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Intro

UNCERTAINTY QUANTIFICATION
DOE AND DOD DEPLOYMENT ACTIVITIES
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High-fidelity state-of-the-art modeling and simulations with HPC

0. Severe simulations budget constraints
0. Significant dimensionality driven by model complexity

Efficient MF UQ with integrated ROM

Statislical Inference for TDS
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UNCERTAINTY QUANTIFICATION FOR HF SIMULATIONS
STATE-OF-THE-ART

Two technologies are emerging as effective strategies to perform UQ for HF simulations:

► Multifidelity optimally fuses a handful of HF realizations with large sets of realizations from several lower
fidelity models

10. Reduced Order Modeling (ROM) creates a fast representation of the HF numerical model for a rapid a
posteriori use

In principle ROM can be used (as it is) within a MF UQ framework as one model fidelity, however few questions
need to be addressed:

► How accurate does ROM need to be to achieve a certain accuracy within the MF UQ?

► How is it possible to optimize the training step of ROM within a MF UQ workflow?

(), In this talk we try to explore how the coupling between ROM and MF UQ might be done efficiently

Efficient MF UQ with integrated ROM 2/30
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UNCERTAINTY QUANTIFICATION
FORWARD PROPAGATION - WHY SAMPLING METHODS?

UQ context at a glance:

0- High-dimensionality, non-linearity and possibly non-smooth responses

0- Rich physics and several discretization levels/models available

Natural candidate:

0- Sampling-based (MC-like) approaches because they are non-intrusive, robust and
flexible...

► Drawback: Slow convergence 0(N-112) —> many realizations to build reliable
statistics

Goal of the talk: Reducing the computational cost of obtaining MC reliable statistics

Pivotal idea:

0- Simplified (low-fidelity) models are inaccurate but cheap
10.- low-variance estimates

0- High-fidelity models are costly, but accurate
► low-bias estimates

Efficient MF UQ with integrated ROM 3/30
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UNCERTAINTY QUANTIFICATION
RICH SET OF MODELING CHOICES - DISCRETIZATION VS FIDELITY

Multi-fidelity: several accuracy levels available

O Physical models (Laminar/Turbulent, Reacting/non-reacting, viscous/inviscid...)

O Numerical methods (high/low order, Euler/RANS/LES, etc...)

O Numerical discretization (fine/coarse mesh...)

O Quality of statistics (long/short time history for turbulent flow...)

Potential Flow

Potential Flow IMI

Reynolds
A veraged Naylor-
Stokes (RANS)

Hybrid
RANS/LES

Dela bed
dd.

HrDritl

Large Eddy
Simulation (LES)
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MONTE CARLO SIMULATION
ESTIMATOR VARIANCE

Problem statement: We are interested in the statistics of a functional (linear or non-linear) Qm of the solution uM

QM = g(unf) IE [QM]

10. M is (related to) the number of spatial degrees of freedom

► IE [Qm] ‘)."' E [Q] for some RV Q R

1 Ndef v, 0),

' N M

Efficient MF UQ with integrated ROM 5/30
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MONTE CARLO SIMULATION
ESTIMATOR VARIANCE
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MONTE CARLO SIMULATION
ESTIMATOR VARIANCE
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C ONTROL VARIATE

SEVERAL WAYS OF ACCELERATING MC CONVERGENCE

Variance of the estimator:
'Voir [Q]

[Q] —  N 

What can we do to drive down the variance of the estimator?

#0 Increasing the number of samples —r this is going to cost us too much for HF applications

#1 Replace the HF model with a computational cheapest one, e.g. Reduced Order Models (ROMs)

#2 Changing the Qol with another one under the assumption that its mean is the same, but the new
variance is smaller (control variate)

Variance reduction techniques: sampling strategies

I. Importance sampling: very useful when the main contribution to E [Q] comes from rare events

P. Stratified sampling: Very effective in 1D, not always clear how to extend to multiple dimensions

I. Latin hypercube: Effective if the function can be decomposed into a sum of 1D functions

I. (Randomized) quasi-MC: Possibly provides better error than MC, but need to be randomized to get the
confidence interval

Efficient MF UQ with integrated ROM 8/30
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MONTE CARLO
INTRODUCING THE NOTION OF FIDELITY: BIAS OF THE ESTIMATOR

Numerical problems cannot be resolved with infinite accuracy: a discretization/numerical error is often introduced

14f3AfC N,N def 

N M 

Q0)

>. 0.5

•

•

-

••

10 •
• •••
•

•

•

• •

•

• 
•

• •

•

• •

•
•

••
8 •

••
6% • 410*

• • •
•• •

• db •
• • • •"

0
• ". •

• •
Hit •

Miss •

0 0.5
x

Efficient MF UQ with integrated ROM 9/30



Multifidelity Sarnpling Reduced Order Modelin, MF UQ-ROM coupling Numerical results Conclusions Backup
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MONTE CARLO
INTRODUCING THE NOTION OF FIDELITY: BIAS OF THE ESTIMATOR
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MONTE CARLO SIMULATION
INTRODUCING THE SPATIAL DISCRETIZATION

Problem statement: We are interested in the statistics of a functional (linear or non-linear) QM of the solution um

Qm = g(um) E [QM]

► M is (related to) the number of spatial degrees of freedom

► E [Qm] E [Q] for some RV Q —>

N
def 1 

N M 

Q),

Looking at the Mean Square Error (MSE):

[(0/21rN E [Q])2] var [tirs] + (is [QM Q1)2

Efficient MF UQ with integrated ROM 11/30



Multifidelity Sarnpling Reduced Order Mode MF UQ-ROM coupling Numerical results Conclusions Backup

ACCELERATING MONTE CARLO
BRINGING MULTIPLE FIDELITY MODELS INTO THE PICTURE
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Pivotal idea:

• High-fidelity models are costly, but accurate
Ir. low-bias estimates

I" Simplified (low-fidelity) models are inaccurate but cheap
► low-variance estimates
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CONTROL VARIATE
LEVERAGING THE CORRELATION BETWEEN MODELS

A Control Variate MC estimator (function Qi with pl. known)

QN = — (eh— , 0 E R

NOTE: Q is the MC estimator of the HF and eh is the MC estimator of the LF

Properties:

0. Unbiased, i.e. E [07] = E [0] = E [Q] (for any 0)

p Var112 (Q)
► argmin Var [07] —r —

)3 Var1/2 (Q1)

10. Pearson's p — 
CoN(Q, Q1)  

where lpl < 1
Var112 (Q) Varl/2 (Qi)

Var = Var [4] (1 — p2)

Let's consider:

► Var [Qi] Var [Q]

► p 1

10' It follows that ,3 —1

NOTE 1: In reality 0 is estimated by a finite number of samples, therefore the variance is slightly higher and there

is a small bias (that can be quantified)...
NOTE 2: The so-called Multilevel MC can be re-interpreted as a CV with assigned (-1) weights

Efficient MF UQ with integrated ROM 13/30
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OPTIMAL CONTROL VARIATE
M LOW-FIDELITY MODELS WITH KNOWN EXPECTED VALUE (IN COLL. WITH PROF. GORODETSKY, U. MICHIGAN)

Let's consider M low-fidelity models with known mean. The Optimal Control Variate (OCV) is generated by
adding M unbiased terms to the MC estimator

ocv = +

► Qi MC estimator for the ith low-fidelity model

▪ known expected value for the ith low-fidelity model

► a = . amIT set of weights (to be determined)

Let's define

► The covariance matrix among all the low-fidelity models: C E 21Mx M

► The vector of covariances between the high-fidelity Q and each low-fidelity Qi: c E RM

► c = c/Var [Q] = [piVar [Qi] , . . , piviVar [Qm-]IT, where pi is the correlation coefficient (Q, Qi)

The optirnal weights are obtained as ce* = —C-1c and the variance of the OCV estimator

yar [VI/ = Var [0] (1 — eTC—ie)

= V a r [0] (1 — 14civ) , 0 < 14cv < 1.

For a single low-fidelity model: 4c,_1 = pl.t

Efficient MF UQ with integrated ROM 14/30
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APPROXIMATE CONTROL VARIATE
M LOW-FIDELITY MODELS WITH UNKNOWN EXPECTED VALUE (IN COLL. WITH PROF. GORODETSKY, U. MICHIGAN)

For complex engineering models the expected values of the M low-fidelity models are unknown a priori

10. Let's define the set of sample used for the high-fidelity model: z

I. Let's consider Ni ordered evaluations for zi (we assume Ni = Friffl)

► Let's partition zi in two ordered subsets zi U4 = zi (note that in general 4 (-I zF 0)

The generic Approximate Control Variate is defined as

0 (a, = + E ai (0i(.1) — tii(zr)) = + E ai Di (zi) = Q +
i=1 i=1

The optimal weights and variance can be obtained as

aACV C00 [A, A] —1 Coy [4, 0]

Var [0 (aACV)] = Var [0] (1 — CO0 [4, 01T C°v 14' Al 1 C. [A, )
var red

= v.. [0] (1— Ri„) .

tFor a single low-fidelity model: 4,_, = V pi

Efficient MF UQ with integrated ROM 15/30
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APPROXIMATE CONTROL VARIATE
M LOW-FIDELITY MODELS WITH UNKNOWN EXPECTED VALUE (IN COLL. WITH PROF. GORODETSKY, U. MICHIGAN)

In our Approximate CV paper we demonstrated that

► Multilevel Monte Carlo (MLMC) can be obtained as a particular instance of this scherne

► Multifidelity Monte Carlo (MFMC) can also be obtained as a particular instance of this scheme

► Both MLMC and MFMC can be defined with samples drawn in a recursive manner (which limits their ability
to converge to OCV)

► For M=1, RIcv_,= r cl 1 p2 and it can be shown that this result holds for both recursive and

non-recursive sampling scheme

In this work we only consider the case with M = 1, therefore ACV-1 is indeed MFMC

[MLMC-1] Giles, M.B., Multilevel Monte Carlo path simulation. Oper. Res. 56, 607-617, 2008.

[MLMC-2] Haji-Ali, A., Nobile, F., Tempone, R. Multi Index Monte Carlo: When Sparsity Meets Sampling, Numerische
Mathematik, Vol. 132, 767-806, 2016.

[MFMC-1] Pasupathy, R., Taaffe, M., Schmeiser, B. W. & Wang, W., Control-variate estimation using estimated
control means. IIE Transactions, 44(5), 381-385, 2012

[MFMC-2] Ng, L.W.T. ge Willcox, K. Multifidelity Approaches for Optimization Under Uncertainty. Int. l. Numer.
Meth. Engng 100, no. 10, pp. 746772, 2014.

[MFMC-3] Peherstorfer, B., Willcox, K. & Gunzburger, M., Optimal Model Management for Multifidelity Monte Carlo
Estimation. SIAM J. Sci. Comput. 38(5), A3163A3194, 2016.

[ACV] Gorodetsky, A., Geraci, G., Eldred, M., Jakeman, J., A Generalized Approximate Control Variate Framework
for Multifidelity Uncertainty Quantification. arXiv:1811.04988 IStat.00].

Efficient MF UQ with integrated ROM 16/30
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MULTIFIDELITY CONTROL VARIATE
VARIANCE REDUCTION AND OPTIMAL SOLUTION

We want to solve the following problem

► Minimization of the total computational cost: Ctot (NBIF, r) = NHF C rNHFCLF

► We want to reach a target MSE of E2, therefore Var [er] = c2/2

Efficient MF UQ with integrated ROM 17 30
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MULTIFIDELITY CONTROL VARIATE
VARIANCE REDUCTION AND OPTIMAL SOLUTION

We want to solve the following problem

-HF
Pr Minimization of the total computational cost: Ctot (NBIF,r) 

= NHF 
C rNHFCLF

IP. We want to reach a target MSE of E2, therefore Var 
[er] = /2

More formally, let's define our optimization problem (Lagrange constrain optimization)

1
argmin (G) = 

tot 
— (

NHF 
Var [Q127] A(r) —

2NHF

etot (NHF = NHF —HF
rNI F CLF

r — 1 2
A(r) = 1

Pi.r

The solution of the optimization problem is obtained as

CHF p2

r- =
CLF — p2

NHF
* 
— 

Var [Q11]
 A(r0).

€2/2

Efficient MF UQ with integrated ROM 17/30



Intro Multifidelity Sarnpling

MULTIFIDELITY CONTROL VARIATE
How DOES IT COMPARE WITH MC?

I. To reach a target variance of e2, MC needs

lor The MC total cost is therefore

► ACV1 only needs

► ACV1 total cost is

Var [Q]
NM —  e2 

Var [Q]
Ctirtc = CHFNMC = CHF 0 •

NAM. = NMC (1 7 ,*r_ 1P2)

etzv = cric (1 r*  p2) 
(1 r*

CHF

Pr The ACV1 normalized cost w.r.t. MC is

c ocnvni = (1 r* — 1 2) (1+ r* CL,F

r* P CHF

Efficient MF UQ with integrated ROM 18/30
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REDUCED ORDER MODELING
GENERALITIES

LSPG ROM
• 32 min, 2 cores

High-fidelity
• 5 hours, 48 core,

ROM are used at Sandia for

I. Time critical decision: Model predictive control and health monitoring

► Many queries workflows: Optimization and Uncertainty Quantification

Model Reduction Criteria

11.• Accuracy: achieve less than 1% error

s• Low cost: achieve at least 1130x computational saving

► Property preservation: preserves important physical properties

► Generalization: should work in every difficult cases

IP• Certification: accurately quantify the ROM error

► Extensibility: should work for many application codes

Pressure Field

•

Efficient MF UQ with integrated ROM 19/30
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REDUCED ORDER MODELING
LEAST-SQUARES PETROV-GALERKIN (LSPG) - WORKFLOW

High-Fidelity system of ODEs:

= f (x, t; µ), x(0; 14) = (ix)

1. Acquisition

Solve ODE at different
design points

Number of
time steps
4—*

Save solution data

2. Learning
Unsupervised Learning with Principal

Component Analysis (PCA):

X= F

3. Reduction
dx 
= f(x; r ix)Choose ODE

dt "
Temporal —IV
Discretization r"(x"; p,) = 0, n = 1 , ... , T

x(t)
Reduce the
number of

unknowns

x, z(r)

1 1 

= 0 i(t)

I

minimize A r"( (1) Y; 412

VMinimize the
Residual

1 iii  1 il

2

► LSPG references: [Carlberg, Bou-Mosleh, Farhat, 2011; Carlberg, Barone, Antil, 2017]

Efficient MF UQ with integrated ROM 20/30
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MULTIFIDELITY UQ AND ROM COUPLING
NORMALIZED COST WITH a priori ROM

1. The variance reduction of the multifidelity scheme is

0r] Var [0] (1 r —r 1p1)Var [

P. Let's assume that ROM is the (only) LF model

I. The optimal" number of HF and LF simulations can be obtained in closed form for an estimator variance E2

N 
Var [0] (i r* — 1 2)

2 

CFOM p2 

CROM 1 — P2

11. The overall cost of the multifidelity estimator (normalized w.r.t. MC) is

Czop7 

Cmc 

Cm-F (1 r* 

r* 

— 1p2) (1+ r, CRom

CFOM

NOTES:

11. The cost Cgr represents the efficiency of the MF UQ estimator

P. Given a fixed value for both CFOM and CROM, then Clip' = Crip(p2)

1Minimum overall estimator cost for a target estimator variance
Efficient MF UQ with integrated ROM 21/30
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MULTIFIDELITY UQ AND ROM COUPLING
ONLINE ROWS COST INTEGRATION

Can we be more efficient by designing the ROM to achieve an optimal correlation and cost trade-off
within this framework?

We consider here (without lack of generality) two hyper-parameters for ROM:

► nb number of basis terms for ROM

► k the multiplicative factor that controls the time step size (i.e. a time step kAt is used for ROM whereas At
is used for FOM)

A complexity analysis can be conducted for both FOM and ROM

O. Full order model
CFOM = nownivn.N.

11. ROM based on QR decornposition

cROM,QR nnt 
k

(av 
b 

Nn + 2aNnt ceNnb + 
3

(_4))

11. where

► nt is the number of time steps
► nni is the number of iterations for the non-linear Newton-Raphson method
► ni is he number of iterations for the solution of the linear system
11. vnnz is the number of non-zero elements per row (i.e. spatial discretization stencil)
► N is the number of spatial nodes
► ce is the hyper-reduction factor

Efficient MF UQ with integrated ROM 22/30
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TEST CASE DESCRIPTION
THE KURAMOTO-SIVASHINSHY EQUATION

We consider the non-dimensionalized one-dimensional KS equation with homogeneous Dirichlet and Neumann
boundary conditions,

8u au 02u 84u—= + .)— — — — v—
at 8x 8x2 8x4

E [O,L], t E [0, oo),
u(0, t) = u(L, t) = 0,

—
Ou 

= —
Ou 

= 0,

u(x, 0) = up (z),

where L is the domain length (L = 128 in our tests), c is an advection parameter, and v is the hyperviscosity
parameter.

120

100

BO

200

FIGURE: Space-time plot of the KS equation solution for c = 0.0,L = 128.0, v = 1.0.
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TEST CASE DESCRIPTION
THE KURAMOTO-SIVASHINSKY EQUATION - QUANTITIES OF INTEREST

In this study we considered four different quantities:

► Mean of a pointwise quantity

Q1(u(x, t)) = 1 ft1 u(x = 0.25L, t) dt,
tl — to to

► Mean of a squared pointwise quantity

Q2 (u (x, t)) = 1 ftl u2(x= 0.25L, t)dt,
tl — to to

10. Mean of a spatially averaged quantity

Q3 (14x, t)) =   ft1 E [u] dt, E [it] = L1 foL u(x, t) dx,
— to to

► Mean of a spatially averaged squared quantity

Q4(u(x, t)) = tl 1 tl E [u2] dt,
— to 

E[u2] 
✓

= foL u2 (x, t) dx,
to 

- Ulu= 2514

- =0.25U

-

— fit. I

200
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TEST CASE DESCRIPTION
COMPLEXITY ANALYSIS FOR FOM AND ROM

Normalized ROM cost -- Noma! Eq

2 
0.1

1

0   0.01
20 25 30 35 40 45 50 55 60 65 0

Number of basis

1:

8

E 7
÷3. 6

4
5 s

2

Normalized ROM cost — OR

1 7
0

0   0.01
20 25 30 35 40 45 50 55 60 65 70

Number of basis

Normalized ROM cost -- OR (HH)

•
100

10

0.1

'""20 25 30 35 40 45 50 55 60 65 0

Number of bnis

► nt = 5000,
► Spatial discretization stencil = 5

► Grid size N = 127

► Linear solver iterations n1 = 5

I. Non-linear solver iterations NI = 15 (FOM) and nni = 10 (ROM)

► Hyper-reduction factor a = 1/100 (from literature and experience with larger problems)

Efficient MF UQ with integrated ROM 25/30
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MF UQ - ROM COUPLING
EXPLORING THE EXISTENCE OF AN OPTIMAL COUPLING REGION

On-line MF UQ — ROM coupling

11. the hyper-parameters nb (number of basis terms) and k (the time step factor) control the cost gigiTi

I. the correlation between FOM and ROM is also a function of nb and k

IP' the final MF UQ-ROM estimator's cost (normalized w.r.t. MC) is then function of nb and k

gm 
, —

arin (1 
r*  

P2 (nb,k)) (1+ r* (nb,k) 
CiF (nb,k))

b A

r(nkk)

* (nb,k 

1 

) 1n

where

r* (nb, k) —
1 p2(nb,k)

qr 1 — p2 (nb,k)'

Numerical tests procedure:

► The uncertainty parameters are randomly sampled and the inputs for Ntr„,n training data points are
generated;

► FOM evaluations are generated for the training data;
► A POD basis 4, is computed from the aggregation of the snapshots from the Ntr„i„, FOM evaluations;

► For an assigned value of the parameters hb and k, ROM evaluations are generated for the training data;

10. The correlation and the L2 error between the FOM and ROM Qol evaluations is computed.

NOTE: the normalized L2 error is defined as follows

1/E QL/)2
11%0M- 14/tow/II= i  

\11%1,, i,, Am),

where the vector of realizations for the FOM and ROM are denoted as QFOM and QROM, respectively.
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MF UQ - ROM COUPLING
NUMERICAL CAMPAIGN

We performed several tests focusing on

► Understanding the impact of ROM convergence tolerance

► Understanding the differences between the predictive and reproductive cases

► Understanding the impact of the ratio between Ntr,a, and Ntest for the predictive case

► Understanding the difference in performance among Qols
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FIGURE: Time history of E [u2] (left) and relative error in the quantities of interest (right).
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MF UQ - ROM COUPLING
REPRODUCTIVE VS PREDICTIVE TEST SCENARIOS (c U(0.1, 0.5) AND U(1, 2))

L2 error -- Efuu] -- tol=10 -- Reproduclive

.t, 

2 43

7

9  

8

1 10

0.1

2

1

1
6

5

10

0   0.01
20 25 30 35 40 45 50 55 60 65 70

Number al basis

8

L2 error

Dt
 c
oe

ff
ic

ie
nt

 

L2 error E]uu] tol-le Predictive (Wrest = 15)

10

9

8

7

6

4

5

2

1

0
20 25 30

Correlation squared

35 40 45 50 55 60

Number of basis

1 10

0

0.01

Corr squared -- Eluul -- tol=10-9 -- Reproductive Corr squared -- Elu'l -- tol=10-9 -- Predictive (#Test = 15)

10   10

54 0.4

3

2 

1 

E

5

-S

,, 5
8 

8

;

0.2

43

2 

 

0.2 

0.8

; 0.6 0.6

0.4

9 9

8 0.8

1 1

0   0 0
20 25 30 35 40 45 50 55 60 65 70 20

Number of basis

25 30 35 40 45 50 55 60 65 70

Number of basis

Efficient MF UQ with integrated ROM 28/30



Multifidelity Sarnpling Reduced Order Modeling MF UQ-ROM coupling Numerical results Conclusions Backup

MF UQ - ROM COUPLING
ESTIMATOR EFFICIENCY (C 14(0.1, 0.5) AND v U(1, 2))
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CONCLUSIONS
PRELIMINARY ENCOURAGING RESULTS, BUT MORE WORK IS NEEDED

Findings:

► A formal way of introducing and coupling ROMs with MF UQ has been developed

10. In principle it is possible to tailor the ROM accuracy/cost in order to maximize the estimator efficiency
(compared to a plain MC)

Challenges:

► Kuramoto-Sivashinsky is a chaotic problem which poses great challenges for all ROMs algorithms

Pr. Integral Qols appear easier to represent. It is difficult to achieve a good overall estimator efficiency for
pointwise Qols.

► In general, the statistics behavior is very noisy over the hyper-parameter space (might be an issue for
optimization)

Future directions (work in progress):

► Explore simpler problems to improve understanding of the interplay between the deterministic accuracy and
the one obtained over the stochastic space by ROMs

lo• Explore the cost of a truly integrated approach based on a numerical optimization of the ROM
hyper-parameters
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REDUCED ORDER MODELING
GENERALITIES

► The HF model is considered the Full Order Model from the ROM perspective

► After the semi-discretization in space a parametrized set of ODEs is obtained

= f (x, t; p,), x(0; µ) = (µ),

where x°(//,) denotes the parameterized initial condition.

II' A time-discretization method is required for the numerical solution, e.g. a linear k-steps method

rn (x5; p.) = 0, n = I, ,Nt,

where the time-discrete residual rn RN x D RN is defined as

k k

rn : (; o) — AtOof(, tn ; V) ± aix-- _ At E t--;
j=1 j=1

Here, At E R+ denotes the time step, xn denotes the numerical approximation to x(k6,t; pc), and the

coefficients a j and )3j, j = 0, , k with 0 a j = 0 define a particular linear multistep scheme.

tIn this talk we focus on Least-Square Petrov-Galerkin
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REDUCED ORDER MODELING
LEAST-SQUARES PETROV-GALERKIN (LSPG)

R Projection-based ROM compute an approximation X x that lies in a low-d mensional aff ne trial subspace

X(t; E x°(1,1) Ran( ilx), i.e.,

1(t; µ) = (µ) 4,1(t;

where 4> E RN" is the reduced-basis matrix of dimension p < N (<1,T = I)

► 1 : [0, T] x D IRP denotes the generalized coordinates

► Ran(A) denotes the range of a matrix A

► LSPG substitute the approximation x t— X into the FOM ODE, and subsequently minimizes the ODE
residual in a weighted 0-norm, i.e.,

zn = arg min 11AR' (x°(P) 11)112•
iERP

R To ensure an N-independent operation count a sparse weighting matrix should be selected

A = (Pr<I"r)+ Pr and

A = Pr

in the case of gappy POD and collocation, respectively.
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