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Intro

UNCERTAINTY QUANTIFICATION
DOE AND DOD DEPLOYMENT ACTIVITIES

Stewardship (NNSAASC) Energy (ASCR, EERE, NE) Climate (SciDAC, CSSEF, ACME)
Safety in abnormal environments Wind turbines, nuclear reactors Ice sheets, CISM, CESM, ISSM, CSDMS

e surtace topoy

sidinglow

bedtopography

Addtnl. Office of Science:

(SciDAC, EFRC)

Comp. Matls: waste forms / ]
hazardous matls (WastePD, CHWM) {7 [97]

MHD: Tokamak disruption (TDS) ; 1361

Uniform

Pareto-
j informed

00 v
-3.00-1.50 000 150 3.00 450 6:00 7.50 9.00
Activation Energy (eV)

FIGURE: Courtesy of Mike Eldred

High-fidelity state-of-the-art modeling and simulations with HPC
» Severe simulations budget constraints
» Significant dimensionality driven by model complexity
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UNCERTAINTY QUANTIFICATION FOR HF SIMULATIONS
STATE-OF-THE-ART

Two technologies are emerging as effective strategies to perform UQ for HF simulations:

» Multifidelity optimally fuses a handful of HF realizations with large sets of realizations from several lower
fidelity models

» Reduced Order Modeling (ROM) creates a fast representation of the HF numerical model for a rapid a
posteriori use

In principle ROM can be used (as it is) within a MF UQ framework as one model fidelity, however few questions
need to be addressed:

» How accurate does ROM need to be to achieve a certain accuracy within the MF UQ?

» How is it possible to optimize the training step of ROM within a MF UQ workflow?

@ In this talk we try to explore how the coupling between ROM and MF UQ might be done efficiently

Efficient MF UQ with integrated ROM 2/30
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Multifidelity Sampling

UNCERTAINTY QUANTIFICATION
FORWARD PROPAGATION - WHY SAMPLING METHODS?

UQ context at a glance:
» High-dimensionality, non-linearity and possibly non-smooth responses

» Rich physics and several discretization levels/models available

Natural candidate:

» Sampling-based (MC-like) approaches because they are non-intrusive, robust and
flexible...

» Drawback: Slow convergence O(N~1/2) — many realizations to build reliable
statistics

Goal of the talk: Reducing the computational cost of obtaining MC reliable statistics

Pivotal idea:

» Simplified (low-fidelity) models are inaccurate but cheap
» low-variance estimates

» High-fidelity models are costly, but accurate
» low-bias estimates
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Multifidelity Sampling

UNCERTAINTY QUANTIFICATION
RICH SET OF MODELING CHOICES - DISCRETIZATION VS FIDELITY

Multi-fidelity: several accuracy levels available

» Physical models (Laminar/Turbulent, Reacting/non-reacting, viscous/inviscid...)
» Numerical methods (high/low order, Euler/RANS/LES, etc...)
» Numerical discretization (fine/coarse mesh...)

» Quality of statistics (long/short time history for turbulent flow...)

Potential Flow

—_— Fousie Potential Flow E
ow
Regions
vortex sheet Reynolds “
o Averaged Navier- v stress RA!
e ) S
s
g
= Hybrid
=
5 [ —
2
Large Eddy
Simulation (LES)

Hybrid RANS/LES
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Multifidelity Sampling

MONTE CARLO SIMULATION
ESTIMATOR VARIANCE

Problem statement: We are interested in the statistics of a functional (linear or non-linear) @y of the solution uy,
Qu=9(wy) — ElQy]

» M is (related to) the number of spatial degrees of freedom

> E[Qu] m—”>ﬂ§[Q]fersomeRVQ:Q—>R

N
AMC def 1 0)
Qin = 5 20
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Multifidelity Sampling { A lumer

MONTE CARLO SIMULATION
ESTIMATOR VARIANCE

Problem statement: We are interested in the statistics of a functional (linear or non-linear) @ of the solution uy,
@y =9(uy) — EQy]

» M is (related to) the number of spatial degrees of freedom

> E[Qu] M}E[Q]fersomeRVQ:Q—rR

N
AMC def 1 0)
Qin = 5 20

#Hit

Let’s use MC to compute the value ™ o<

Hit
Miss
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Multifidelity Sampling A

MONTE CARLO SIMULATION
ESTIMATOR VARIANCE

Problem statement: We are interested in the statistics of a functional (linear or non-linear) @y of the solution uy,
Qu=9(wy) — ElQy]

» M is (related to) the number of spatial degrees of freedom

> E[Qu] M"—°°>]E[Q] for some RV Q : © — R

N
AMC def 1 0)
Qin = 5 20

#Hit

Let’s use MC to compute the value ™ o<

N=100 ——
pi ——

il u
|y

q i \Hw

Estimated Pi

I li‘{l i}‘ 'Mrli

2.4 — ‘
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Repetition 6/30
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Multifidelity Sampling

MONTE CARLO SIMULATION
ESTIMATOR VARIANCE

Problem statement: We are interested in the statistics of a functional (linear or non-linear) @y of the solution uy,

Qu =G(uy) — E[Qy]

» M is (related to) the number of spatial degrees of freedom

> E[Qu] M"—°°>]E[Q] for some RV Q : © — R

N
AMC def 1 (@)
Qin = 5 20

#Hit
Let’s use MC to compute the value 7 oc ———
.8 T T T T T T
8 N=100 ——
N=1000 ——
36| pi

Estimated Pi
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Multifidelity Sampling { A lumer

CONTROL VARIATE
SEVERAL WAYS OF ACCELERATING MC CONVERGENCE

Variance of the estimator:
_ Var[Q]

Var [Q]
N
What can we do to drive down the variance of the estimator?
#0 Increasing the number of samples — this is going to cost us too much for HF applications
#1 Replace the HF model with a computational cheapest one, e.g. Reduced Order Models (ROMs)

#2 Changing the Qol with another one under the assumption that its mean is the same, but the new
variance is smaller (control variate)

Variance reduction techniques: sampling strategies
» Importance sampling: very useful when the main contribution to E [@] comes from rare events
» Stratified sampling: Very effective in 1D, not always clear how to extend to multiple dimensions
» Latin hypercube: Effective if the function can be decomposed into a sum of 1D functions

»> (Randomized) quasi-MC: Possibly provides better error than MC, but need to be randomized to get the
confidence interval

Efficient MF UQ with integrated ROM 8/30



Multifidelity Sampling { f

MONTE CARLO
INTRODUCING THE NOTION OF FIDELITY: BIAS OF THE ESTIMATOR

Numerical problems cannot be resolved with infinite accuracy: a discretization/numerical error is often introduced

QMC, def 1, 2 )
u N = ZQ

1 . ]
b %o o
g Po o:o\.\o ®
°
‘o %= ‘t\.
° ®
®
&
> 05
o ¢
8 o
@
°®
%0 Hit ®
0 . @ Miss @
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Multifidelity Sampling

MONTE CARLO
INTRODUCING THE NOTION OF FIDELITY: BIAS OF THE ESTIMATOR

Numerical problems cannot be resolved with infinite accuracy: a discretization/numerical error is often introduced

Qe def 1 iQ(w

N =100, Nx=4 ——
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Multifidelity Sampling

MONTE CARLO
INTRODUCING THE NOTION OF FIDELITY: BIAS OF THE ESTIMATOR

Numerical problems cannot be resolved with infinite accuracy: a discretization/numerical error is often introduced

e, der L 1 ZQ(”

N =100, Nx=16

p!
Est Mean (Nx=4)
Est Mean (Nx=16)

3.8 T T T T T T

|‘|.‘T d w"i’”ﬂl\ ll“ \1’||\||Hu||n i

Estimated Pi
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Multifidelity Sampling

MONTE CARLO SIMULATION
INTRODUCING THE SPATIAL DISCRETIZATION

Problem statement: We are interested in the statistics of a functional (linear or non-linear) @y of the solution uys

Qu =9(uy) — E[Qy]

» M is (related to) the number of spatial degrees of freedom

M— oo

> E[Qy] ——— E[Q] forsome RVQ : Q — R

1
Mc def ZQQ)

Looking at the Mean Square Error (MSE):
E (@)% — E[QD?] = var [@N] + EQm - Q)*
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Multifidelity Sampling

ACCELERATING MONTE CARLO
BRINGING MULTIPLE FIDELITY MODELS INTO THE PICTURE

Pivotal idea:

>

High-fidelity models are costly, but accurate

» low-bias estimates

Simplified (low-fidelity) models are inaccurate but cheap
» low-variance estimates

Single Fidelity

Multi Fidelity

Hi e Hit
Miss o wiss
1
LT °l
B L .
0
- 05
o o
Hi e . Hit
Mss o ol ol wiss
0 05 1
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Multifidelity Sampling

CONTROL VARIATE
LEVERAGING THE CORRELATION BETWEEN MODELS

A Control Variate MC estimator (function @; with 11 known)

oV A A

@ =Q-8(@-m), Ber
NOTE: @ is the MC estimator of the HF and Ql is the MC estimator of the LF

Properties:

» Unbiased, i.e. E [QI((;V] =E [Q] = E [Q] (for any 3)

. Var'/2 (Q)
» argmin Va V] 5= —p——"
wpinVr (O] 8 = ~Prrian
Cov(@,
» Pearson's p = ovQ, Q1) where |p| < 1

Varl/2 (Q) Varl/2 (Qq)

Var [ng] = Var [Q] (1 » m

Let’s consider:
> Var (@] ~ Var Q]
> px1
» It follows that 8 ~ —1

NOTE 1: In reality 3 is estimated by a finite number of samples, therefore the variance is slightly higher and there
is a small bias (that can be quantified)...
NOTE 2: The so-called Multilevel MC can be re-interpreted as a CV with assigned (—1) weights
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Multifidelity Sampling

OPTIMAL CONTROL VARIATE
M LOW-FIDELITY MODELS WITH KNOWN EXPECTED VALUE (IN COLL. WITH PROF. GORODETSKY, U. MICHIGAN)

Let's consider M low-fidelity models with known mean. The Optimal Control Variate (OCV) is generated by
adding M unbiased terms to the MC estimator

QCV:Q+§%’ (Qi*“i)

> Qi MC estimator for the ith low-fidelity model

» 11; known expected value for the ith low-fidelity model

> a=la;..., aM]T set of weights (to be determined)

Let's define
» The covariance matrix among all the low-fidelity models: C € RMXM

» The vector of covariances between the high-fidelity @ and each low-fidelity @;: ¢ € rRM

> ¢ =c¢/Var[Q] = [p1Var[Q4], ..., pyVar [QM]]T, where p; is the correlation coefficient (@, @;)

The optimal weights are obtained as a* = —C~ ¢ and the variance of the OCV estimator
Var [QCV] = Var [Q} (1 — éTC_lé)

=Var [Q] (1 - Rjey), 0 <Rpey < 1.

@ For a single low-fidelity model: R%CV~1 = p%

Efficient MF UQ with integrated ROM
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Multifidelity Sampling

APPROXIMATE CONTROL VARIATE
M LOW-FIDELITY MODELS WITH UNKNOWN EXPECTED VALUE (IN COLL. WITH PROF. GORODETSKY, U. MICHIGAN)

For complex engineering models the expected values of the M low-fidelity models are unknown a priori
> Let's define the set of sample used for the high-fidelity model: z

> Let's consider N; ordered evaluations for Q;: z; (we assume N; = [r;N1])

> Let's partition z; in two ordered subsets Zil U z? = z; (note that in general zi1 n zL-2 # 0)
The generic Approximate Control Variate is defined as

M
Qa,2)=Q z>+2 (@) — D) = Q@) + Y adi(m) = Q+4"4,

i=1 i=1

The optimal weights and variance can be obtained as

A% = —cov [, A] " Cov [, ]

T Cov [A, A]™

Var [Q (QACV)] T [Q} 1 — Cov [A Q] Var [Q}

=var [Q] (1 - Riev) -

@ For a single low-fidelity model: R‘%CV~1 = rlr;lp%

Efficient MF UQ with integrated ROM 15/30
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Multifidelity Sampling

APPROXIMATE CONTROL VARIATE
M LOW-FIDELITY MODELS WITH UNKNOWN EXPECTED VALUE (IN COLL. WITH PROF. GORODETSKY, U. MICHIGAN)

In our Approximate CV paper we demonstrated that

>
>

>

[MLMC-1]
[MLMC-2]

[MFMC-1]

[MFMC-2]

[MFMC-3]

[ACV]

Multilevel Monte Carlo (MLMC) can be obtained as a particular instance of this scheme
Multifidelity Monte Carlo (MFMC) can also be obtained as a particular instance of this scheme

Both MLMC and MFMC can be defined with samples drawn in a recursive manner (which limits their ability
to converge to OCV)

—1 i i o
For M=1, RE\CV—I = LPZ and it can be shown that this result holds for both recursive and
ry

non-recursive sampling scheme

@ In this work we only consider the case with M = 1, therefore ACV-1 is indeed MFMC

Giles, M.B., Multilevel Monte Carlo path simulation. Oper. Res. 56, 607-617, 2008.

Haji-Ali, A., Nobile, F., Tempone, R. Multi Index Monte Carlo: When Sparsity Meets Sampling, Numerische
Mathematik, Vol. 132, 767-806, 2016.

Pasupathy, R., Taaffe, M., Schmeiser, B. W. & Wang, W., Control-variate estimation using estimated
control means. //E Transactions, 44(5), 381-385, 2012

Ng, LW.T. & Willcox, K. Multifidelity Approaches for Optimization Under Uncertainty. Int. J. Numer.
Meth. Engng 100, no. 10, pp. 746772, 2014.

Peherstorfer, B., Willcox, K. & Gunzburger, M., Optimal Model Management for Multifidelity Monte Carlo
Estimation. SIAM J. Sci. Comput. 38(5), A3163A3194, 2016.

Gorodetsky, A., Geraci, G., Eldred, M., Jakeman, J., A Generalized Approximate Control Variate Framework
for Multifidelity Uncertainty Quantification. arXiv:1811.04988 [stat.CO].
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Multifidelity Sampling

MULTIFIDELITY CONTROL VARIATE
VARIANCE REDUCTION AND OPTIMAL SOLUTION

We want to solve the following problem

> Minimization of the total computational cost: C (NHF, r) = NHFHF + rNHF cLF

» We want to reach a target MSE of 52. therefore Var [QCV} = 52/2

Efficient MF UQ with integrated ROM 17/30



Multifidelity Sampling

MULTIFIDELITY CONTROL VARIATE
VARIANCE REDUCTION AND OPTIMAL SOLUTION

We want to solve the following problem

> Minimization of the total computational cost: C (NHF, r) = NHFHF + rNHF cLF

» We want to reach a target MSE of 52. therefore Var [QCV} = 52/2

More formally, let's define our optimization problem (Lagrange constrain optimization)

1 e2
argmin (£) £ = — x| ——var [@IF| A(r) — —
rgmin (£) e Vor (@] A —

Ctot (NHF, r) - NHFCHF + rNHFCLF

r—1 4
A(r):l_Tpl'

The solution of the optimization problem is obtained as

)

23 A(r™).
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Multifidelity Sampling

MULTIFIDELITY CONTROL VARIATE
HOW DOES IT COMPARE WITH MC?

» To reach a target variance of 2, MC needs

» The MC total cost is therefore
tot Var [Q]
Cyme = CarNme = CoF — 45— -

» ACV1 only needs

rr—1 4
Nacvi =Nuc | 1= ——»

rr—1 . CLF
chtvs = e (1- =22) (1477 22

» The ACV1 normalized cost w.r.t. MC is

cnorm _ (9 _ r* 1
ACV1 = -

» ACV1 total cost is

Efficient MF UQ with integrated ROM 18/30
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Reduced Order Modeling | r

REDUCED ORDER MODELING
GENERALITIES

Vorticity Field Pressure Field

LSPG ROM
* 32 min, 2 cores

High-fidelity
* 5 hours, 48 cores

ROM are used at Sandia for
» Time critical decision: Model predictive control and health monitoring

» Many queries workflows: Optimization and Uncertainty Quantification

Model Reduction Criteria
» Accuracy: achieve less than 1% error
Low cost: achieve at least 100x computational saving

Property preservation: preserves important physical properties

>

>

» Generalization: should work in every difficult cases
» Certification: accurately quantify the ROM error
>

Extensibility: should work for many application codes

Efficient MF UQ with integrated ROM 19/30



Reduced Order Modeling

REDUCED ORDER MODELING
LEAST-SQUARES PETROV-GALERKIN (LSPG) - WORKFLOW

High-Fidelity system of ODEs:

d=flatp), o0 p) =a%(w)
1. Acquisition e st 3. Reduction
ﬁ\. s ] Choose ODE X bt
> »g g Temporal -

i 6" il g gg Discretization () =0, n=1..T
7 ; o x(t) ~ %(t) = ®X(t)
SOlvedgg: na; ;::serent Save solution data Reduce the I

number of
2. Learning unknowns

Unsupervised Learning with Principal
Component Analysis (PCA):

minivrnizeH A (o V)2

X = = u ; 3 v’ Minimize the

Residual

2

» LSPG references: [Carlberg, Bou-Mosleh, Farhat, 2011; Carlberg, Barone, Antil, 2017]
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MF UQ-ROM coupling

MULTIFIDELITY UQ AND ROM COUPLING
NORMALIZED COST WITH a priori ROM

» The variance reduction of the multifidelity scheme is
% o r—1
Var [Q%F} = Var [Q] (1 — p?)
r

> Let's assume that ROM is the (only) LF model

> The optimal1 number of HF and LF simulations can be obtained in closed form for an estimator variance &2

A Var [Q] (1 _ 7‘*;1P2>
-2 g

» The overall cost of the multifidelity estimator (normalized w.r.t. MC) is

def CMF =1, Crom
c}g’;’"§7:<17 —p IR L

Cuc Crom

NOTES:
» The cost C%g‘m represents the efficiency of the MF UQ estimator

> Given a fixed value for both Cpops and Cropy, then Chghm — chorm (,2)

IMinimum overall estimator cost for a target estimator variance
Efficient MF UQ with integrated ROM 21/30



r ed Order M MF UQ-ROM coupling lumer ¢

MULTIFIDELITY UQ AND ROM COUPLING
ONLINE ROM’S COST INTEGRATION

Can we be more efficient by designing the ROM to achieve an optimal correlation and cost trade-off
within this framework?

We consider here (without lack of generality) two hyper-parameters for ROM:

» np number of basis terms for ROM

» k the multiplicative factor that controls the time step size (i.e. a time step kAt is used for ROM whereas At
is used for FOM)

A complexity analysis can be conducted for both FOM and ROM

»  Full order model
FOM

C = NNy N VnnzN-

» ROM based on QR decomposition

n, 2
CROM’QR = ;tnnl (av,manb + 204an2, + aNny, + nlz) (—gnﬁ))

» where
» n; is the number of time steps
» n,; is the number of iterations for the non-linear Newton-Raphson method
» n; is he number of iterations for the solution of the linear system
P Upnz is the number of non-zero elements per row (i.e. spatial discretization stencil)
» N is the number of spatial nodes
» « is the hyper-reduction factor
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TEST CASE DESCRIPTION
THE KURAMOTO-SIVASHINSKY EQUATION

Numeric:

We consider the non-dimensionalized one-dimensional KS equation with homogeneous Dirichlet and Neumann

boundary conditions,

o*u
i
x4

ou ou o%u

T = sl s @ e e 2
ot e+ )Bx Ox2
x €[0,L],¢ € [0, 00),
u(0,t) = u(L,t) =0,
ou Ou
P - =0,
0x lx=0 Ox |x=L
u(x,0) = ug(x),

where L is the domain length (L = 128 in our tests), ¢ is an advection parameter, and v is the hyperviscosity

parameter.

FIGURE: Space-time plot of the KS equation solution for ¢ = 0.0, L = 128.0, v = 1.0.

Efficient MF UQ with integrated ROM
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! Numerical results

TEST CASE DESCRIPTION
THE KURAMOTO-SIVASHINSKY EQUATION - QUANTITIES OF INTEREST

In this study we considered four different quantities:

» Mean of a pointwise quantity

Q' (u(x, 1) =

1
/ D u(x = 0.25L, t) dt,
t—to Jyy

»  Mean of a squared pointwise quantity

Q@ (u(x, ) =

t
/ V2 = 0.25L, 1) dt,
t —to Jrg

» Mean of a spatially averaged quantity

Q(u(x, 1) =

/tl]E[u] dt, E[u] = % /Lu(x,t)dx,
JO

ty —to Jig
» Mean of a spatially averaged squared quantity

Q (u(x, ) = ” ito /tl E[e’] @, E[] = % /OL w2 (x, t) dx,

to

— u(x=0.251)
U"2(x=0.25L)

Quantity of Interest

0 200 00 600 800 1000
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Numerical results

TEST CASE DESCRIPTION
COMPLEXITY ANALYSIS FOR FOM AND ROM

Normalized ROM cost -- Normal Eq. Normalized ROM cost - QR

10 100 10 100
9 | 9

8 8

b4 10 L7 10
6 g 6

5 1 g 5 1
4 8 4

3 e 3

M (] M 04
1 1

0 0.01 0 001

20 25 30 35 40 45 50 55 60 65 70 20 25 30 35 40 45 50 55 60 65 70
Number of basis Number of basis

Normalized ROM cost -- QR (HH)

10 100
9
8
10
= 7
g s
g 5 !
8 4
8
3
0.1
2
1
0 0.01

20 25 30 35 40 45 50 55 60 65 70
Number of basis

ny = 5000,

Spatial discretization stencil vpp; = 5

Grid size N = 127

Linear solver iterations n; = 5

Non-linear solver iterations n,; = 15 (FOM) and n,; = 10 (ROM)

Hyper-reduction factor a = 1/100 (from literature and experience with larger problems)

vyvyYyVvYyYvyy
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Numerical results

MF UQ - ROM COUPLING

EXPLORING THE EXISTENCE OF AN OPTIMAL COUPLING REGION

On-line MF UQ — ROM coupling
> the hyper-parameters n; (number of basis terms) and k (the time step factor) control the cost Cpgy
» the correlation between FOM and ROM is also a function of nj and %
» the final MF UQ-ROM estimator’s cost (normalized w.r.t. MC) is then function of nj and &
*
argmin (1 L (nb,k)> (1 1 (ny by LE 0B ("”’k)> ,
ny .k r* (ny, k) 1

where

1 P2 (ny, k)

*
) = L.
R = | Gra T2 (ng )

Numerical tests procedure:

» The uncertainty parameters are randomly sampled and the inputs for Ny,.,;, training data points are
generated;

» FOM evaluations are generated for the training data;

» A POD basis & is computed from the aggregation of the snapshots from the Ny,,;, FOM evaluations;
» For an assigned value of the parameters 72;, and £, ROM evaluations are generated for the training data;
» The correlation and the L2 error between the FOM and ROM Qol evaluations is computed.

NOTE: the normalized L2 error is defined as follows

ow)

" (@)’

where the vector of realizations for the FOM and ROM are denoted as Qppps and Qgrppy. respectively.
Efficient MF UQ with integrated ROM 26/30
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r M [ » Numerical results

MF UQ - ROM COUPLING

NUMERICAL CAMPAIGN

We performed several tests focusing on
» Understanding the impact of ROM convergence tolerance
» Understanding the differences between the predictive and reproductive cases
» Understanding the impact of the ratio between Ny,.,;, and Nyes; for the predictive case

» Understanding the difference in performance among Qols

164
o
=
5
o
S 102
s — 0!
7}
4 Q2
—_—
J—
1000 1010 1020 1030 1040 1050 2 4 6 8 10
Time t ROM time step coefficient k

FIGURE: Time history of E [uz] (left) and relative error in the quantities of interest @' (right).
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Numerical results

MF UQ - ROM COUPLING
REPRODUCTIVE VS PREDICTIVE TEST SCENARIOS (¢ ~ 14(0.1,0.5) AND v ~ U(1,2))

4 MWHAO DN ®O©D

Dt coefficient

L2 error - E[u?] - tol=10"® -- Reproductive

|
||
N

20 25 30 35 40 45 50 55 60 65 70
Number of basis

L2 error

Dt coefficient

L2 error - E[u?] - tol=10"® - Predictive (#Test = 15)

=

10
9

C4MWwAOODN®

-

20 25 30 35 40 45 50 55 60 65 70
Number of basis

Correlation squared

Corr squared -- E[uZ] —tol=107 - Reproductive

10

Dt coefficient

O 4N WR OO N®

20 25 30 35 40 45 50 55 60 65 70
Number of basis
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Numerical results

MF UQ - ROM COUPLING
ESTIMATOR EFFICIENCY (¢ ~ 14(0.1,0.5) AND v ~ U/(1,2))

ROM (QR) - Cost and estimator efficiency for E [uz]
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Conclusions

CONCLUSIONS
PRELIMINARY ENCOURAGING RESULTS, BUT MORE WORK IS NEEDED

Findings:
» A formal way of introducing and coupling ROMs with MF UQ has been developed

» In principle it is possible to tailor the ROM accuracy/cost in order to maximize the estimator efficiency
(compared to a plain MC)

Challenges:
» Kuramoto-Sivashinsky is a chaotic problem which poses great challenges for all ROMs algorithms

» Integral Qols appear easier to represent. It is difficult to achieve a good overall estimator efficiency for
pointwise Qols.

» In general, the statistics behavior is very noisy over the hyper-parameter space (might be an issue for
optimization)

Future directions (work in progress):

» Explore simpler problems to improve understanding of the interplay between the deterministic accuracy and
the one obtained over the stochastic space by ROMs

» Explore the cost of a truly integrated approach based on a numerical optimization of the ROM
hyper-parameters
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REDUCED ORDER MODELING
GENERALITIES

» The HF model is considered the Full Order Model from the ROM perspective
» After the semi-discretization in space a parametrized set of ODEs is obtained
i=ftn),  ®(0p) =2"(u),
where xo(y.) denotes the parameterized initial condition.
A time-discretization method is required for the numerical solution, e.g. a linear k-steps method
@ p) =0, n=1,...,Ny,
where the time-discrete residual " : RY x D — RN is defined as
k . k . X
(& v) o agf — AtBf (€, ) + Do — AtY Bif (T b)),

Jj=1 j=1

Here, At € R denotes the time step, % denotes the numerical approximation to x(kAt; pt), and the

coefficients a; and ﬂ]j =0,...,k with Z?:D a;j =0 define a particular linear multistep scheme.
@ In this talk we focus on Least-Square Petrov-Galerkin
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REDUCED ORDER MODELING
LEAST-SQUARES PETROV-GALERKIN (LSPG)

» Projection-based ROM compute an approximation ¥ &~ x that lies in a low-dimensional affine trial subspace
%(t;p) € 2%(p) + Ran(®@), ie.,
#(t; p) = 2% (p) + @&(4; p),
where & € RN XP s the reduced-basis matrix of dimension p < N (@T@ =1I)
> % :[0,7] x D — RP denotes the generalized coordinates
Ran(A) denotes the range of a matrix A

LSPG substitute the approximation £ <— & into the FOM ODE, and subsequently minimizes the ODE
residual in a weighted iz-norm, ie.,

#" = argmin|Ar® (2% (1) + ®2; ) 2.
ZERP

» To ensure an N-independent operation count a sparse weighting matrix should be selected
A= (P,®,)"P, and
A=P,

in the case of gappy POD and collocation, respectively.
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