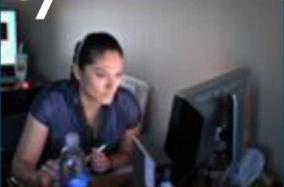
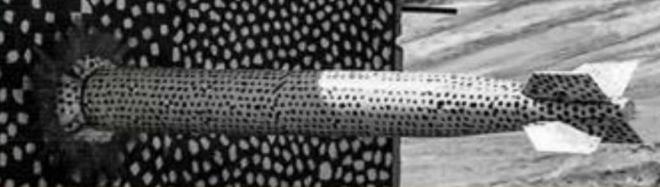


Sandia
National
Laboratories

SAND2020-0179C

Multilevel Uncertainty Quantification Using CFD and OpenFAST Simulations of the SWiFT Facility



PRESENTED BY

A. S. Hsieh, D. C. Maniaci, T. G. Herges, G. Geraci, D. Thomas Seidl,
M. S. Eldred, M. L. Blaylock and B. C. Houchens

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Motivation and Multifidelity UQ

SWiFT Experimental Site

MLMF Sub-Models Overview

MLMF Sampling Strategies

Sampling Study Overview and Results

Conclusions and Future Research

Motivation

- Uncertainty quantification (UQ) is necessary for predictive wind simulations
- High-fidelity (HF) simulations are needed for accurate wind farm predictions
- For many applications, UQ for HF simulations with large numbers of uncertain parameters requires unattainable computational resources
- Multifidelity UQ helps mitigate the computational cost

Multifidelity UQ

- Aggregation of several lower accuracy models with handful of higher-fidelity computations
- Surrogate-based and sampling-based approaches
- Multilevel Monte Carlo (MLMC) approaches use convergence of model resolutions (temporal and spatial) to build corrections for coarsest levels and reduce deterministic errors
- Multilevel-Multifidelity (MLMF) approaches combine MLMC with control variates (CV) to decrease variance using model correlations and reduce stochastic errors

Motivation and Multifidelity UQ

Research Scope: Evaluation of MLMF UQ methods to improve predictive capabilities of computational models for wind farm applications

Types of UQ methods

- **Forward UQ**
- Inverse UQ
- Sensitivity Analysis
- Optimization under Uncertainty

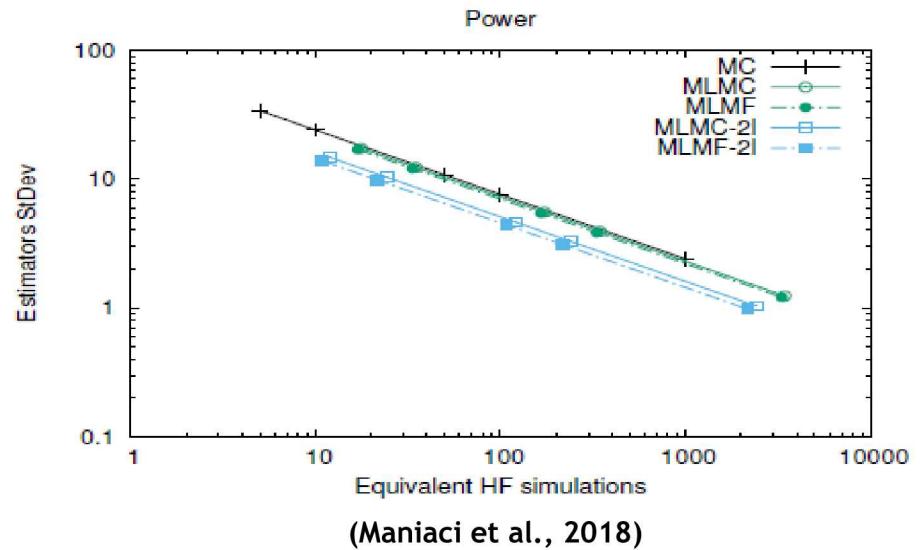
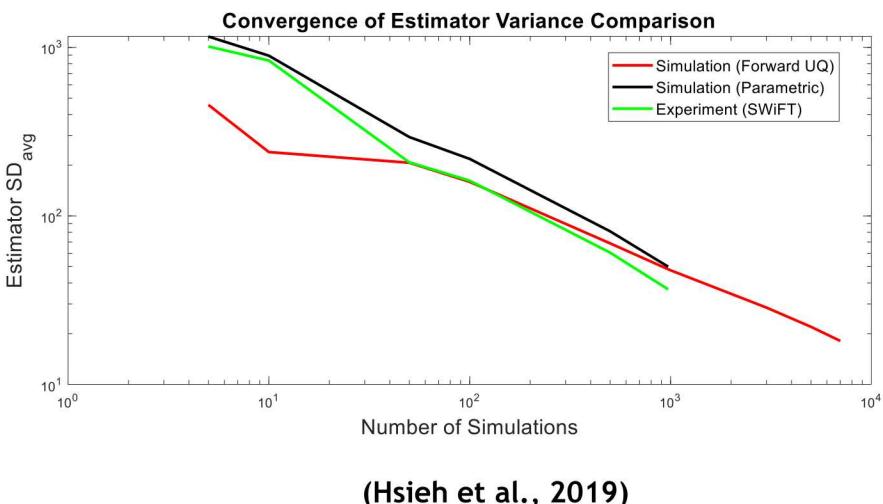
Previous Work:

Maniaci, D.C. et al., “Multilevel uncertainty quantification of a wind turbine large eddy simulation model.” 7th European Conference on Computational Fluid Dynamics. 2018.

- Initial MLMF study using Nalu-Wind and OpenFAST

Hsieh, A.S. et al., “Continued Multilevel-Multifidelity Uncertainty Quantification of the SWiFT Wind Turbines.” 2019 Wind Energy Science Conference. 2019.

- UQ comparison of OpenFAST simulations to experimental results from SWiFT site



Motivation and Multifidelity UQ

SWiFT Experimental Site

MLMF Sub-Models Overview

MLMF Sampling Strategies

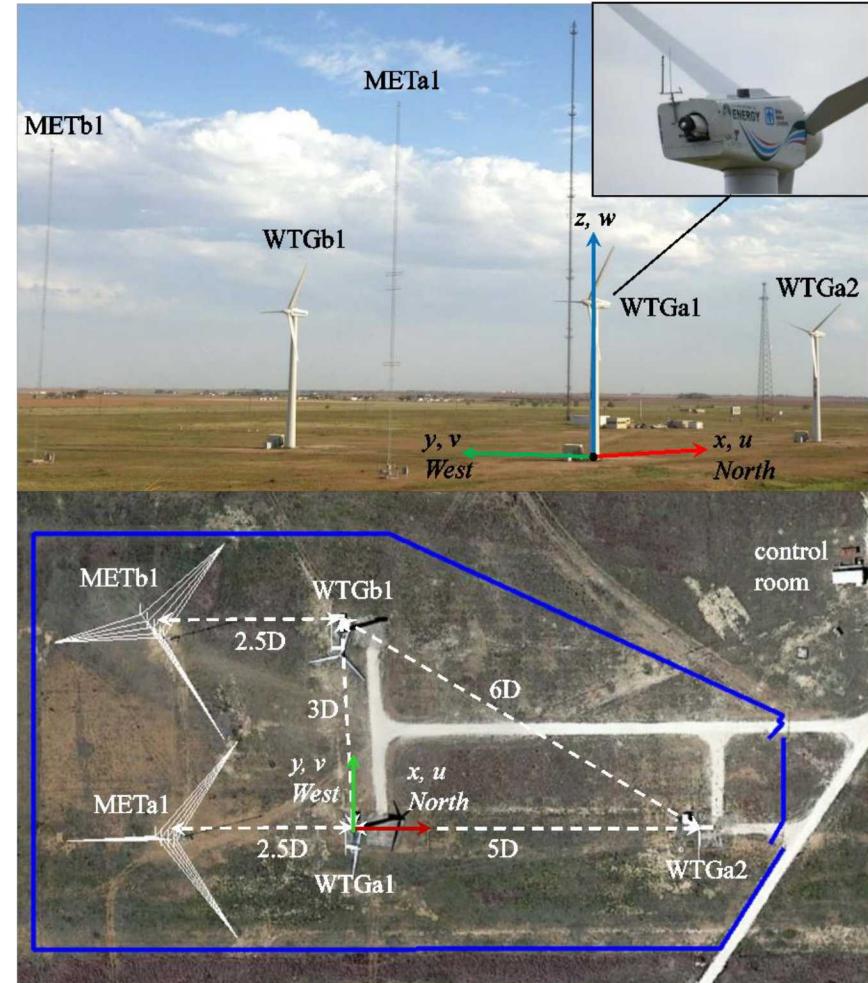
Sampling Study Overview and Results

Conclusions and Future Research

6 SWiFT Experimental Site

Scaled Wind Farm Technology (SWiFT) Facility

- Operated by Sandia National Laboratories in Lubbock, TX
- Three research-scale wind turbines and two meteorological towers
 - Vestas V27 wind turbine blades
 - DTU SpinnerLidar to measure wake planes downstream of WTGa1 turbine
- High-quality measurement data for uncertainty characterization of atmospheric inflow parameters, turbine parameters and wake characteristics
- Open-source information and data repository at the A2e Data Archive Portal (DAP): <https://a2e.energy.gov/projects>
 - Mesoscale-Microscale Coupling Experiment (MMC). March 2015 – Sept. 2018
 - Wake Steering Experiment (WAKE). Dec. 2016 – July 2017.



SWiFT site layout and coordinate system.
D = 27 m

Motivation and Multifidelity UQ

SWiFT Experimental Site

MLMF Sub-Models Overview

MLMF Sampling Strategies

Sampling Study Overview and Results

Conclusions and Future Research

Nalu-Wind

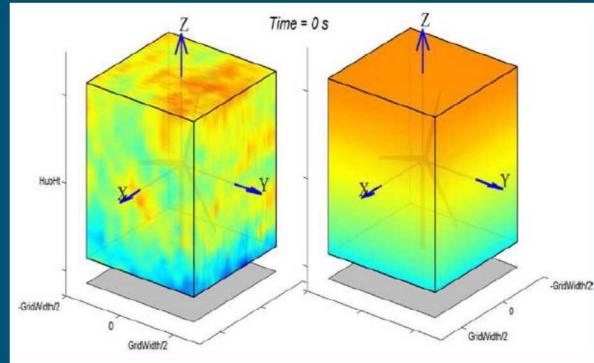
- Massively parallel, open source large eddy simulation code (LES) used to simulate the atmospheric boundary layer
- One-equation, constant coefficient, turbulent kinetic energy (TKE) model used for the subgrid scale stresses
- Actuator disk, actuator line and blade-resolved methods to model wind turbines

OpenFAST

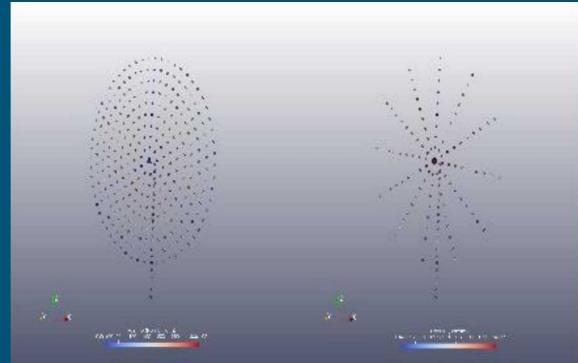
- Open-source tool suite used to simulate the coupled dynamic response of wind turbines
- Modular framework to model different physical dynamics
 - AeroDyn: Turbine aerodynamics
 - ElastoDyn: Turbine structural dynamics
 - ServoDyn: Turbine control and electrical drive dynamics



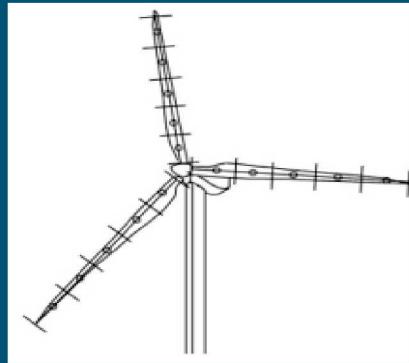
Multilevel-Multifidelity sampling requires selection of varying model fidelities



TurbSim Inflow (TurbSim Documentation)



Actuator Disk Force Distribution
(Nalu-Wind Documentation)



Actuator Line Force Distribution
(Nalu-Wind Documentation)

Low-fidelity model

- TurbSim + OpenFAST
- TurbSim: Low-cost spectral turbulence model
- OpenFAST: Turbine dynamics model

Mid-fidelity model

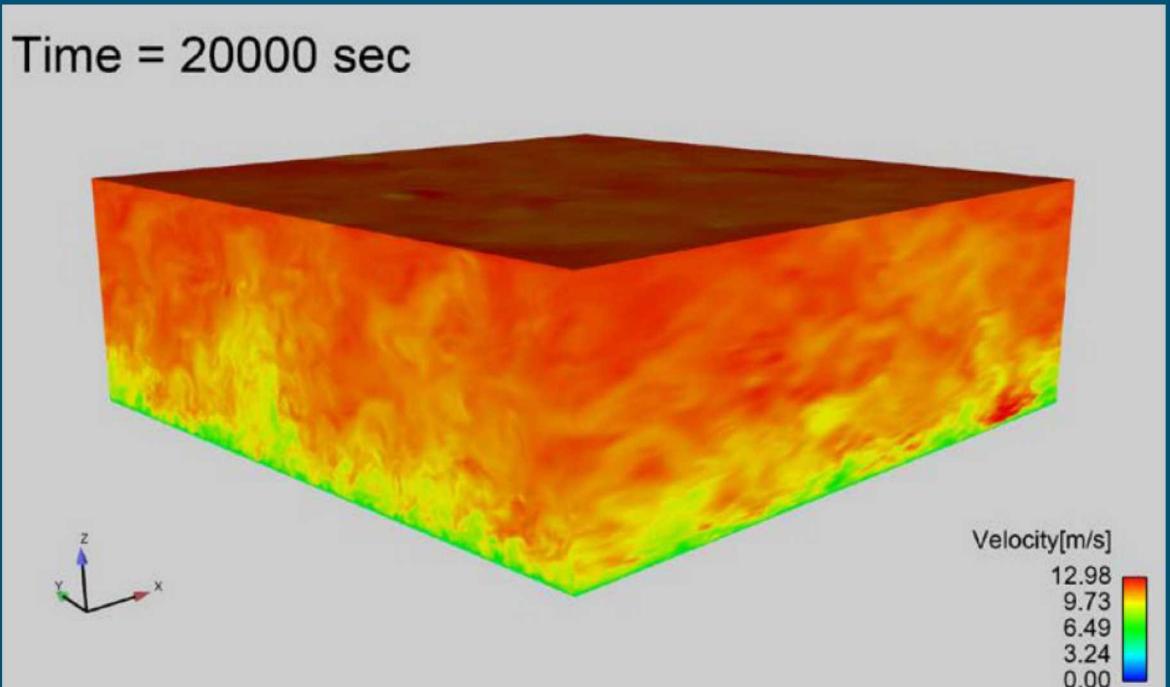
- Nalu-Wind Actuator Disk (Nalu-AD) + OpenFAST
- Constant body-force applied over entire rotor

High-fidelity model

- Nalu-Wind Actuator Line (Nalu-AL) + OpenFAST
- Body-forces applied over blade-like lines

Nalu-Wind + OpenFAST Workflow

- Stage 1: ABL Precursor
 - Periodic BCs
 - Uniform 10 m resolution mesh
 - Runtime of 20,000 seconds for well-developed turbulent flow field
 - Neutral ABL; hub-height wind speed: 8.69 m/s
- Stage 2: ABL Precursor + I/O Plane
 - Periodic BCs
 - Uniform 10 m resolution mesh
 - Runtime of 630 seconds to provide I/O planes
- Stage 3: Turbines w/ ABL
 - Inflow/outflow BCs
 - Refined meshes around turbines
 - Runtime of 630 seconds to simulate wind turbines (First 30 seconds discarded to avoid initial start-up transience for statistics)



MLMF Sub-Models Overview

Nalu-Wind + OpenFAST Workflow

➤ Stage 1: ABL Precursor

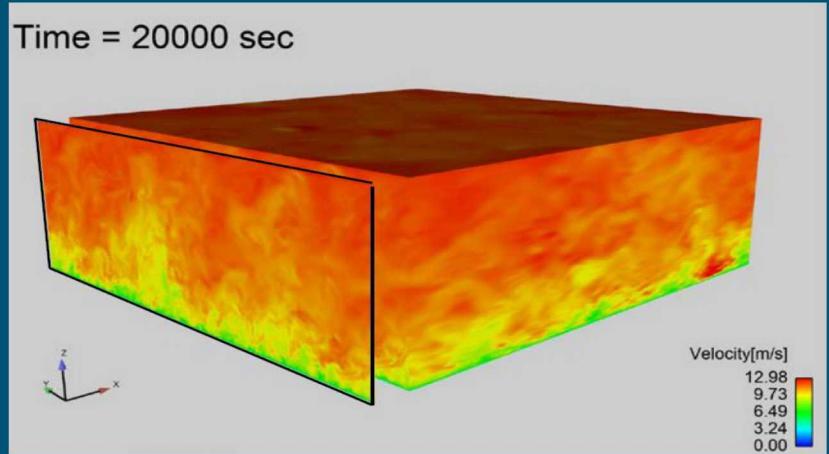
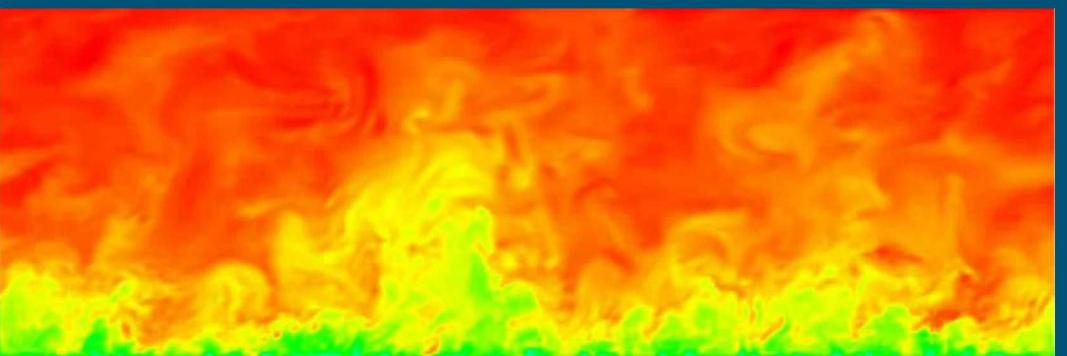
- Periodic BCs
- Uniform 10 m resolution mesh
- Runtime of 20,000 seconds for well-developed turbulent flow field
- Neutral ABL; hub-height wind speed: 8.69 m/s

➤ Stage 2: ABL Precursor + I/O Plane

- Periodic BCs
- Uniform 10 m resolution mesh
- Runtime of 630 seconds to provide I/O planes

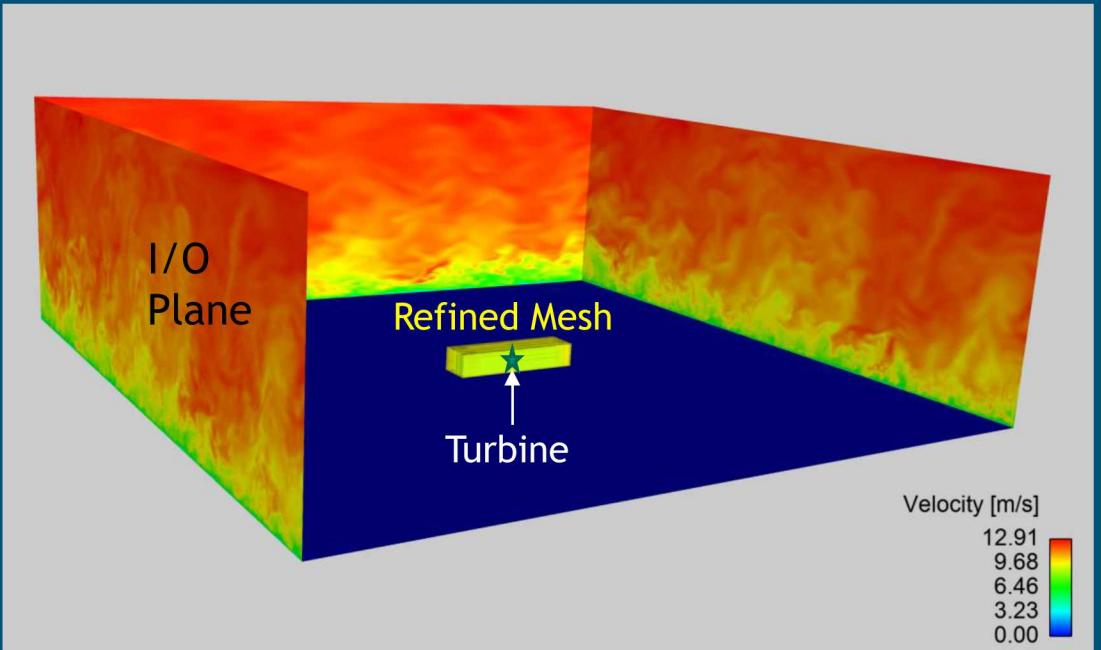
➤ Stage 3: Turbines w/ ABL

- Inflow/outflow BCs
- Refined meshes around turbines
- Runtime of 630 seconds to simulate wind turbines (First 30 seconds discarded to avoid initial start-up transience for statistics)



Nalu-Wind + OpenFAST Workflow

- Stage 1: ABL Precursor
 - Periodic BCs
 - Uniform 10 m resolution mesh
 - Runtime of 20,000 seconds for well-developed turbulent flow field
 - Neutral ABL; hub-height wind speed: 8.69 m/s
- Stage 2: ABL Precursor + I/O Plane
 - Periodic BCs
 - Uniform 10 m resolution mesh
 - Runtime of 630 seconds to provide I/O planes
- Stage 3: Turbines w/ ABL
 - Inflow/outflow BCs
 - Refined meshes around turbines
 - Runtime of 630 seconds to simulate wind turbines (First 30 seconds discarded to avoid initial start-up transience for statistics)

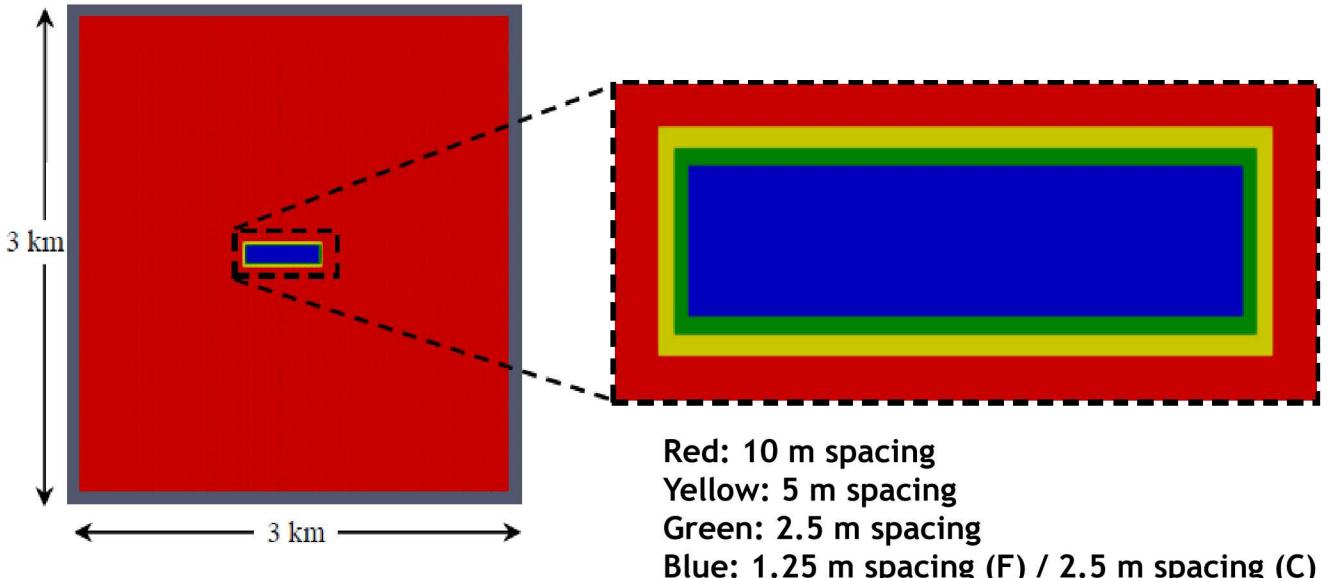


Coarse “C” mesh

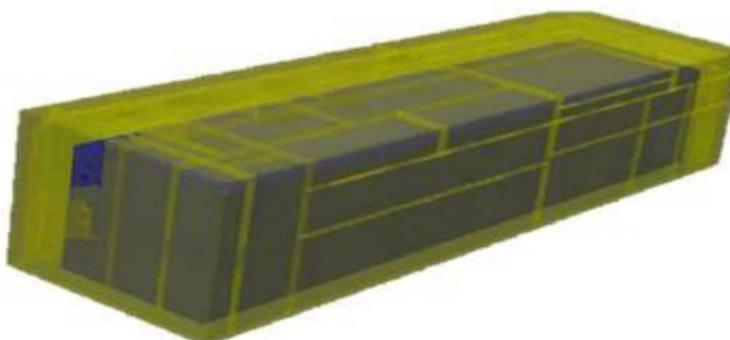
- 3 km x 3 km x 1 km
- 9.5 million elements
- Two refinement levels
- Minimum grid spacing: 2.5 m

Fine “F” mesh

- 3 km x 3 km x 1 km
- 11.7 million elements
- Three refinement levels
- Minimum grid spacing: 1.25 m



Bottom view of mesh with zoomed-in view of refinement regions



3D perspective view of two refinement regions

Motivation and Multifidelity UQ

SWiFT Experimental Site

MLMF Sub-Models Overview

MLMF Sampling Strategies

Sampling Study Overview and Results

Conclusions and Future Research

Single-level Monte Carlo (MC) Approach

- MC estimator \hat{Q}_N^{MC} is reliable, unbiased and robust
- Method has slow rate of convergence
- Requires high number (N) of high-fidelity (HF) simulations

$$\hat{Q}_N^{MC} = \frac{1}{N} \sum_{i=1}^N Q(\xi^{(i)}) = \frac{1}{N} \sum_{i=1}^N Q^{(i)} \quad \varepsilon^2 = \text{Var}[\hat{Q}_N^{MC}] = \frac{\text{Var}[Q]}{N}$$

MC estimator and variance

Single-level Monte Carlo (MC) Approach

- MC estimator \hat{Q}_N^{MC} is reliable, unbiased and robust
- Method has slow rate of convergence,
- Requires high number (N) of high-fidelity (HF) simulations

$$\hat{Q}_N^{MC} = \frac{1}{N} \sum_{i=1}^N Q(\xi^{(i)}) = \frac{1}{N} \sum_{i=1}^N Q^{(i)} \quad \varepsilon^2 = \text{Var}[\hat{Q}_N^{MC}] = \frac{\text{Var}[Q]}{N}$$

MC estimator and variance

$$Q_L = Q_0 + (Q_1 - Q_0) + \cdots + (Q_L - Q_{L-1})$$

Multilevel Monte Carlo (MLMC) Approach

- MLMC estimator \hat{Q}_L^{MLMC} is the sum of independent MC estimators Y_l for each level l
- MLMC performs sequential corrections using less accurate models (i.e. coarser spatial resolutions)
- Effective MLMC requires $Y_l \rightarrow 0$ for $l \rightarrow \infty$

$$Y_l = \begin{cases} Q_l - Q_{l-1} & \text{for } l > 0 \\ Q_0 & \text{for } l = 0 \end{cases}$$

Multilevel expansion of MC estimator

$$\hat{Q}_L^{MLMC} = \sum_{l=0}^L \frac{1}{N_l} \sum_{i=1}^{N_l} Y_l^{(i)}.$$

$$\varepsilon^2 = \text{Var}[\hat{Q}_L^{MLMC}] = \frac{\text{Var}[Y_0]}{N_0} + \frac{\text{Var}[Y_1]}{N_1} + \frac{\text{Var}[Y_2]}{N_2} + \dots$$

MLMC estimator and variance

MLMF Sampling Strategies

Multilevel-Multifidelity (MLMF) Approach

- With different model fidelities, statistical convergence is unlikely
- MLMF relies on model correlations between fidelities instead of monotonically decaying variance
- A classical control variate estimator $\hat{Q}_{L,N_{HF}}^{CV,HF}$ approximates Q_L^{HF} by adding an unbiased term based on Q_L^{LF}
- The low-fidelity model's expected value, $\mathbb{E}[\hat{Q}_{L,N_{LF}}^{LF}]$, is approximated by adding a term Δ_{LF} to represent the additional number of low-fidelity simulations

$$\hat{Q}_{L,N_{HF}}^{CV,HF} = \hat{Q}_{L,N_{HF}}^{HF} + \alpha(\hat{Q}_{L,N_{HF}}^{LF} - \mathbb{E}[\hat{Q}_{L,N_{LF}}^{LF}])$$

$$\operatorname{argmin}_{\alpha} \operatorname{Var}(\hat{Q}_{L,N_{HF}}^{CV,HF}) \rightarrow \alpha = -\rho \frac{\sigma_{HF}}{\sigma_{LF}}$$

$$\rho = \frac{\operatorname{cov}(Q_L^{HF}, Q_L^{LF})}{\sigma_{HF}\sigma_{LF}}$$

MLMF Control Variate Estimator

$$\Delta_{LF} = rN_{HF}$$

$$N_{LF} = N_{HF} + \Delta_{LF} = N_{HF}(1 + r)$$

$$\mathbb{E}[\hat{Q}_{L,N_{LF}}^{LF}] \simeq \frac{1}{(1 + r)N_{HF}} \sum_{i=1}^{(1+r)N_{HF}} Q_L^{LF,(i)}$$

$$\operatorname{Var}(\hat{Q}_{L,N_{HF}}^{CV,HF}) = \operatorname{Var}(\hat{Q}_L^{HF}) \left(1 - \frac{r}{1 + r} \rho^2\right)$$

MLMF variance

MLMF Sampling Strategies

Basic MLMC/MLMF Example

- Two Models: A and B. Model A is far more computationally expensive than Model B.
- Model A, Resolution 0 (A0)
- Model A, Resolution 1 (A1)
- Model A, Resolution 2 (A2)
- Model B, Resolution 0 (B0)
- Resolutions 0 → 2 in order of increasing resolution
- Models A and B have known correlations but unknown convergence
- MLMF reduces the number of high-fidelity simulations for the level on which the control variate is applied

MLMC-3l

$$A2(Q_2) \rightarrow Y_2 = Q_2 \cdot Q_1$$

$$A1(Q_1) \rightarrow Y_1 = Q_1 \cdot Q_0$$

$$A1(Q_1) \rightarrow Y_1 = Q_1 \cdot Q_0$$

$$A0(Q_0) \rightarrow Y_0 = Q_0$$

$$A0(Q_0) \rightarrow Y_0 = Q_0$$

Number of Sim.

	Model A	Model B
Res. 0	1,000	0
Res. 1	100	0
Res. 2	10	0

MLMF-3l

$$A2(Q_2) \rightarrow Y_2 = Q_2 \cdot Q_1$$

$$A1(Q_1) \rightarrow Y_1 = Q_1 \cdot Q_0$$

$$A1(Q_1) \rightarrow Y_1 = Q_1 \cdot Q_0$$

$$A0(Q_0) \leftrightarrow B0(Q_{LF}) \rightarrow$$

$$Y_0 = Q_0 + \alpha(Q_{LF} - \mu_{LF})$$

Number of Sim.

	Model A	Model B
Res. 0	200	10,000
Res. 1	100	0
Res. 2	10	0

1. Target accuracy for estimator: ε

- Calculate optimal # of simulations per level
- Uncertain total computational cost

2. $N_L = N_{target}$

- Fixed # of highest-level model simulations
- Calculate optimal # of simulations for lower levels
- Uncertain estimator accuracy

MC

$$N_0 = \frac{Var[Q]}{\varepsilon^2}$$

MLMC

$$N_l = \frac{1}{\varepsilon^2} \sum_{k=0}^L \sqrt{Var(Y_k)C_k} \sqrt{\frac{Var(Y_l)}{C_l}}$$

MLMF

$$N_l = \frac{1}{\varepsilon^2} \sum_{k=0}^L \sqrt{Var(Y_k)C_k^{eq}\Lambda_k} \sqrt{\frac{Var(Y_l)\Lambda_l}{C_l^{eq}}}$$

Optimal # of simulations per level for given variance

$$C = C_0 N_0$$

$$C = \sum_{l=0}^L C_l N_l$$

$$C_l^{eq} = C_l^{HF} + (1 + r_l)C_l^{LF}$$

Total simulation computational cost for given # of realizations

Motivation and Multifidelity UQ

SWiFT Experimental Site

MLMF Sub-Models Overview

MLMF Sampling Strategies

Sampling Study Overview and Results

Conclusions and Future Research

Sampling Study Overview

Simulation Model Levels

Case	ID	Simulation Time (hrs)	CPUs	Cost (CPU-hours)	Cost (relative)
OpenFAST + TurbSim	OpenFAST	0.25	1	0.25	1
Nalu-Wind + AD coarse	Nalu-AD C	7	768	5,376	21,504
Nalu-Wind + AD fine	Nalu-AD F	16.5	768	12,672	50,688
Nalu-Wind + AL fine	Nalu-AL F	31.75	768	24,384	97,536

Sampling Method Descriptions

Category	Sampling Method	Sub-Models
MC	MC	Nalu-AL F
MLMC	MLMC-2l	Nalu-AL F, Nalu-AD F
	MLMC-3l	Nalu-AL F, Nalu-AD F, Nalu-AD C
MLMF	MLMF-2l	Nalu-AL F, Nalu-AD F, OpenFAST
	MLMF-3l	Nalu-AL F, Nalu-AD F, Nalu-AD C, OpenFAST

Sampling Study Overview

Five aleatoric uncertain turbine inputs

- Lower and upper bounds were informed by experimental data from SWiFT site

Four quantities of interest (QoIs): 10-min means

- Generated power
- Rotor thrust
- Flapwise blade-root bending moment
- Edgewise blade-root bending moment

Sandia-based Dakota UQ tool used to generate samples

Differences from initial MLMF study (Maniaci et al., 2018)

- Three uncertain inputs: wind speed, yaw offset and air density
- Two QoIs: Generated power and rotor thrust
- Two model fidelities: OpenFAST and Nalu-AL
- No ABL precursor and uniform, low resolution meshes for Nalu-Wind
- Present Nalu-Wind UQ simulations offer similar fidelity to benchmark-level ABL simulations

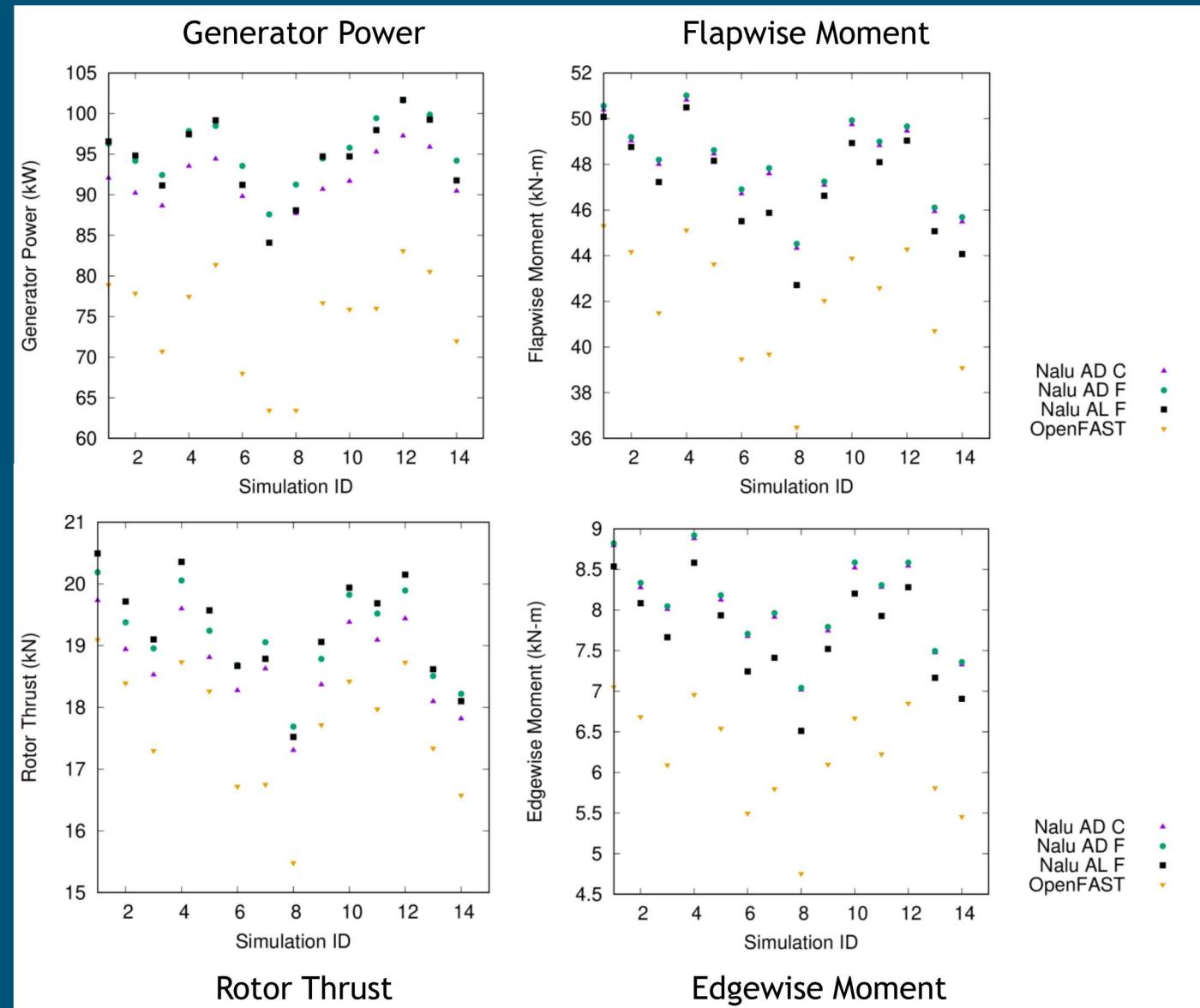
Sampling Study Aleatoric Uncertain Inputs

Input Variable	Units	Lower Bound	Upper Bound
Yaw Offset	(deg)	-25	25
Generator Torque Constant	(N-m/rpm ²)	0.0003	0.0004
Collective Blade Pitch	(deg)	-1.5	0
Gear Box Efficiency	(%)	90	100
Blade Mass Scale Factor	(-)	0.9	1.1

Sampling Study Results

Computed values from sampling study simulations

- OpenFAST under-predicts QoIs between 10-50% compared to Nalu-Wind
- Increasing mesh resolution for Nalu-AD leads to higher QoI predictions
- Correlation between Nalu-AL and Nalu-AD results varies between QoIs



Sampling Study Results

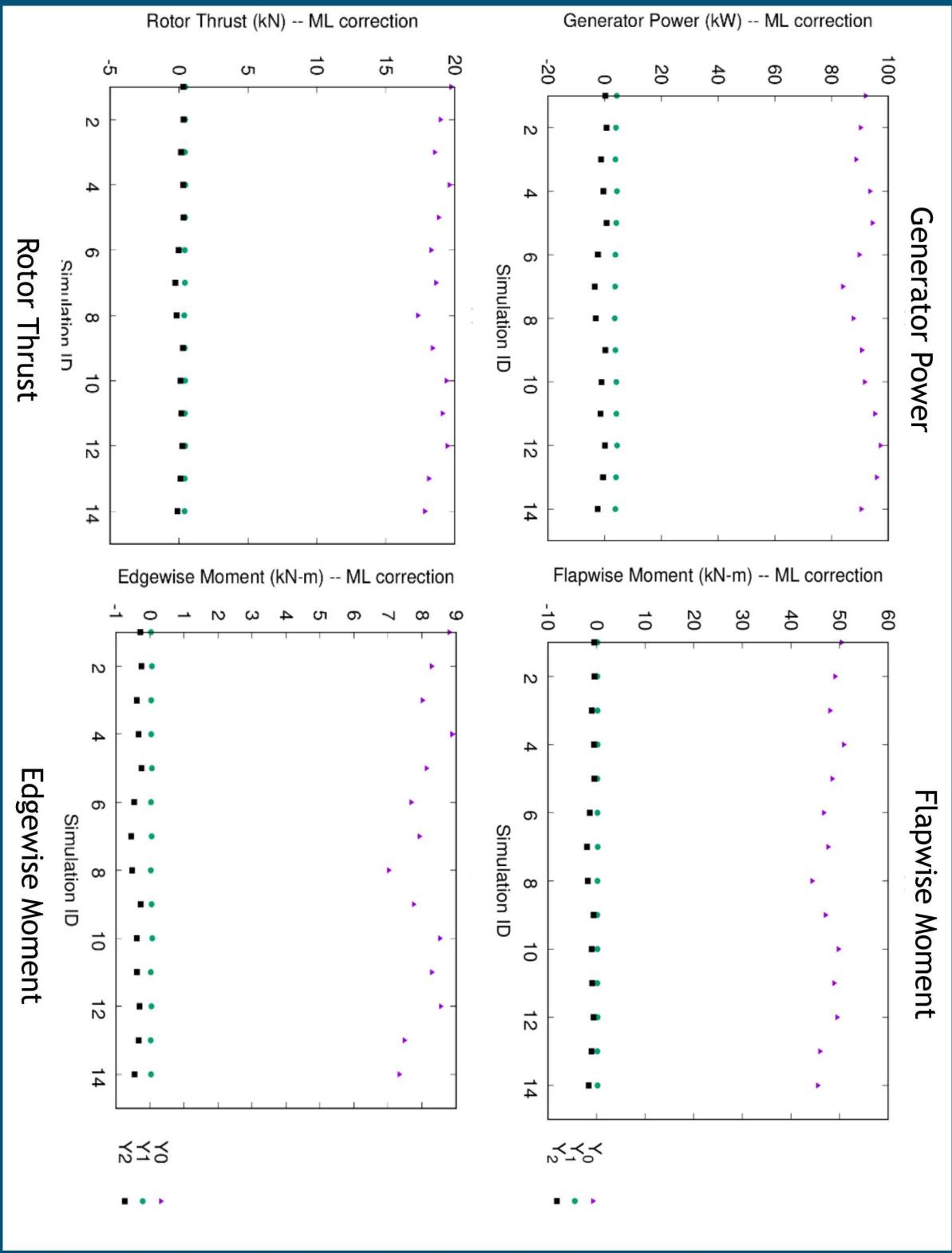
Multilevel corrections (MLMC-3l) from sampling study simulations

- MLMC condition of $Y_l \rightarrow 0$ for $l \rightarrow \infty$ is generally satisfied

- Rotor thrust and flapwise moment display weakly monotonic convergence of Y_l

ML Correction Glossary

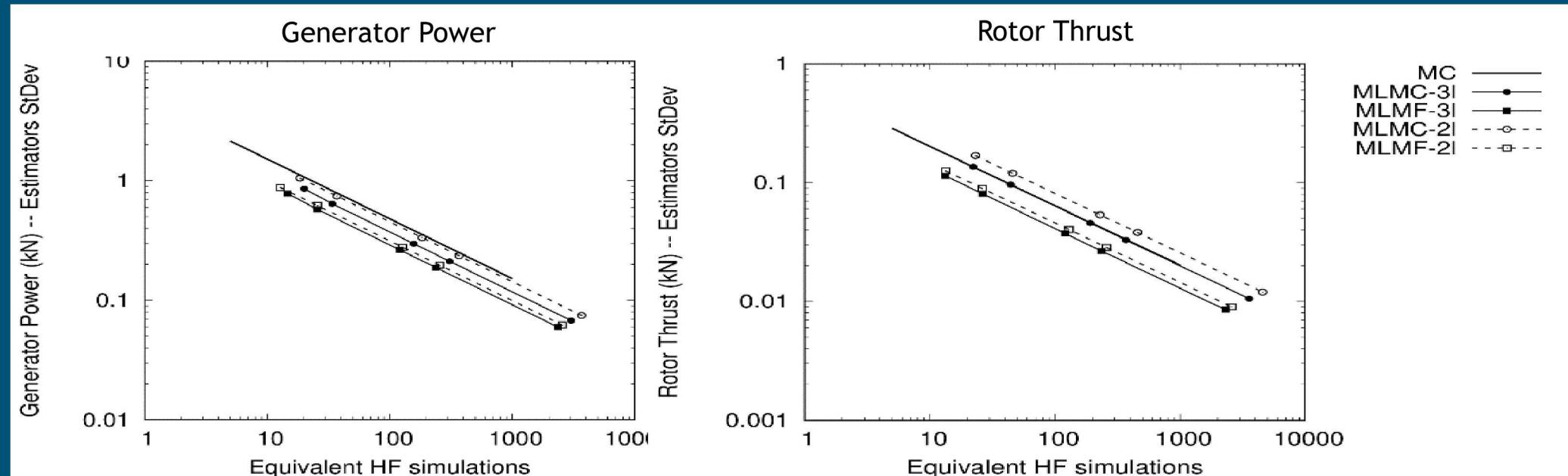
- Y_0 : Nalu AL F – Nalu AD F
- Y_1 : Nalu AD F – Nalu AD C
- Y_2 : Nalu AD C



Sampling Study Results

Extrapolated estimator performance for generator power and rotor thrust

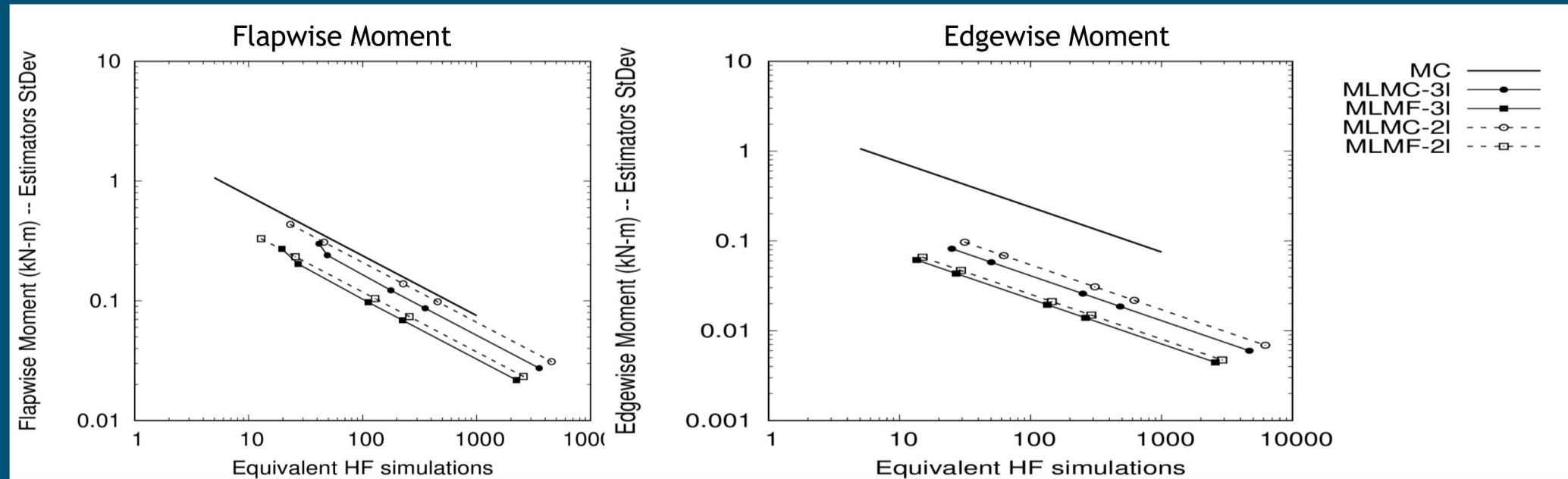
- Lower estimator StDev indicates higher reliability of sampling method
- Generator Power (least to most reliable): MC, MLMC-2l, MLMC-3l, MLMF-2l, MLMF-3l
- Rotor Thrust (least to most reliable): MLMC-2l, MC/MLMC-3l, MLMF-2l, MLMF-3l



Sampling Study Results

Extrapolated estimator performance for flapwise and edgewise bending moments

- Flapwise Moment (least to most reliable): MC, MLMC-2l, MLMC-3l, MLMF-2l, MLMF-3l
- Edgewise Moment (least to most reliable): MC, MLMC-2l, MLMC-3l, MLMF-2l, MLMF-3l
- Order of sampling method efficiency is consistent among QoIs with exception of rotor thrust



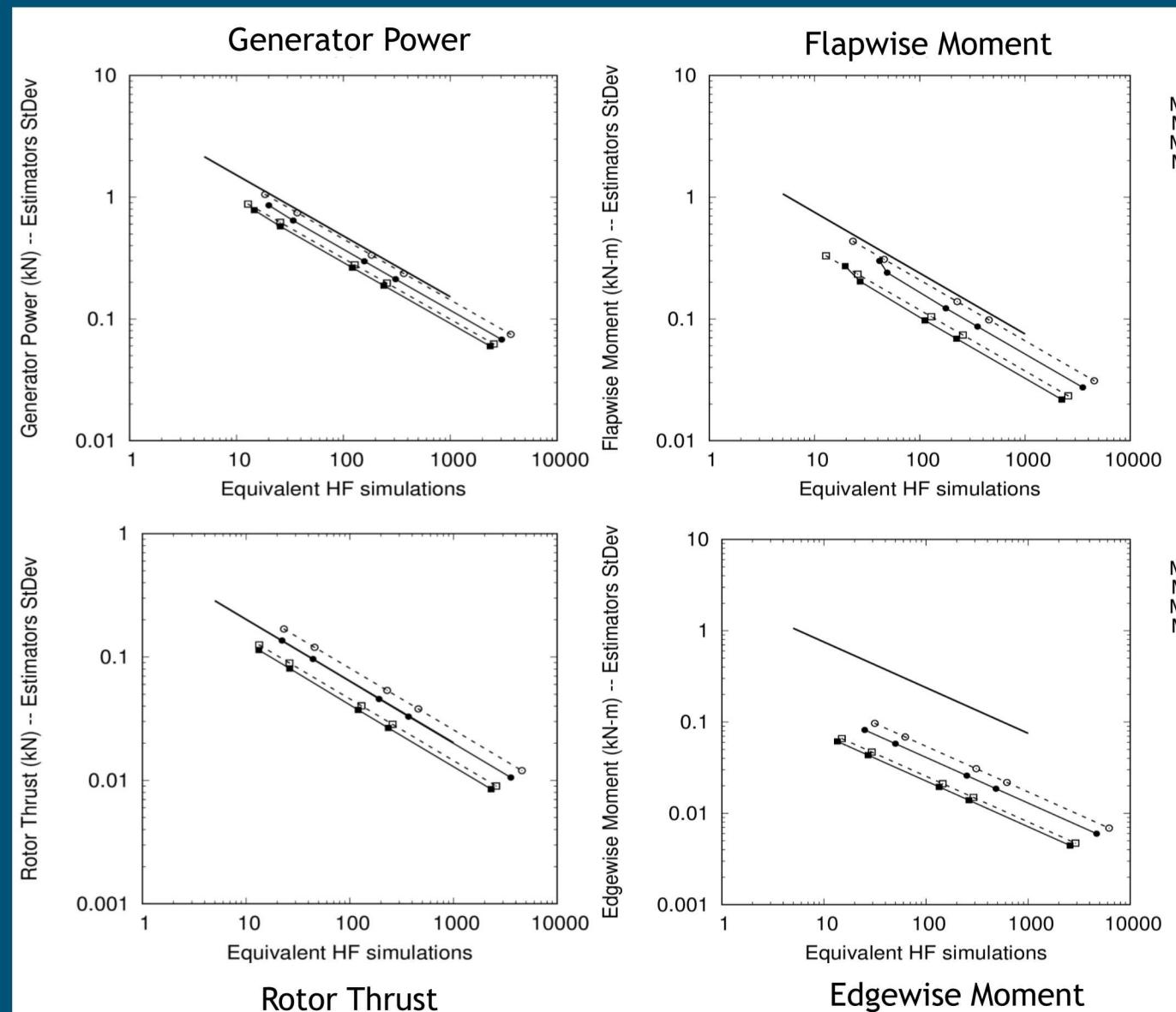
Sampling Study Results

General sampling method performance is consistent

- MLMF > MLMC > MC for all QoIs except rotor thrust
- Poor performance of MLMC for rotor thrust may be attributable to weakly monotonic decay of Y_l

Relative estimator efficiency improvements between sampling methods vary significantly by QoI

- Edgewise moment estimator performance is improved dramatically by MLMC and MLMF methods
- Generator power estimator performance improvements are small for MLMC and MLMF methods
- Control variate usage with OpenFAST model (MLMC → MLMF) is generally more effective than adding a resolution level (2l → 3l)



Motivation and Multifidelity UQ

SWiFT Experimental Site

MLMF Sub-Models Overview

MLMF Sampling Strategies

Sampling Study Overview and Results

Conclusions and Future Research

MLMF methods consistently demonstrate higher efficiency than MC/MLMC methods

- High MLMF efficiency shows agreement with previous MLMF study (Maniaci et al., 2018)
- Edgewise bending moment shows greatest improvement for MLMF methods
- OpenFAST is an effective low-fidelity simulation tool for power, thrust and bending moments

Third-level sampling strategies consistently demonstrate higher efficiency than second-level sampling strategies

- Previous MLMF study (Maniaci et al., 2018) showed second-level sampling methods were more reliable than third-level sampling methods

MLMF methods demonstrated greater consistency of effectiveness than MLMC methods

- MLMC methods showed poor performance for rotor thrust
- Weakly monotonic convergence of $Y_l \rightarrow 0$ for $l \rightarrow \infty$ may result in ineffective MLMC applications

Development of URANS capability in Nalu-Wind and incorporate within MLMF framework

- Offers additional mid-fidelity model within Nalu-Wind

Look at more complex, higher-order QoIs

- Damage equivalent loads (DEL)

MLMF UQ study for ABL parameters

- Validation of newly implemented BC changes in Nalu-Wind for convective and stable ABL simulations

MLMF UQ study for turbine wake characteristics

- FAST.Farm and WindSE computational wind farm models

References

J. Berg *et al.*, "Scaled Wind Farm Technology Facility Overview," in *AIAA SciTech 32nd Wind Energy Symposium*, 2014

Geraci, G., Eldred, M., Gorodetsky, A. and Jakeman, J. "Recent advancements in Multilevel-Multifidelity techniques for forward UQ in the DARPA Sequoia project." *AIAA SciTech 2019 Forum*, 2019.

L.W.T. Ng & K.E. Willcox "Multifidelity approaches for optimization under uncertainty." *Int. J. Numer. Meth. Engng.*, vol. 100(10), pp. 746-772, 2014.

Pasupathy, R., Taaffe, M., Schmeiser, B. W. & Wang, W. "Control-variate estimation using estimated control means." *IIE Transactions*, vol. 44(5), pp. 381-385, 2014.

Peherstorfer, B., Willcox, K., Gunzburger, M. "Optimal model management for multifidelity Monte Carlo estimation." *SIAM Journal on Scientific Computing*, vol. 38(5), A3163A3194, 2016.

Maniaci, D. and Frankel, A. and Geraci, G. and Blaylock, M. and Eldred, M. "Multilevel Uncertainty Quantification of a wind turbine large eddy simulation model." *7th European Conference on Computational Fluid Dynamics (ECFD 7)* 11-15 June 2018, Glasgow, UK, 2018.

S. P. Domino, "Sierra Low Mach Module: Nalu Theory Manual 1.0. SAND2015-3107W," Sandia National Laboratories, Sandia National Laboratories Unclassified Unlimited Release (UUR)SAND2015-3107W, 2015, Available: <https://github.com/NaluCFD/NaluDoc>.

P. Doubrava *et al.*, "Benchmarks for Model Validation based on LiDAR Wake Measurements," *Journal of Physics: Conference Series*, vol. 1256, p. 012024, 2019/07 2019.

M. L. Blaylock, B. Houchens, D. C. Maniaci, T. G. Herges, A. S. Hsieh, R. C. Knaus and P. Sakievich, "Comparison of Field Measurements and Large Eddy Simulations of the Scaled Wind Farm Technology (SWiFT) Site," presented at the Proceedings of the ASME-JSME-KSME 2019 Joint Fluids Engineering Conference, 2019.

T. G. Herges, D. C. Maniaci, B. T. Naughton, T. Mikkelsen, and M. Sjöholm, "High resolution wind turbine wake measurements with a scanning lidar," presented at the Wake Conference 2017, 2017.

M. B. Giles, "Multi-level Monte Carlo path simulation," *Oper. Res.*, vol. 56, pp. 607-617, 2008.

Gorodetsky, A. and Geraci, G. and Eldred, M. and Jakeman, J. "A Generalized Approximate Control Variate Framework for Multifidelity Uncertainty Quantification." arXiv preprint arXiv:1811.04988v3, 2018.

Geraci, G. and Eldred, M. and Iaccarino, G. "A multifidelity control variate approach for the multilevel Monte Carlo technique." *CTR Annu. Res. Briefs.* pp. 169-181, 2015.

Fairbanks, H. and Doostan, A. and Ketelsen, C. and Iaccarino, G. "A low-rank control variate for multilevel Monte Carlo simulation of high-dimensional uncertain systems." *Journal of Computational Physics*, vol. 341, pp. 121-139, 2017.

M. Churchfield, S. Shreck, L. A. Martinez-Tossas, C. Meneveau and P. R. Spalart, "An advanced actuator line method for wind energy applications and beyond," presented at AIAA SciTech 2017, 2017.