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Ring-Linking Drives Anomalous Hardening of Ring
Melts in Weak Extensional Flows
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Nonlinear Extensional Flows:
Competition between flow & Relaxation D S

Uniaxial extension flows stretch liquids exponentially in ~ Nonlinear behavior occurs when ¢ is faster than

dlog(2) the characteristic relaxation times of polymers

time. Rate of elongation set by the strain rate ¢ = r
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Measure flow strength with a Weissenberg number: Linear chains relax stretch over the Rouse time tz~N?
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Macroscopic Viscosity Encodes Chain Dynamics
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Weak Linear Flows (Wi - 0):
» Viscosity evolves along a limiting curve (LVE), and plateaus to Newtonian viscosity.
« Controlled by equilibrium chain dynamics - very different for linear & ring polymers.

Strong Nonlinear Flows (Wi > 1):

« Viscosity increases more rapidly than the LVE and plateaus to a nonlinear value 1., (€) .
* MD reproduces nonlinear rate-dependence and relates to chain conformations: O’Connor et al., PRL (2018)



4 ‘ 2) Dynamic Linking In Ring Polymer Melts ;

The entanglement tube defines a length-scale that dominates w | ' ' '
relaxation. e
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Replacing linear chains with rings destroys the entanglement .;f'g 10° 3 e 3 -~
network and lowers the viscosity. ¢ 10 10 10 10 10
time [s]
Newtonian viscosity of rings is much lower
than linears with the same molecular weight. I

But rings show an extraordinary sensitivity to
extensional flow. Massive rise in viscosity!

Rings are fractal & relax self-similarly at all scales
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Entanglements confine chains to a primitive path, & Fractal hierarchy of interpenetrating loops that
create a hierarchy of exponential relaxation times. gives a power-law viscoelastic relaxation
Longest relaxation time 7, ~ N3 Longest relaxation time 7 ~ N%33

Equilibrium dynamics are very different, but elongated states are similar. Ring to linear crossover? s



Nonlinear Elongation of Ring Polymer Melts

Model: Semiflexible bead-spring model

bending stiffness
backbone bonds

» linear properties well known (N, ~ 28 beads)

* Rings with N=200, 400, & 800 beads

 Compare to linears with N=100, 200, & 400 beads
« Same contour length at full extension

Constant-rate uniaxial extensional flows

« Elongate to strain € > 6.0 — resolve steady-state Rate dependence - do highly extended
« Vary Wi=¢étr=0.16 —0.25 rings behave like linear chains?
« Linear: Wi=¢€tp Ring: Wi =€t

« Relate rate-dependence to chain dynamics Dynamics - how do rings elongate in the

absence of entanglements?



Massive and Delayed Viscosity Rise During Ring Extension

N=200 Linear Melt Extension
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1., collapses onto LVE (dashed) as Wi—0 10x rise in viscosity at ALL Wi even Wi<<1
Steady viscosity decreases with increasing Wi, Rise at low Wi delayed for many ring
typical of well-entangled melts. relaxation times (vertical dashed line)

MD simulations reproduce experimental rheology, but what is the driving mechanism?
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Steady Viscosities For Different Molecular Weights

Steady-State Extensional Viscosity Linear melts with N=100,200,400
Newtonian viscosity ~ N34 tube theory

High Wi viscosity set by drag on highly
extended chains n,, ~ {N? .

O’Connor, Alvarez, Robbins, PRL (2018)

m"; 7‘_"\"\&{2_29_ Ring melts with N=200,400,800
. y

N=200 ring viscosity appears to follow
N=100 linear melt for Wi > 1.

Agreement breaks down as N increases.

Ring viscosity grows faster with N than
it does for linear chains.




Chain Extension ROy | LotAlamos

Steady-State End-End Distributions

Network Stretches Linear Chains ~Affinely
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Develop long tale at low Wi of few highly
0.03f ‘ : stretched and retracting rings
0.00 W ' IW' ~ 3c Grows into a broad distribution of highly
0.06f "V'ir = O F VIR = 59 fluctuating rings at Wi~1
0.03f | /\ Large fluctuations cannot be described
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N=200 linear ) N=400 Rings



Individual Chains Fluctuate Between Extended & Retracted D _

Steady-State End-End Distributions
0.06} Wi, =0.16 | Wip = 1.7

0.03f

0.00

Individual chains fluctuate between fully extended & retracted at all Wi
Even at highest Wi=27, some chains still fully retract & then reextend.

Do not observe this behavior in linear melts. Globular rings aren’t very easy to elongate.

Low & high Wi have qualitatively different distributions but similar nonlinear 7.,

Wi=0.16: small fraction of highly stretched chains produce larger 7., than fully stretched Wi=27
10



Individual Chains Fluctuate Between Extended & Retracted D

Steady-State End-End Distributions
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Stress from each ring due to loss of entropy

Relative of contribution of rings at each R to o,

X P(R)Fent

Nonlinear stresses in rings are driven by a small number of chains at low Wip
Can compute the relative contribution of each ring to the stress.

Most stress is contributed by the most elongated rings.

Less then 1% elongated rings at Wi = 0.4 give similar n,, as 90% elongated at Wi = 27?



Extreme Elongation Is Driven By Topological Linking of Rings
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Rings can interpenetrate and link by forming 5
“cow hitches”
C)) (e) .
Elongation flow stabilizes these links
& derives supramolecular chains to =
strongly elongate even at low Wi. 8 )’
Links can form spontaneously, long I I
after flow has begun.




Measuring Contribution to the Stress From Linked Rings &G 5| “Lodamo
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Primitive Path Analysis can distinguish fraction ¢,,, of linked rings

Unlinked Rings
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Most of the nonlinear rise in stress at low Wi is due to linked rings

Otop = Oex [from ¢top] Wi=0.1: 1% of linked chains give ~ 75% o,
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