initially collected but Exposure

the best temporal resolution was obtained using
two sequential images + black frame

• Images do not need to be in focus to estimate
temperature as long as focal properties are similar
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8 I Imaging Pyrometer Calculations

• Minimum of 2 colors and the relationship between
the emissivities is needed.

• Planck's equation gives:
2hc2E 1

I
P A.5 hc

e AkT — 1

• Wein's approximation is accurate if hcIA.>> kT:

2hc2E
jW = 

A.5 
e 2.1cT

hc

• Dividing intensities and solving for temperature at
each pixel:
T

=Lk ,Ä1Ä21  (1n(12111) — ln(E2) — 51nC1))1
A.2 — .11 172 2-2

• Black-body calibration constant C =
772

• Assume —E2 = 1 (gray body approx.) for initial
E1

estimates
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9 Calibration and Sources of Error

Black body Calibrations
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• Low intensities (low emissivity or low temperature)
• Reflections and diffuse scattering
• Lens + AOTF diffracts wavelengths differently (-1 pixel

vertical shift). Estimates at edges of objects are
affected.



10 Time-resolved Visible Spectrometer Measurements
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• To verify temperature ranges, a visible point spectrometer aimed at the nozzle throat.
• The spectrometer was calibrated with a black body and temperature was estimated from a fit.
• Initial intensities were low leading to inaccurate temperature estimates (pink region).
• As the intensity increased, the temperature estimates became more consistent. The average

temperature at the nozzle for this run was between 1280 and 1460 K.
• Although the temperature was relatively constant, the intensity increased steadily over time. This may

be due to soot buildup over time, scattering from other areas as they get hot, etc.
• Lower temperatures (800 K) can be measured after propellant burnout.



11 Nozzle Temperature Profile

Temperature at t = 0.11 s
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• Nozzle is hottest just below the throat.
• Temperature spreads from the center and

approaches an equilibrium.
• When propellent burns out, the temperature

of the nozzle equilibrates across the nozzle
before cooling.

• View factor effects from curvature visible
near nozzle throat.

• Heating comes from inside the nozzle and
temperature is measured from the outside,
causing an initial heating delay.
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12 Nozzle with Single Vane
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• Higher temperature propellant grain used to
test nozzle and vane

• Initial grain ignition can be seen at the
beginning.

• Nozzle throat and bottom of vane get hot at
the same time, nozzle eventually gets hot as
well.

• Leakage at the bottom seam between the
nozzle and the case.

• Shock-wave distortions and optically thick
flames are possible sources of error at the
bottom of the vane (intensity of images are
not high, but estimated temperatures are
large).

• Intensity saturation due to hotter propellant
grain. Experiments were later set to higher
maximum temperatures and saturated pixels
set to black.



13 Vane Temperature Profiles

Temperature at t = 1 s
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• Experiment with multiple vanes were
conducted.

• Different vane materials and small
differences in geometry were tested.

• In order to see the vane surfaces, the
imaging system had to be tilted facing
downwards into the nozzle. Changes in tilt
on the fly would have been difficult to do
with a larger, more complex imaging
pyrometer system.

• Erosion is visible on one of the vanes. This
experiment has no moving vanes.



14 I 2 Moving Vanes

Temperature at t = -0.11 s
1800

1600

1400

1200

800

T
e
m
p
e
r
a
t
u
r
e
 (
K
)
 

Temperature at t = 0.21 s

changing
temperature
patterns 

• Experiments with two moving vanes were conducted to test thrust vectoring.
• In some experiments, different temperature patterns can be seen on the stationary vanes, likely

corresponding to changes in flow and changes in shockwave shapes.
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15 I 4 Moving Vanes

Temperature at t 0.11 s
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• Additional experiments were conducting with 4 moving vanes.
• X and Y rotation motions were tested in addition to twisting (rotation).
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16 Additional Artifacts

Temperature at t = -0.11 s

sampling
tube
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sampling
tube

1
• Experiment with sampling tube to estimate flow properties.
• Right: camera and rocket motor not bolted with respect to one another.
• Shaking of the camera between frames causes misalignment of the images and poor temperature

estimates near edges. Large temperature swings between frames are also a source of error.
• Flow pushes sampling tube out of the way.
• Melting features visible at the top of one of the vanes.
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17 I Comparison with IR Line Spectrometer
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• Comparison of AOTF pyrometry at different
locations with maximum temperature from IR line
spectrometer show similar temperature ranges.

• Line spectrometer data is fit with a single
emissivity and a single temperature estimate.

• Both datasets initially assume gray-body emission
(emissivity is constant across all wavelengths).

• Therefore, both datasets are biased.
• Using literature emissivity values, the AOTF

pyrometer data can be corrected.
• Note that this correction does not take into

account sooting effects from the propellant burn.
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18 I Conclusions

• Compact imaging pyrometry  system using an AOTF was created for use in high-altitude vacuum 
chambers.

• The topology works well for experiments that need to be easy to realign and reposition.
• The fine linewidths of the AOTF require longer integration times 4 best suited where temperatures change

slowly.
• Measured surface temperatures of rocket motor nozzles and vanes. Compared pyrometry data with visible

and IR spectrometer temperature estimates.
• Interpreting the data requires an understanding of AOTF image shifting, view factors, vibrations, and

emicciwih,

•  Temperature at t = -0.32 s sh Temperature at t  = 0.00 s
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