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Motivation

» Solid rocket motor components (nozzles and thrust vanes) need to withstand high temperatures.
« Temperature, material properties, and flow properties determine erosion rates.

* Measuring 2D temperature under realistic testing conditions, even at small scales, is challenging.

» Long experiments and large flow rates are needed to simulate a full grain burn.
» Large vacuum chamber is needed to simulate full grain burns at high altitudes.

©LACO Technologies

(..'~
A

" 4
.,
wi
\
.
LY
\

Graphite Trust Vanes ) LACO Vacuum Chamber




3 I Overview

* |maging pyrometry can estimate surface
temperatures and visualize erosion.
« Existing imaging pyrometry methods use

multiple cameras, require careful alignment,

and need image registration.

« Proposed Solution: Lmﬁlﬂ p compact imaging
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4 I Rocket Motor System

* Propellants (non-metalized) with 10 to 45 second burn times
» Thrust vanes reduce efficiency but provide ability to steer
* Materials

* Rhenium, melting temperature ~3458K
\ / * Tungsten, melting temperature ~3695K

« Diagnostics
\ / « Temperature sensitive paint - May not survive the higher
temperatures, would change the vane geometry

* Fluorescence or absorption - External illumination needed.

Vane

Nozzle .. .
» Emission spectroscopy or Pyrometry - Can be measured with the same
technique if materials are gray or similar.
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5 | Sandia National Labs High Altitude Chamber (HAC) Facility

SNL High Altitude Chamber

« 27-foot (~8 m) diameter vacuum sphere
* 1 of 3 vacuum spheres for SNL hypersonic wind tunnel
* Simulate altitudes <230,000 feet (70,000 m, 35 mTorr)

* ~20 min to pump down
» Applications:
» Explosive and pyrotechnic testing
* Ejection, inflation, and free-fall testing
» Testing centrifuge to 600 rpm
» Test articles up to 1-ton and 60” diameter

© Sandia National Labs




6 I Experimental Setup

Solid Rocket | %\ T
Motor | = LT

« Emission above ~800 K can be measured in the visible & near IR range

« Brimrose Acousto-Optic Tunable Filter (VA310-.55-1.0, 550 to 1000 nm, 1.5 to 7 nm, f/8 max lens aperture)
* Near IR Camera (Manta G-145 NIR, 12-bit, 1388 x 1038 pixels, 6.45 pym pixel size, 33 dB gain max)

* Synchronized at 9 Hz (LabVIEW, Brimrose, and camera communications)

« AOTF pyrometer placed inside vacuum-proof box

« Line-scan infrared spectrometer (Spectralline model ES200, 1.2 to 4.6 pm range)

 Visible spectrometer (Ocean Optics USB2000+) and power cables placed in instrumentation chamber
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Intensity Ratio

Imaging Considerations
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Several wavelengths were initially collected but Exposure
the best temporal resolution was obtained using AOTE
two sequential images + black frame Amplitude
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Imaging Pyrometer Calculations

Minimum of 2 colors and the relationship between
the emissivities is needed.

Planck’s equation gives:
L 2hc?e 1
p 5 hc
A emr —1

Wein’s approximation is accurate if hc/A > kT:

2hc%e __hc
IW = /15 e AKT
Dividing intensities and solving for temperature at
each pixel:
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Intensity Ratio

Calibration and Sources of Error
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« Black body calibration up to 1500K (Infrared
Systems Development Corp. IR-564/301).

« Changing camera gain produces noisier
estimates of lower temperatures

Temperature Interpretation

Scattering ‘
-  Edge Shift

\‘, Reflection

Sources of Error

Low intensities (low emissivity or low temperature)
Reflections and diffuse scattering

Lens + AOTF diffracts wavelengths differently (~1 pixel
vertical shift). Estimates at edges of objects are
affected.



10 I Time-resolved Visible Spectrometer Measurements
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» To verify temperature ranges, a visible point spectrometer aimed at the nozzle throat.

» The spectrometer was calibrated with a black body and temperature was estimated from a fit.

» |nitial intensities were low leading to inaccurate temperature estimates (pink region).

« As the intensity increased, the temperature estimates became more consistent. The average
temperature at the nozzle for this run was between 1280 and 1460 K.

« Although the temperature was relatively constant, the intensity increased steadily over time. This may
be due to soot buildup over time, scattering from other areas as they get hot, etc.

» Lower temperatures (800 K) can be measured after propellant burnout.
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Nozzle Temperature Profile
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Nozzle is hottest just below the throat.
Temperature spreads from the center and
approaches an equilibrium.

When propellent burns out, the temperature
of the nozzle equilibrates across the nozzle
before cooling.

View factor effects from curvature visible
near nozzle throat.

Heating comes from inside the nozzle and
temperature is measured from the outside,
causing an initial heating delay.
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Nozzle with Single Vane
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Higher temperature propellant grain used to
test nozzle and vane

Initial grain ignition can be seen at the
beginning.

Nozzle throat and bottom of vane get hot at
the same time, nozzle eventually gets hot as
well.

Leakage at the bottom seam between the
nozzle and the case.

Shock-wave distortions and optically thick
flames are possible sources of error at the
bottom of the vane (intensity of images are
not high, but estimated temperatures are
large).

Intensity saturation due to hotter propellant
grain. Experiments were later set to higher
maximum temperatures and saturated pixels
set to black.



13 I Vane Temperature Profiles
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Experiment with multiple vanes were
conducted.

Different vane materials and small
differences in geometry were tested.

In order to see the vane surfaces, the
imaging system had to be tilted facing
downwards into the nozzle. Changes in tilt
on the fly would have been difficult to do
with a larger, more complex imaging
pyrometer system.

Erosion is visible on one of the vanes. This
experiment has no moving vanes.



14 I 2 Moving Vanes
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« Experiments with two moving vanes were conducted to test thrust vectoring.
* In some experiments, different temperature patterns can be seen on the stationary vanes, likely |

corresponding to changes in flow and changes in shockwave shapes. |



15 I 4 Moving Vanes
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» Additional experiments were conducting with 4 moving vanes.
« X and Y rotation motions were tested in addition to twisting (rotation).



16 | Additional Artifacts
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« Experiment with sampling tube to estimate flow properties.

» Right: camera and rocket motor not bolted with respect to one another.

» Shaking of the camera between frames causes misalignment of the images and poor temperature
estimates near edges. Large temperature swings between frames are also a source of error.

* Flow pushes sampling tube out of the way.

» Melting features visible at the top of one of the vanes.



17 I Comparison with IR Line Spectrometer
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18 I Conclusions

Compact imaging pyrometry system using an AOTF was created for use in high-altitude vacuum
chambers.

The topology works well for experiments that need to be easy to realign and reposition.

The fine linewidths of the AOTF require longer integration times - best suited where temperatures change
slowly.

Measured surface temperatures of rocket motor nozzles and vanes. Compared pyrometry data with visible
and IR spectrometer temperature estimates.

Interpreting the data requires an understanding of AOTF image shifting, view factors, vibrations, and
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