
NEW MEXICO TECH 
SCIENCE • ENGINEERING • RESEARCH • UNIVERSITY

Corrosion of C 1018 Steel
Under WIPP Conditions

Chase Kicker

New Mexico Tech Department of
Materials and Metallurgical Engineering

PRESENTED BY

(IT
Karisruher Institut fi.ir Technologie

I

641,14:14n **•

funded by WIPP programs administered by the
Office of Environmental Management (EM) of the
U.S Department of Energy.

1

SAND2020-0249PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.



I Waste Isolation Pilot Plat (WIPP)

• Deep geologic repository

for transuranic (TRU)
waste

• TRU waste is stored 660m

underground in the 380m

thick Salado formation

• First barrel of waste was
placed underground in

1999.

Remote-Handled Contact-Handled
Waste Waste

http://www.wipp.energy.gov/wipprecovery/abouthtml



1 Introduction

• Goal of WIPP - safe storage of

nuclear waste for 10,000 years

• ri65,000 metric tons of steel present

• Element interactions must be modeled

• Steel will begin corroding immediately



I Introduction 
I

I

• Steel corrosion could produce significant
1hydrogen gas generation

• Corrosion rate and mechanisms must be

determined

• Various rate determination methods
1

• Static, Flow-through, and Electrochemical set-ups
1

1



1 Corrosion

• Corrosion accelerated by salt environment

• Once vault is sealed, corrosion process will

expend all oxygen

• Corrosion shifts to anaerobic mechanism

• Corrosion process produces hydrogen gas



1 Corrosion

• Relationship between chloride bearing high

ionic strength solutions and corrosion must

be better understood

• Effects of sulfide in this environment must

also be understood

• Sulfide corrosion products vary and create a
number of different passive layers



1 Corrosion

• Depending on the corrosion mechanism,

the stoichiometry of hydrogen production

relative to amount of iron will change

Iron (II) Hydroxide Reaction: Fe°(s) + 2H20(1) = Fe(OH)2(s) + H2(g)

Magnetite Reaction: 3Fe°(s) + 4H20(1) = Fe304(s) + 4H2(g)



1 Corrosion

• When sulfide is introduced, there are several

potential mechanisms. Mackinawite (FeS1_,)
subsequently transforms from its amorphous phase

to Troilite, Pyrite, Greigite, and finally Pyrrhotite.

Troilite Reaction: Fe°(s) + H2S(aq) = FeS(s) + H2(g)

Pyrite Reaction: Fe°(s) + 2H2S(aq) = FeS2(s) + 2H2(g)

Greigite Reaction: 3Fe°(s) + 4H2S(aq) = Fe3S4(s) + 4H2(g)

Pyrrhotite Reaction: 7Fe°(s) + 8H2S(aq) = Fe7S8(s) + 8H2(g)



1 Previous Research

• Tests in simulated Salado brine used hydrogen

gas evolution to calculate a corrosion rate of

0.71 [im/yr at room temperature. (Telander I

and Westerman 1993)

• Carbon steel corrosion tests in pure water at
room temperature yielded about 0.02 [im/yr ,

but the addition of chlorides caused an

increase to 0.1 p,,m/yr. (Kaneko et. al. 2004)
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1 Previous Research

• Carbon steel electrochemical

measurements at room temperature

resulted in rates between 10-20 p,m/yr

(Sherar et. al. 2010)

• The addition of sulfide in saline solutions

at room temperature resulted in rates of

700 pim/yr determined by weight loss (Liu

et. al. 2014)



1 Previous Research

• Electrochemical tests of low carbon steel at

90°C reported rates of 95 pim/yr in the first

months of testing before tapering off to near

zero (Schlegel et. al. 2014)



1 Materials

• C1018 steel was used to simulate average
composition of the waste containers

Table 1. Chemical Composition of the C1018 steel as provided by
Alabama Specialty Products determined by ASTM-A108.

Element Fe C Mn P S Si Cu Ni Cr Mo

Concentration

(wt.%)

98.72 0.184 0.75 0.011 0.014 0.017 0.10 0.08 0.10 0.023
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1 Solutions

• Solutions for the Static and Flow-Through

experiments were prepared inside a

glovebox under a nitrogen atmosphere.

• Simplified Generic Weep Brine (SGWB)

consists of 3.5 m NaC1 and 1 m

MgC12 • 6H20



1 Static Reactors

• Static tests constructed to allow for

corrosion product formation and hydrogen

gas formation

• Steel coupons were submerged in SGWB

and sealed with a pressure gauge

• Tests run for several months at 90°C

14



1 Static Reactors ■

Figure I. A. Static reactor assembly showing glass vessel attached to pressure gauge and valve
system. A polytetrafluoroethylene barrier inside of the glass cylinder prevents corrosive sulfide
environment from reacting with the borosilicate glass B. Static reactor placed inside heating
block. 15



1 Single Pass Flow Through (SPFT)

• Designed to simulate realistic

conditions if brine ever penetrated the

WIPP repository

• Fresh SGWB continuously pumped into
reactors

• Conducted in glovebox under nitrogen

atmosphere at 90°C



1 Single Pass Flow Through

• Steel coupons polished to mirror like lpim

grit finish

• RTV silicone applied to several areas to
i

preserve pristine surface auring experiment

• Coupons placed into Teflon reactors sitting

inside of a heat block

• Hydrogen traps placed within the system for

generated gas collection



Single Pass Flow Through
I

I

Figure 2. Glovebox setup for Single Pass Flow Thru Experiments. The
hanging IV bags contain the experimental solutions. Reaction vessels
are covered in insulating foam and cannot be seen. 18 I



1 Single Pass Flow Through

Schematic of flow through set up. The IV bag is full of solution
which is then pumped into the reaction reservoir containing the
steel coupon. Waste is collected to ensure a continuous source of

19fresh solution.



1 Single Pass Flow Through

Table 2. List of solutions for each reactor in the Single Pass Flow Through
setup

Reactor Number Solution Sulfide

1 SGWB

2 SGWB -

3 SGWB -

4 SGWB 0.001m NaHS

5 SGWB 0.005m NaHS

6 SGWB 0.010m NaHS

7 Deionized Water -

8 Deionized Water -

9 Deionized Water -

10 Deionized Water 0.0001m NaHS



I Corrosion Rate Determination by

Fe Release

• ICP-MS used to analyze solution for

Iron content

-rt =
(Ci,in — Ci,out) x Qs,t

vi x As,t

rt = mass flux of an element at time t ( ,, 
9 
)in . * d

g
Ci,in = the concentration of the element i into the reactor (

m3
)

g
Ci,in = the concentration of the element i out of the reactor ( 3)

m
L

Qs,t = mass flow rate of effluent over the coupon at time t (—d
)

g element
vi = the mass fraction of the elment i in the steel coupon ( )g steel

As,t = the area of the coupon at time t (m2)



1 Corrosion Rate Determination by

H2(g) Release

• Hydrogen gas generated during the
experiments was trapped in graduated
cylinders

I

I

I

• Bottles under vacuum were used to collect 

samples for GC-MS ana Ily sis 

• Results were inconclusive

22



I Corrosion Rate Determination by

Weight Loss

• After experiment termination, steel

coupons cleaned according to ASTM

G1-03.

• Weights after each cleaning cycle

were recorded to calculate weight loss



1 Corrosion Rate Determination by

Weight Loss

c

Number of Cleaning Cycles

Figure 3. Plot of weight loss measurement after each cleaning cycle. Line
segment AB represents the loss of corrosion products. BC represents loss of
pristine steel. BC is extrapolated backwards to point D which is the final
projected mass loss of the steel. 24



I Corrosion Rate Determination by

Weight Loss

• Using Kquation 2, surface retreat in

pim/yr can be calculated

W x 87.6
rate (r) = x 1000

SAxtxp

W = mass loss (mg)
SA = surface area (cm2)

t = time exposed to corrosion conditions (hrs)
9 

p = steel density (
cm3
)



I Corrosion Rate Determination by

Interferometry

• Interferometry is a novel technique for

corrosion studies to directly measure
surface retreat

• Uses refracted light beams to measure
minute differences in height

• Once RTV masks removed, step change
in height can be measured



1 Corrosion Rate Determination by

Interferometry

Mask Pristine surface

Start

Mask Reacted surface

End

Reference surface TLllictifference
(with mask removed) 

Normal • L

Sa 12.0.38pm

Sq 12.042pm
Sr I 051 pm

-And* 1.1 ,!

Reference
411.111111 surface

Reaction surface

, I • f r , 11711-11 -rr

to 'on -ton 4ü0 sun

X:82. •

OU 100 It(10
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Figure 4. An illustration of interferometry technique. A mask (RTV sealant) is
applied to the surface of a steel coupon and placed into a reactor Solution
reacts with the exposed surface of steel, causing dissolution and surface
retreat. The mask is then removed revealing the pristine surface. This change
in height can then be measured with interferometry.
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1 Electrochemical Set-up

• Electrochemical tests were run to determine rates

relatively quickly

• Set-up was created to mimic SPFT conditions at

90°C and a nitrogen environment.

• A Gamry Multiport Corrosion Cell Kit was used

• Heating jacket connected to Omega temperature

controller was used to maintain temperature.



1 Electrochemical Set-up

Figure 5. Electrochemical cell set up with heating jacket.



1

Results



1 Single Pass Flow Through •
Figure 6. A. Corroded
coupon from reactor 2
(SGWB) before
cleaning. B. Coupon
from reactor 2 after
cleaning. C. Coupon
from Reactor 5 (SGWB
+ 5 mmol NaHS)
before cleaning. D.
Coupon from Reactor 5
after cleaning. Note the
roughening of the left
edge of the coupon,
this edge was at the
bottom of the reactor
where corrosion
products collected and
exhibited greater
pitting. Coupons are 50
mm across.
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1 Weight Loss •
Table 3. List of Single Pass Flow Thru corrosion rates as determined by weight loss.

Reactor Solution Corrosion Rate (um/yr)

1 SGWB No Coupon Present

2 SGWB 13.63

3 SGWB 11.29

4 SGWB + 1 mmol NaHS 16.05

5 SGWB + 5 mmol NaHS Coupon Sacrificed for

Characterization

6 SGWB + 10 mmol NaHS 73.49

7 DI Water 0.47

8 DI Water 0.65

9 DI Water 0.78

10 DI Water + 1 mmol NaHS Not Measured Yet

11 DI Water + 5 mmol NaHS Not Measured Yet 32



1 Interferometry
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Figure 7. Interferometry image of pristine surface before initiation of corrosion test.
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1 Interferometry
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Figure 8. Interferometry image of coupon from Reactor 4. The masked surface can
be seen as the red region and the corroded surface as the roughened green region.
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1 Interferometry

Table 4. List of Single Pass Flow Thru Rates as determined by interferometry.

Reactor Solution Corrosion Rate (um/yr)

1 SGWB No Coupon Present

2 SGWB 11.95

3 SGWB 11.07

4 SGWB + 1 mmol NaHS 5.49

5 SGWB + 5 mmol NaHS Coupon Sacrificed for

Characterization

6 SGWB + 10 mmol NaHS 1.38



1 Electrochemical Impedance Spectroscopy
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Figure 9. Bode plot from the Electrochemical Impedance test in SGWB solution.
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1 Electrochemical Corrosion Rates

B
Icorr =

Rp

µA
Icorr = Corrosion Current (—)

CM2

B = Stern — Geary coef ficient (17 /decade)
Rp = Resistance Polarization (ohm * cm2)

The Stern Geary coefficient is extracted from the Tafel plot and is calculated using the
equation below.

B
Ba* Bc

2.303(Ba + Bc)

Ba = Annodic Slope (I 7 /decade)
Bc = Cathodic Slope (I 7 /decade)



1 Electrochemical Corrosion Rates
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Figure 11. Corrosion rates extracted from the EIS tests plotted over time.
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1 Characterization

Figure 12. A. EDS scan of coupon from Reactor 2 (SGWB). B. EDS Scan of
coupon from Reactor 4 (SGWB + 1 mmol NaHS). 

40
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1 Characterization

-

1-‘‘
EHT = moo kV Signal A = SES1
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•
Figure 13. SEM
image of Coupon
from Reactor 2
(SGWB). A. 34X
Magnification, salt
crystals present. B.
203X magnification,
hopper formation
can be seen in the
NaC1 oystals, finer
corrosion layer
becomes apparent.
C. 529X Texture of
corrosion product
layer now visible. D.
257OX Zoomed in
look at corrosion
product layer

41— r "W"-- 4 71 • 40';'‘.: 1.14-`:•h. 111 • Alf



1 Characterization
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1 Characterization
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Figure 15. XRD diffractogram of corrosion products from Reactor 5 (SGWB + 5
mmol NaHS). Various compounds such as Pyrite, Mackinawite, and Pyrrhotite
present. 43



1 Characterization
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Figure 16. XRD diffractogram of corrosion products from Reactor 12 (DI water
+ 10 mmol NaHS). Pyrrhotite, Mackinawite, Pyrite, and Greigite present.
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Proposed Research

• The most recent set of SPFT experiments includes
work for KTT. These tests will be further analyzed for

Fe release to help understand the corrosion

mechanism over time

Table 5. List of solutions and steel types for KIT SPFT experiments.

Sample ID Brine Solution Coupon Composition Solution 3 Composition

KIT-F 1 5 M NaCI Graphite steel • 5 M NaCI

• 0,0188 M CaC12 ■2H20

• 0,0188 M Na2SO4

• 0.015 M K2SO4

• 0,015 M MgSO4 .7H20

KIT-F2 3,4 MgC12 Graphite steel

KIT-F3 Solution 3 Graphite steel

KIT-F4 5 M NaCI Cr-Ni steel

KIT-F5 3,4 MgC12 Cr-Ni steel

KIT-F6 Solution 3 Cr-Ni steel

49



1 Proposed Research

• Complete analysis on all SPFT experiments

• Complimentary electrochemical tests for all SPFT

experiments (excluding KTT conditions)

• Vary temperature on electrochemical tests to create a

better model



1 Summary

• SPFT experiments are a useful method for
,.

realistic simulation

• Numerous techniques will provide a broad
understanding of corrosion mechanisms

under these conditions

• A sufficient model will be obtainable after

completion of experimentation and

analysis
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