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Trap features

Advantages/Challenges vs 3D
Adva ntages
• More manufacturable ("scalable")

• Consistent geometry -> consistent
behavior

• Greater field control (more electrodes)

• 2D geometry

• Integration of other technologies
(waveguides, detectors, filters...)

• Laser access

Challenges
• Low depth (ion lifetime),

anharmonicities in potential

• Proximity to surface (charging, heating)

• Delicate (dust, voltage)

• Capacitance

Ions

I I I I

2013 2.00mm



Trap features

Capabilities & Requirement
Essential capabilities
• Store ions for long periods of time (hours)

• Move ions to achieve 2D connectivity

• Support high fidelity operations

• Uniform performance

Derived requirements
• Voltage breakdown >300 V @ —50 MHz

• Backside loading hole

• Multi-level lead routing for accessing interior

electrodes

• Standardization [lithographically defined

electrodes]

• Overhung electrodes

• High optical access [high NA delivery and

collection optics]

Quantum CCD
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Trap features

Voltage application
Trapping potential
• Axial frequency: 500 kHz [<5 V]

• Radial frequency: 2.8 MHz, 3.1 MHz [250 Vrf @ 40 MHz]

"t‘v, • 70 p.m electrode pitch

• 70 p.m ion height
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Trap features

Multi-layer metallization

14•14 (electrode level)
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Trap features

Trench capacitors & Loading holes

det HV .rr HFW dwell tilt

TLD 2.00 kV 50 pA 39.5 pm 300.00 ns 52.0 °

 20 pm 

1819 Helios G3

Interposer (current)
• 20V max voltage

• 1nF capacitance

On chip (future)
• 15V max voltage

• 200pF capacitance (but low inductance)

• Up to 200 capacitors can be located within

the isthmus

50pmx8Opm lOpm hole
modulation necessary still perturbs the field

3pmx2Opm



Trap features

Optical access & integrated optics
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Can accommodate 4/2 um beam waist (369 nm)
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Some of Sandia's Trapl
_A_ 

Y-junction traps

NONE SEI 5 0 V XDS 100p7 WD 1:1 Omm

Ring trap:

Stylus trap
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High Optical Access (HOA) trap

: Switchable RF trap

EPICS trap
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• Heating rate 40 q/s on average, 171Y1D+, Trap frequency 2.8 MHz, RF drive at 50 MHz

• Heating rate in HOA-2 is low and uniform along the length of the quantum section



Classical characterizati

Background electric fie7
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• Goal is to eliminate offset from RF null

x(t) = [A cos(wt) + Ax](1 + (12 cos(nt)

• Measure transition strength of Raman

beams applied at drive frequency (lateral
direction)

• Tickle ion motion with chirped pulses at
drive frequency, minimize fluorescence
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Linear trap

Ring trap

1111Classical characterization

Background electric field
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Classical characterization

Shuttling and swapping

• Co-wired junction and linear sections, transported ions around device

• Same voltage solution at junctions



Classical characterization

Applications

P

Controlled rotation

•

Combined rotation and translation

Separation and merging

Long Chains

Compression of chains

•Ta or 4.•11, m L i •

• • . ■d a r •

3D Crystal Structures

, mi 1m. Ar
. I IP -rr



5w0 Nir41 hwA kwa Classical characterization

Quantum characterization

n+1

n-1

Specialized devices and
Future directions



1Quantum characterization

Single qubit gates
• Process infidelity z: diamond norm

• This indicates that we have
gotten rid of all systematic
errors

Below the threshold for fault-tolerant error
correction!

See P. Aliferis and A. W. Cross, Phys. Rev. Lett. 98, 220502 (2007)

• Co-propagating gates have infidelity
comparable to microwave gates, but
diamond norm indicates some
residual control errors

• Counter-propagating gates are
noticeably worse, but are necessary
for two-qubit gates

• Lower fidelity presumably results
from anomalous heating and optical
phase sensitivity

Microwave Gates

Gate Process Infidelity 1/2 0-Norm
Gi- 6.9(6) x 10-5 7.9(7) x 10-5
Gx 6.1(7) x 10-5 7.0(15) x 10-5
Gy 7.2(7) x 10-5 8.1(15) x 10-5

Laser Gates 

co-propagating

Gate Process Infidelity 1/2 Q-Norni

Gi- 1.17(7) x 10-4 5.3(2) x 10-4

Gx 5.0(7) x 10-5 3(6) x 10-4

Gy 6.9(6) x 10-5 4(9) x 10-4

counter-propagating

Gate Process Infidelity 1/2 0-Norm
Gi- 11.1(6) x 10-4 22.8(1) x 10-4
Gx 4.0(4) x 10-4 13.2(6) x 10-4
Gy 4.1(4) x 10-4 8.4(8) x 10-4
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Specialized devices & Future directions

Microwave trap
Benefits:
• Microwave radiation is easier to control

and cheaper to implement than lasers
• Low power for Rabi oscillations (330 ns

for -2 dB at device)
• Near field allows to generate microwave

gradient fields

Challenges:
• Microwave delivery (-17 dB loss chamber

to dev)
• Dissipation, heating, thermal
management
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Specialized devices & Future direction

TICTOC optical clock

An atomic-photonic
integrated clock to achieve

6y < 1 X 10-14/T112 for

1 s < 2< 100,000

in less than 1/2 liter

Top window

Spacer

lon trap / PIC substrate
with apertures for vacuum conductance
and metaliTed LTTLP bond pad

Bulk non-evaporable
getter pump material

Miniature ion pump
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Specialized devices & Future direction

QSCOUT (QS Open User Testbed

Trapped Ions:
fully connected

• Single chain of 5 — 15 ytterbium
qubits

• Stored in Sandia surface trap
• Individual addressing with 355nm

Raman beams
• Full connectivity using radial

vibrational modes
• Individual qubit detection via fiber

array
• Addressing and detection supports

up to 32 qubits

Fiber array

Zto detectors

Microfabricated l
Ion trap

zImaging lens

Ytterbium qubit register

Individual addressing AOM
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Classical characterizatio

Shuttling and swappin igl

• Tag one ion with BB1 composite pulse

• Measure states on separate PMT's after rotation
• In addition to declining success probability, fluorescence

drops due to motional heating

• Success probability drops for times <18.6 us
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Quantum characterization

Ytterbium qubit

Li

Zero ions-LY

0 e ion bright

2Sia

Two ions
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S. Olmschenk et al., PRA 76, 052314 (2007)
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Ytterbium qubit
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Quantum characterization

Gate Set Tomography (GST)

• No calibration

required

• Detailed debug
information

• Efficiently measures
performance
characterizing fault-

tolerance (diamond
norm)

• Amplifies errors

• Detects non-
Markovian noise

• Robin Blume-Kohout,
SNL

Desired "target" gates:
Gi Idle (Identity)
Gx ir/2 rotation about x-
Gy 7r/2 rotation about y-

Fiducials:

{}
Gx

Gy

Gx • Gx

Gx • Gx•Gx

Gy • Gy Gy

Germs:
Gx

Gy

Gi

Gx Gy

Gx Gy Gi

Gx Gi Gy

Gx - Gi Gi

Gy Gi•Gi

Gx - Gx Gi - Gy

Gx Gy Gy Gi

Gx Gx Gy Gx•Gy Gy

Single qubit BB1 compensated microwave gates on

a a G2 a-G2- G1- G2 G1- G2

171yb+

Prepare germ germ germ germ Measure
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Quantum characterization

Microwave gates

Raw data poor gates

200 400 600 800 1000

Sequence Index

200 1400 1600

10-

10

Raw data good gates 10

200 400 600 800 1000

Sequence Index

1200 1400 1600

10—

Fixed pi/2 rotations
with BB1 pulses

Gy
Gx
GI , A ,

17-Apr 2-Dec 9-Feb 2-Mar 30- ar

Experimental run

Fixed drift and context dependency



Quantum characterization

Error mitigation
Compensated Pulses
• BB1-type dynamical-decoupling
pulses used

• Corrects pulse-length errors

"Gapless" Pulses
• Phase changed discontinuously
on DDS

• Avoids finite turn-on time effects
• Removes errors caused by
asynchronous pulse arrival

• Allows for continuous power
stabilization

Drift Control
(Drive Frequency)

• Single-shot calibrations increase
or decrease a control parameter
by a negligible value

• Small corrections either average
out or slowly accumulate
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1Quantum characterization

Two qubit gates
• Bichromatic entangling "Wilmer-Sorensen" gate
• Gate time and detuning from motional sidebands is set so

that population in motionally (de-)excited states is zero
corresponding to a closed loop in phase space

• Does not require ground state cooling
• Requires a number of extra calibrations

• Rabi frequencies of red/blue detuned transitions
matched

• lons need to be evenly illuminated
• Phase of beat note needs to be calibrated and stable
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1Quantum characterization

Two qubit gates
Typical Approach: Entangled State Fidelity

• Entangled state fidelity determined by

T = — 
1 
(13(l00)) + PO-1M + 4c
y

■ 1 11>

I 01>+ I lo>

1 00>

-

h. —

8
8ynvOnVo

0
30„:04e08vorfwe

0000 ocoorJ00000000 0000

Run

• Repeated application of gate

• Measure average population
of entangled state

1

1 .

0 90 180 270
Analyzing Phase (deg.)

• Apply gate followed by analyzing

pulse of varying phase
• Measure the resulting contrast

360



Quantum characterization

Two qubit gates
Typical Approach: Entangled State Fidelity

1

2 (P(00)) + POW) +
Two-Qubit GST

• Provides a true process fidelity

• Requires an extremely stable gate to take

Iong GST measurements

without constant recalibration

o
0

II C3 CjxX YY YZ ix lY lz XY xZ

XX
YY
YZ
IX
IY

IZ
XY
XZ

1
-c rr 0.995

• Currently limited to the

symmetric subspace

Gate Process infidelity 1 Diamond norm2

GI 1.6 x 10-3 I  1.6 x 10-3 28 x 10-3 ± 7 x 10-3

Gxx 0.4 x 10-3 ± 1.0 x 10-3 27 x 10-3 ± 5 x 10-3

Gyy 0.1 X 10-3 ± 0.9 x 10-3 26 x 10-3 4 x 10-3

Gms 4.2 x 10-3 + 0.6 x 10-3 38 x 10-3 ± 5 x 10-3

Fms
1
Gms1

0.9958(6)

0.08(1)

95% confidence intervals

• Much more rigorous
characterization

• Gate is stable for
several hours



Specialized devices & Future directions

EPICS trap
• Integrated Superconducting Nanowire Single-Photon

Detector (SNSPD) detector and reflective backplane

• Detector developed by JPL/NIST

• SNSPD provides higher photon detection (>80% vs <30%)

• Cavity-QED provides higher photon collection efficiency

• Strong coupling regime enables qubit measurement via

fast cavity transmission

• Extra rf electrodes enable alignment

of rf node with cavity modes

Trap Fabrication (Duke/SNL)
JPL/NIST EPICS
SNSPD die trap die

collaboration Nal-
National Institute of
Standards and Technology
U.S. Deportmenl of Commercewith

. Ipl
J.I=RopiedueLo=y

SNL Si
interposer

Duke



Trap features

Manufacturability, uniformity
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• 12 institutions, 5
countries

• >100 devices
delivered

• Quantum
computing

• Quantum

simulations

• Quantum
communication

• Surface science

• Metrology
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Experimental characterization

Shuttling and swapping
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Single qubit gates

Microwave error sources

Time resolut on:

— Current time resolution is 5 ns

  times are 45 ,as

  ratio: 10-4

Possible due to broadband pulses

Coherence t e:

T2 1 s

— longest pulse sequences 8192 : 1.66 s



Single qubit gates

Markovianity violation

• BB1 decoupled
microwave gates with

decoupled identity
have very small non-
Markovian noise

• BB1 dynamically

compensated pulse
sequences

• Decoupling sequence
for identity gate

• Drift control for TE-
time and qubit
frequency

R. Blume-Kohout, et al.
arXiv:1605.07674 (2016)

30

25

20
X
2

-V2k 15

10

10 100

sequence length

wait
BB1 wait
BB1 >0(

BB1 XYXY
first data

1000 10000

Gate Process Infidelity /2 N

6.9(6) x 10 7.9(7) x 0

6.1(7) x 10®5 7.0(15) x 10®5

Gy 7.2(7) x 10-5 8.1(15) x 10-5

95% confidence intervals



Single qubit g

Microwave broadband pulses

661 compensated pulse

Switching artifacts
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Single qubit gates

Laser based Raman gates

ion
-Pe ...)

co-propagating beam geometry
• Motion independent
• No optical phase imprinted

• BB1 dynamically compensated pulse sequences

GST results:

Gate

G 

Gx

Gy

95% confidence intervals

Conventional pulses Gapless pulses

Process Infidelity 1 f 2 o-Norrn Process Infidelity 1/2 o-Norm

0.05(2) x 10-4 12(1) x 10-4 1.1(1) x 10-4 5.3(2) x 10-4

1.3(1) x 10-4 4(2) x 10-4 0.5(1) x 10-4 2(6) x 10-4

1.6(4) x 10-4 4(3) x 10-4 0.7(1) x 10-4 4(9) x 10-4



Two qubit gates

MOImer-Sorensen gates
• Molmer-Sorensen gates [1]

• All two-qubit gates implemented using Walsh

compensation pulses [2]

4

3

2

1

o

"Vertical" "Horizontal"
Ti t CO Tilt CO

2 2 2 2.4 2 6 2.8

RamanSingleDetuning (MHz)

[1] K. Wilmer, A. Sorensen, PRL 82, 1835 (1999)
[2] D. Hayes et al. Phys. Rev. Lett. 109, 020503 (2012)
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Two qubit gates

Fidelity measurement using parity scan
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Two qubit gates

GST on symmetric subspac

Prepare germ

Basic gates: G

Gxx — Gx Gx

Gyy Gy Gy

Gms

Preparation Fiducials:

{}
Gxx
GYY

GMS

GxxGms

GyyGivis

germ germ

Germs:

GI

Gxx

Gyy

Qms

GIGxx

GiGyy

GIGms

GxxGry

GxxGA4-s
Gy-y-Gms

G1G1Gxx

GIGICyy

germ Measure

Detection Fiducials:

Gx X
Gyy

GMS

GxxGA4-s

GyyGivis

G3xx
3Gr y

Gy-GMS
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GST data
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0 200 400 600 800 1000

=,quence Index

1200 1400 1600 1800

Zero ions bright
One ion bright
Two ions bright

Gate Process infidelity 2 1 Diamond norm

Gi 1.6 x 10-3  1  1.6 x 10- 28 x 10 ± 7 x 10-

Gxx 0.4 x 10-3 ± 1.0 x 10-3 27 x 10-3  I  5 x 10-3

Gyy 0. ± 0.9 x 10- 26 x 0 3   I  4 x 0

Gills 4.2 x l0 0.6 x 10- 3 x 10  5 x 0

95% confidence intervals

Process fidelity of two-qubit Molmer-Sorensen gate > 99.5%



Specialized devices & Future directions

Microwave trap

"Ideal" Two-Loop Design

Inner current

carrying loop

Bouter

1
•
i
A

i 1

outer •
I

•

% outer
i
,.

Outer current

carrying loop

• x- and y- fields cancel along z-axis

• Generates uniform Bz and dBz/dz with B=0
• Location of null determined by geometry

and ratio of currents

• /IS 

..... IMP ---' 
•••• 
..... 1

Two-loop concept developed at Sandia in 2012 (SAND2015-9513)

(C. Highstrete, S. M. Scott, J. D. Sterk, C. D. Nordquist, J. E. Stevens, C. P. Tigges, M. G. Blain)



Specialized devices & Future directions

Microwave trap

Localized near-field
microwaves

Large Flex cables connect directly
between die and chamber

Benefits:
• Microwave radiation is easier to control and

cheaper to implement than lasers
• Low power for Rabi oscillations
• Near field allows to generate microwave

gradient fields

Challenges:
• Microwave delivery
• Dissipation, heating, thermal management



Specialized devices & Future directions

Microwave trap

• Losses between chamber and
device z:17dB

• Realized fast Rabi flopping
330ns with 15dBm at
chamber, -2dBm at device

• Access to range of relevant
ii-times

• Will characterize gates as
function of ii-times.
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