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3 Motivation and Multifidelity UQ 0

Motivation

➢ Uncertainty quantification (UQ) is necessary for predictive wind simulations

➢ High-fidelity (HF) simulations are needed for accurate wind farm predictions

➢ For many applications, UQ for HF simulations with large numbers of uncertain parameters requires unattainable computational
resources

➢ Multifidelity UQ helps mitigate the computational cost

Multifidelity UQ

➢ Aggregation of several lower accuracy models with handful of higher-fidelity computations

➢ Surrogate-based and sampling-based approaches

➢ Multilevel Monte Carlo (MLMC) approaches use convergence of model resolutions (temporal and spatial) to build corrections for
coarsest levels and reduce deterministic errors

➢ Multilevel-Multifidelity (MLMF) approaches combine MLMC with control variates (CV) to decrease variance using model
correlations and reduce stochastic errors



4 Motivation and Multifidelity UQ

Research Scope: Evaluation of MLMF UQ methods to
improve predictive capabilities of computational models for
wind farm applications

Types of UQ methods

➢ Forward UQ

➢ Inverse UQ

➢ Sensitivity Analysis

➢ Optimization under Uncertainty

Previous Work:

Maniaci, D.C. et al., "Multilevel uncertainty quantification of a
wind turbine large eddy simulation model." 7th European
Conference on Computational Fluid Dynamics. 2018.

➢ Initial MLMF study using Nalu-Wind and OpenFAST

Hsieh, A.S. et al., "Continued Multilevel-Multifidelity Uncertainty
Quantification of the SWiFT Wind Turbines." 2019 Wind
Energy Science Conference. 2019.

➢ UQ comparison of OpenFAST simulations to experimental results from
SWiFT site
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6 SWiFT Experimental Site

Scaled Wind Farm Technology (SWiFT) Facility

➢ Operated by Sandia National Laboratories in Lubbock, TX

➢ Three research-scale wind turbines and two meteorological
towers

➢ Vestas V27 wind turbine blades

➢ DTU SpinnerLidar to measure wake planes downstream of WTGa1 turbine

➢ High-quality measurement data for uncertainty characterization
of atmospheric inflow parameters, turbine parameters and wake
characteristics

➢ Open-source information and data repository at the A2e Data
Archive Portal (DAP): https://a2e.energy.gov/projects 

➢ Mesoscale-Microscale Coupling Experiment (MMC). March 2015 — Sept. 2018

➢ Wake Steering Experiment (WAKE). Dec. 2016 — July 2017.

WTGb1

 14r,

WTGa2

SWiFT site layout and coordinate system.
D = 27 m
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8 MLMF Sub-Models Overview

Nalu-Wind

')> Massively parallel, open source large eddy simulation code (LES)
used to simulate the atmospheric boundary layer

➢ One-equation, constant coefficient, turbulent kinetic energy (TKE)
model used for the subgrid scale stresses

➢ Actuator disk, actuator line and blade-resolved methods to model
wind turbines

Op enFAST

➢ Open-source tool suite used to simulate the coupled dynamic
response of wind turbines

➢ Modular framework to model different physical dynamics

➢ AeroDyn: Turbine aerodynamics

➢ ElastoDyn: Turbine structural dynamics

➢ ServoDyn: Turbine control and electrical drive dynamics

Visualization of blade-resolved Nalu-Wind
simulation

E



9 MLMF Sub-Models Overview

Multilevel-Multifidelity sampling requires selection of varying model fidelities

TurbSim Inflow (TurbSim Documentation)

Low-fidelity model

> TurbSim + OpenFAST

> TurbSim: Low-cost spectral
turbulence model

> OpenFAST: Turbine dynamics model

Actuator Disk Force Distribution
(Nalu-Wind Documentation)

Actuator Line Force Distribution
(Nalu-Wind Documentation)

Mid-fidelity model High-fidelity model

> Nalu-Wind Actuator Disk (Nalu-AD) > Nalu-Wind Actuator Line (Nalu-AL)
+ OpenFAST + OpenFAST

> Constant body-force applied over > Body-forces applied over blade-like

entire rotor lines

n



MLMF Sub-Models Overview

Nalu-Wind + OpenFAST Workflow

➢ Stage 1: ABL Precursor

➢ Periodic BCs

➢ Uniform 10 m resolution mesh

➢ Runtime of 20,000 seconds for well-developed turbulent flow field

➢ Neutral ABL; hub-height wind speed: 8.69 m/s

➢ Stage 2: ABL Precursor + I/0 Plane

>. Periodic BCs

➢ Uniform 10 m resolution mesh

➢ Runtime of 630 seconds to provide I/0 planes

➢ Stage 3: Turbines w/ ABL

➢ Inflow/outflow BCs

➢ Refined meshes around turbines

➢ Runtime of 630 seconds to simulate wind turbines (First 30 seconds discarded to avoid
initial start-up transience for statistics)

O

Time = 20000 sec

Velocity[m/s]

12.98
9.73
6.49
3.24
0.00



11 MLMF Sub-Models Overview
Time = 20000 sec

Nalu-Wind + OpenFAST Workflow

➢ Stage 1: ABL Precursor

➢ Periodic BCs

➢ Uniform 10 m resolution mesh

➢ Runtime of 20,000 seconds for well-developed turbulent flow field

➢ Neutral ABL; hub-height wind speed: 8.69 m/s

➢ Stage 2: ABL Precursor + I/0 Plane

➢ Periodic BCs

➢ Uniform 10 m resolution mesh

➢ Runtime of 630 seconds to provide I/0 planes

➢ Stage 3: Turbines w/ ABL

➢ Inflow/outflow BCs

➢ Refined meshes around turbines

➢ Runtime of 630 seconds to simulate wind turbines (First 30 seconds discarded to avoid
initial start-up transience for statistics)



12 MLMF Sub-Models Overview

Nalu-Wind + OpenFAST Workflow

➢ Stage 1: ABL Precursor

➢ Periodic BCs

➢ Uniform 10 m resolution mesh

➢ Runtime of 20,000 seconds for well-developed turbulent flow field

➢ Neutral ABL; hub-height wind speed: 8.69 m/s

➢ Stage 2: ABL Precursor + I/0 Plane

>. Periodic BCs

➢ Uniform 10 m resolution mesh

➢ Runtime of 630 seconds to provide I/0 planes

➢ Stage 3: Turbines w/ ABL

➢ Inflow/outflow BCs

➢ Refined meshes around turbines

Velocity (m/s]

12.91
9.68
6.46
3.23
0.00

➢ Runtime of 630 seconds to simulate wind turbines (First 30 seconds discarded to
avoid initial start-up transience for statistics)



13 MLMF Meshes Overview

Coarse "C" mesh

➢3 km x 3 km x 1 km

➢ 9.5 million elements

➢ Two refinement levels

➢ Minimum grid spacing: 2.5 m

Fine "F" mesh

➢3 kmx 3 kmxl km

➢ 11.7 million elements

➢ Three refinement levels

➢ Minimum grid spacing: 1.25 m

r A
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Red: 10 m spacing
Yellow: 5 m spacing
Green: 2.5 m spacing
Blue: 1.25 m spacing (F) / 2.5 m spacing (C)

Bottom view of mesh with zoomed-in view of refinement regions
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15 MLMF Sampling Strategies

Single-level Monte Carlo (MC) Approach

> MC estimator lQiir is reliable, unbiased and robust

> Method has slow rate of convergence

➢ Requires high number (N) of high-fidelity (HF)
simulations

N

Oir =K111,Q(0) = -
i=1 i=1

Q (i) E2 = var[01A'4,1 = 
Var[Q]

N

MC estimator and variance

0



16 MLMF Sampling Strategies

Single-level Monte Carlo (MC) Approach

> MC estimator (21/r is reliable, unbiased and robust

> Method has slow rate of convergence,

➢ Requires high number (N) of high-fidelity (HF)
simulations

Multilevel Monte Carlo (MLMC) Approach

> MLMC estimator OrL/14C is the sum of independent
MC estimators Y1 for each level /

➢ MLMC performs sequential corrections using less
accurate models (i.e. coarser spatial resolutions)

> Effective MLMC requires 171 0 for / 00

N

Oilr = K111Q(0) = -
i=1 i=1

Q(i) E2 = V ar[01 = 
V ar[(2]

N

MC estimator and variance

QL= Q0 + (Q1 — Q0) + — + (QL — QL-1)

1(2/ — Qi_i for / > 0
( (20 for / = 0

Multilevel expansion of MC estimator

L N
1

N1
1=0

0114LMC =
Y
(i)

•t 

E2 = V arLt €
fir mLmCi = Var[Yo] + var[Y1]+ + 

Var[Y2] 
• • •No N1 N2

MLMC estimator and variance

o



17 MLMF Sampling Strategies

Multilevel-Multifidelity (MLMF) Approach

> With different model fidelities, statistical convergence is
unlikely

> MLMF relies on model correlations between fidelities
instead of monotonically decaying variance

ofvAiEIFF
> A classical control variate estimator 

,H approximates

OF by adding an unbiased term based on QF

> The low-fidelity model's expected value, ]E[OffNLF1, is
approximated by adding a term ALF to represent the
additional number of low-fidelity simulations

h-
L,NHF - Y., fiL,NHF 

HF 
+ aNUNHF - E[01:Nr-c 

U

argmina 
HFVar(QLFIF 

NHF) a = —19

cv,

aLF

cav FIF
(QL ,` 

nLLF)
io =

CIHF ULF

MLMF Control Variate Estimator

= rNHF

NLF — NHF + ALF = NHF(1+ r)

1

'' (1 + r)NHF

(1-1-r)N HF

i=1.

)

QLLF,(i)
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18 MLMF Sampling Strategies

Basic MLMC/MLMF Example

> Two Models: A and B. Model A is far more
computationally expensive than Model B.

> Model A, Resolution 0 (AO)

> Model A, Resolution 1 (A1)

> Model A, Resolution 2 (A2)

> Model B, Resolution 0 (BO)

> Resolutions 0 —> 2 in order of increasing resolution

> Models A and B have known correlations but
unknown convergence

> MLMF reduces the number of high-fidelity
simulations for the level on which the control variate
is applied

MLMC-31

A2 (Q2) _> 172 = Q2 - Q1Al (Q1)

Al (Q1)
—> Y1 = Q1 - QoAO (Q0)

AO (Q0) —> Yo = Qo

Number of Sim.

Model A

Res. 0 1,000 0

Res. 1 100 0

Res. 2 10 0

mo

MLMF-31

A2 (Q2) —> 1 72 = Q2
A 1 (Q1)

Al (Q1) 
AO (20) 

—> yi. _ Q1 _

AO (Q0) H BO(QLF) —>
Yo = Qo + a(QLF — PLF)

Number of Sim.

Q1

Qo

Model A Model B

Res. 0

Res. 1

Res. 2

200 10,000

100 0

10 0

ID



19 MLMF Sampling Strategies

1. Target accuracy for estimator: E

➢ Calculate optimal # of simulations per level

➢ Uncertain total computational cost

MC

V ar [Q]
No =

E2

C = C 0N 0

MLMC

2. NL = N tar g et

➢ Fixed # of highest-level model simulations

➢ Calculate optimal # of simulations for lower
levels

➢ Uncertain estimator accuracy

1 L   Var(K)
Nl = E2 N/Var(Yk)Ck

k=0

Optimal # of simulations per level for given variance

N1 =

C = CiNi
t=o

MLMF

L  

2

El. var(yocegAk • 070 111

k=0 
Cieq

Cla 
= 

+ (1 + r1)OF

Total simulation computational cost for given # of realizations
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21 Sampling Study Overview 0

Simulation Model Levels

Case ID
Simulation
Time (hrs)

CPUs
Cost (CPU-
hours)

Cost
(relative)

OpenFAST +
TurbSim

OpenFAST 0.25 1 0.25 1

Nalu-Wind +
AD coarse

Nalu-AD C 7 768 5,376 21,504

Nalu-Wind +
AD fine

Nalu-AD F 16.5 768 12,672 50,688

Nalu-Wind +
AL fine

Nalu-AL F 31.75 768 24,384 97,536

Sampling Method Descriptions

Category

MC

MLMC

MLMF

Sampling Method

MC Nalu-AL F

MLMC-21 Nalu-AL F, Nalu-AD F

MLMC-31 Nalu-AL F, Nalu-AD F, Nalu-AD C

MLMF-21 Nalu-AL F, Nalu-AD F, OpenFAST

MLMF-31 Nalu-AL F, Nalu-AD F, Nalu-AD C, OpenFAST



22 Sampling Study Overview 0

Five aleatoric uncertain turbine inputs

> Lower and upper bounds were informed by experimental data

from SWiFT site

Four quantities of interest (QoIs): 10-min means

➢ Generated power

> Rotor thrust

> Flapwise blade-root bending moment

> Edgewise blade-root bending moment

Sandia-based Dakota UQ tool used to generate samples

Differences from initial MLMF study (Maniaci et al.,
2018)

>. Three uncertain inputs: wind speed, yaw offset and air density

➢ Two QoIs: Generated power and rotor thrust

> Two model fidelities: OpenFAST and Nalu-AL

> No ABL precursor and uniform, low resolution meshes for
Nalu-Wind

)=. Present Nalu-Wind UQ simulations offer similar fidelity to
benchmark-level ABL simulations

Sampling Study Aleatoric Uncertain Inputs

input Variable

Yaw Offset

Generator Torque
Constant

Collective Blade Pitch

Gear Box Efficiency

Blade Mass Scale
Factor

Units

(deg)

(N-m/rprn^2)

(deg)

(%)

(-)

Lower
Bound 

Upper Bound

-25 25

0.0003 0.0004

-1.5 0

90 100

0.9 1.1



23 Sampling Study Results

Computed values from sampling study
simulations

➢ OpenFAST under-predicts QoIs between 10-
50% compared to Nalu-Wind

>. Increasing mesh resolution for Nalu-AD leads
to higher QoI predictions

➢ Correlation between Nalu-AL and Nalu-AD
results varies between QoIs
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25 Sampling Study Results El

Extrapolated estimator performance for generator power and rotor thrust

> Lower estimator StDev indicates higher reliability of sampling method

> Generator Power (least to most reliable): MC, MLMC-21, MLMC-31, MLMF-21, MLMF-31

> Rotor Thrust (least to most reliable): MLMC-21, MC/MLMC-31, MLMF-21, MLMF-31
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26 Sampling Study Results

Extrapolated estimator performance for flapwise and edgewise bending moments

> Flapwise Moment (least to most reliable): MC, MLMC-21, MLMC-31, MLMF-21, MLMF-31

> Edgewise Moment (least to most reliable): MC, MLMC-21, MLMC-31, MLMF-21, MLMF-31

> Order of sampling method efficiency is consistent among QoIs with exception of rotor thrust
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27 Sampling Study Results

General sampling method performance
is consistent

➢ MLMF > MLMC > MC for all QoIs
except rotor thrust

➢ Poor performance of MLMC for rotor
thrust may be attributable to weakly
monotonic decay of Y1

Relative estimator efficiency
improvements between sampling
methods vary significantly by QoI

➢ Edgewise moment estimator performance
is improved dramatically by MLMC and
MLMF methods

➢ Generator power estimator performance
improvements are small for MLMC and
MLMF methods

➢ Control variate usage with OpenFAST
model (MLMC —> MLMF) is generally
more effective than adding a resolution
level (21 --> 31)
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29 Conclusions

MLMF methods consistently demonstrate higher efficiency than MC/MLMC methods

> High MLMF efficiency shows agreement with previous MLMF study (Maniaci et al., 2018)

> Edgewise bending moment shows greatest improvement for MLMF methods

> OpenFAST is an effective low-fidelity simulation tool for power, thrust and bending moments

Third-level sampling strategies consistently demonstrate higher efficiency than second-level sampling strategies

> Previous MLMF study (1Vlaniaci et al., 2018) showed second-level sampling methods were more reliable than third-level sampling
methods

MLMF methods demonstrated greater consistency of effectiveness than MLMC methods

> MLMC methods showed poor performance for rotor thrust

> Weakly monotonic convergence of 171 0 for / 00 may result in ineffective MLMC applications



30 Future Research 0

Development of URANS capability in Nalu-Wind and incorporate within MLMF framework

> Offers additional mid-fidelity model within Nalu-Wind

Look at more complex, higher-order QoIs

> Damage equivalent loads (DEL)

MLMF UQ study for ABL parameters

> Validation of newly implemented BC changes in Nalu-Wind for convective and stable ABL simulations

MLMF UQ study for turbine wake characteristics

> FAST.Farm and WindSE computational wind farm models
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