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Motivation and Multifidelity UQ

Motitvation
» Uncertainty quantification (UQ) is necessaty for predictive wind simulations
» High-fidelity (HF) simulations are needed for accurate wind farm predictions

» For many applications, UQ for HF simulations with large numbers of uncertain parameters requites unattainable computational
resources

» Multifidelity UQ helps mitigate the computational cost

Multifidelity UQ
» Aggregation of several lower accuracy models with handful of higher-fidelity computations
» Surrogate-based and sampling-based approaches

» Multilevel Monte Carlo (MLLMC) approaches use convergence of model resolutions (temporal and spatial) to build corrections for
coarsest levels and reduce deterministic errors

» Multilevel-Multifidelity (MLMF) approaches combine MLLMC with control variates (CV) to decrease variance using model
correlations and reduce stochastic errors
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Research Scope: Evaluation of MLMF UQ methods to
improve predictive capabilities of computational models for
wind farm applications

Types of UQ methods
» Forward UQ

Estimators StDay

» Inverse UQ

» Sensitivity Analysis )
10 100 1000

Equivalent HF simulations

» Optimization under Uncertainty (Maniaci et al., 2018)
aniaci et al.,

Previous Work:

Convergence of Estimator Variance Comparison

Maniaci, D.C. et al., “Multilevel uncertainty quantification of a : X —— Simulation (Forward UQ)
5 5 —— Simulation (P tric)

wind turbine large eddy simulation model.” 7th European Y, Experiment (SWIFT)
Conference on Computational Fluid Dynamics. 2018.

» Initial MLLMF study using Nalu-Wind and OpenFAST

Estimator SD

Hsieh, A.S. et al., “Continued Multilevel-Multifidelity Uncertainty

Quantification of the SWiFT Wind Turbines.” 2019 Wind
Energy Science Conference. 2019. e

. . . . Number of Simulations
» UQ compatison of OpenFAST simulations to experimental results from
SWiFT site (Hsieh et al., 2019)
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SWiIFT Experimental Site

Scaled Wind Farm Technology (SWilFFT) Facility
» Operated by Sandia National Laboratoties in Lubbock, TX

» Three research-scale wind turbines and two meteorological
towers

» Vestas V27 wind turbine blades

» DTU SpinnerLidar to measure wake planes downstream of WTGal turbine

» High-quality measurement data for uncertainty characterization
of atmospheric inflow parameters, turbine parameters and wake
characteristics

» Open-source information and data repository at the A2¢ Data
Archive Portal (DAP): https://a2e.energv.gov/projects

» Mesoscale-Microscale Coupling Experiment (MMC). March 2015 — Sept. 2018

» Wake Steering Experiment (WAKE). Dec. 2016 — July 2017,

SWIFT site layout and coordinate system.
D=27m
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MLMF Sub-Models Overview

Nalu-Wind

» Massively parallel, open source large eddy simulation code (LES)
used to simulate the atmospheric boundary layer

» One-equation, constant coefficient, turbulent kinetic energy (TKE)
model used for the subgrid scale stresses

» Actuator disk, actuator line and blade-resolved methods to model
wind turbines

OpenFAST

» Open-source tool suite used to simulate the coupled dynamic
response of wind turbines

» Modular framework to model different physical dynamics
» AeroDyn: Turbine aerodynamics
» ElastoDyn: Turbine structural dynamics

» ServoDyn: Turbine control and electrical dtive dynamics

Visualization of blade-resolved Nalu-Wind
simulation
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MLMF Sub-Models Overview

Multilevel-Multifidelity sampling requires selection of varying model fidelities

P e
aw s WX o e I o e
! — " ——

TurbSim Inflow (TurbSim Documentation) Actuator Disk Force Distribution Actuator Line Force Distribution
(Nalu-Wind Documentation) (Nalu-Wind Documentation)
Low-fidelity model Mid-fidelity model High-fidelity model
> TurbSim + OpenFAST » Nalu-Wind Actuator Disk (Nalu-AD) » Nalu-Wind Actuator Line (Nalu-AL)

»  TurbSim: Low-cost spectral + OpenFAST + OpenFAST

turbulence model » Constant body-force applied over »  Body-forces applied over blade-like

»  OpenFAST: Turbine dynamics model entire rotor lines
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Nalu-Wind + OpenFAST Workflow
» Stage 1: ABL Precursor

Time = 20000 sec

» Periodic BCs
» Uniform 10 m resolution mesh
» Runtime of 20,000 seconds for well-developed turbulent flow field
» Neutral ABL; hub-height wind speed: 8.69 m/s
» Stage 2: ABL Precursor + 1/O Plane
» Periodic BCs
» Uniform 10 m resolution mesh

» Runtime of 630 seconds to provide I/O planes

» Stage 3: Turbines w/ ABL
» Inflow/outflow BCs
» Refined meshes around turbines

» Runtime of 630 seconds to simulate wind turbines (First 30 seconds discarded to avoid
initial start-up transience for statistics)

i

Velocity[m/s]
12.98 E

9.73

6.49

3.24

0.00
N
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Time = 20000 sec

Nalu-Wind + OpenFAST Workflow
» Stage 1: ABL Precutsor

> Periodic BCs

Velocity[m/s]

» Uniform 10 m resolution mesh : ; o
6.49
3.24
0.00

» Runtime of 20,000 seconds for well-developed turbulent flow field
» Neutral ABL; hub-height wind speed: 8.69 m/s
» Stage 2: ABL Precursor + 1/0 Plane
» Periodic BCs
» Uniform 10 m resolution mesh

» Runtime of 630 seconds to provide I/O planes

» Stage 3: Turbines w/ ABL

» Inflow/outflow BCs

» Refined meshes around turbines

» Runtime of 630 seconds to simulate wind turbines (First 30 seconds discarded to avoid
initial start-up transience for statistics)
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Nalu-Wind + OpenFAST Workflow
» Stage 1: ABL Precutsor
» Periodic BCs
» Uniform 10 m resolution mesh
» Runtime of 20,000 seconds for well-developed turbulent flow field

» Neutral ABL; hub-height wind speed: 8.69 m/s

» Stage 2: ABL Precursor + 1/O Plane » “ 1 Rfined Mesh "
» Periodic BCs A/ 1
» Uniform 10 m resolution mesh (A | | Turbine
» Runtime of 630 seconds to provide I/O planes VeIOCity1[; ;51]
» Stage 3: Turbines w/ ABL §:‘z§ D
0.00

> Inflow/outflow BCs
> Refined meshes around turbines

» Runtime of 630 seconds to simulate wind turbines (First 30 seconds discarded to
avoid initial start-up transience for statistics)
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Coarse “C” mesh
»3kmx3kmx1km
» 9.5 million elements
» Two refinement levels

» Minimum grid spacing: 2.5 m
Red: 10 m spacing

Fine “F”’ mesh Yellow: 5 m spacing
Green: 2.5 m spacing
»3kmx3kmx1km Blue: 1.25 m spacing (F) / 2.5 m spacing (C)

» 11.7 million elements Bottom view of mesh with zoomed-in view of refinement regions
» Three refinement levels

» Minimum grid spacing: 1.25 m

3D perspective view of two refinement regions
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Single-level Monte Carlo (MC) Approach
> MC estimator Q&€ is reliable, unbiased and robust
» Method has slow rate of convergence

» Requires high number (N) of high-fidelity (HF)

simulations

N N
X 1 | . X
N =2 QD) ==> 0P &2 = var[Q}c] =

MC estimator and variance

Var[Q]
N
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Single-level Monte Carlo (MC) Approach
> MC estimator Q&€ is reliable, unbiased and robust
» Method has slow rate of convergence,

» Requires high number (N) of high-fidelity (HF)

simulations

Multilevel Monte Carlo (MLMC) Approach

» MLMC estimator QM€ is the sum of independent
MC estimators Y; for each level [

» MLMC petforms sequential corrections using less
accurate models (i.e. coarser spatial resolutions)

» Effective MLMC requites ¥; — 0 for [ — oo

N N
1 : 1 .
M _ Nz 0(£®) = Nz 09 2 = var[ohe] = Var[Q]

N

MC estimator and variance

QL =0Qo+(Q1 —Qp) +--+(Q, — Q1)

Y. _{Ql—Ql_lforl>0
L™ Qo forl =0

Multilevel expansion of MC estimator

L N;
AMLMC _ z iz y®
- N Lt
[=0 i=1
L Var[éiwLMc] _ Varl%] | Varin], Varlv,] ,
No N4 Ny

MLMC estimator and variance
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Multilevel-Multifidelity (MLMF) Approach

» With different model fidelities, statistical convergence is
unlikely

» MLMF relies on model correlations between fidelities
instead of monotonically decaying variance

V,HF :
» A classical control variate estimator Qf LNy apprommates
HF 15y adding an unbiased term based on Q

» The low-fidelity model’s expected value, , is
approximated by adding a term A, to represent the
additional number of low-fidelity simulations

CV,HF _ AHF ALF
Qr Nuyr — QL Nup T a(QL Nyr )
ACV,HF _ OHF
argming Var(Qp y,,) — @ = P
LF

_ cov(Qf",0f)

OHFOLF

MLMF Control Variate Estimator
App = rNyp

Nyp = Nyp +App = Nygp(1 + 1)

(1+T')NHF

- 1 z LF,(i)
(1 = r)NHF = L
= r
var(9in?) = var(@") (1= 77)

MLMF variance
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Basic MLMC/MLMF Example
» Two Models: A and B. Model A is far more

computationally expensive than Model B.
» Model A, Resolution 0 (A0)
» Model A, Resolution 1 (A1)
» Model A, Resolution 2 (A2)
» Model B, Resolution 0 (B0)
» Resolutions 0 — 2 in order of increasing resolution

» Models A and B have known correlations but
unknown convergence

» MLMF reduces the number of high-fidelity
simulations for the level on which the control variate

is applied

MLMC-3I
A2 (Qz) _
Al (Ql) — YZ - QZ © Ql
Al (Qq1) _
A0 (Qz) —> Yl = Ql - QO

A0 (Qo) —> Yy = Qo

Number of Sim.

Model A Model B

MLMEF-31

A2 (Q2) _
Al (Ql) = YZ - QZ : Ql

Al (Q1) _
A0 (QO) —> Yl an Ql - QO

A0 (Qp) < BO(QLr) —>
Yo = Qo + a(Qrr — prr)

Number of Sim.

Model A Model B
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1. Target accuracy for estimator: ¢

&)

N, = Ntarget

> Calculate optimal # of simulations per level » Fixed # of highest-level model simulations

» Uncertain total computational cost

C — CONO

» Calculate optimal # of simulations for lower
levels

» Uncertain estimator accuracy

MLMC MLMF

L L
1 Var(Y; - 1 eq Var(Y)A,
=, G k=0 :

Optimal # of simulations per level for given variance
L e
C = C,N, Gl =T+ A +n)CF
1=0

Total simulation computational cost for given # of realizations
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Simulation Model Levels

Simulation Cost (CPU- Cost
Case e Time (hrs) it hours) (relative)
OpenFAST +
TurbSim OpenFAST
Nalu-Wind + Nalu-AD C
AD coarse
Nalu-Wind +
AD fine Nalu-AD F
Nalu-Wind +
AL fine Nalu-AL F
Sampling Method Descriptions
Category Sampling Method Sub-Models
MC MC Nalu-AL F
MLMC-21 Nalu-AL F, Nalu-AD F
MLMC
MLMC-31 Nalu-AL F, Nalu-AD F, Nalu-AD C
MLMF-21 Nalu-AL F, Nalu-AD F, OpenFAST
MLMF
MLMF-31 Nalu-AL F, Nalu-AD F, Nalu-AD C, OpenFAST
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Sampling Study Overview

Five aleatoric uncertain turbine inputs

» Lower and upper bounds wete informed by experimental data

from SWiFT site

Four quantities of interest (Qols): 10-min means
» Generated power
» Rotor thrust
» Flapwise blade-root bending moment

» Edgewise blade-root bending moment

Sandia-based Dakota UQ tool used to generate samples

g)oilfge)rences from initial MLMF study (Maniaci et al.,

» Three uncertain inputs: wind speed, yaw offset and air density
» Two Qols: Generated power and rotor thrust
» Two model fidelities: OpenFAST and Nalu-AL

» No ABL precursor and uniform, low resolution meshes for
Nalu-Wind

» Present Nalu-Wind UQ simulations offer similar fidelity to
benchmark-level ABL simulations

Sampling Study Aleatoric Uncertain Inputs

Input Variable

Yaw Offset

Generator Torque
Constant

Collective Blade Pitch

Gear Box Efficiency

Blade Mass Scale
Factor

Units

(deg)
(N-m/rpm~*2)

(deg)

(-)

Lower
Bound

-25
0.0003

-1.5
90

0.9

Upper Bound
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Computed values from sampling study
simulations

» OpenFAST under-predicts Qols between 10-
50% compared to Nalu-Wind

» Increasing mesh resolution for Nalu-AD leads
to higher Qol predictions

» Correlation between Nalu-AL and Nalu-AD
results varies between Qols

Generator Power (kW)

Rotor Thrust (kN)

Generator Power

6 8 10 12
Simulation ID

6 8 10 12
Simulation ID

Rotor Thrust

14

14

Flapwise Moment (kN-m)

Edgewise Moment (kN-m)

Flapwise Moment

6 8 10
Simulation ID

6 8 10 12 14
Simulation ID

Edgewise Moment

Nalu AD C
Nalu AD F
Nalu AL F
OpenFAST

Nalu AD C
Nalu AD F
Nalu AL F
OpenFAST
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Sampling Study Results

Multilevel corrections (MLMC-3])
from sampling study simulations

» MLMC condition of ¥; = 0 for [ = oo
is generally satisfied

» Rotor thrust and flapwise moment
display weakly monotonic convergence

of ¥;

ML Correction Glossary
> Y: Nalu AL F — Nalu AD F
> Y;: Nalu AD F — Nalu AD C
> Y: Nalu AD C

Generator Power (kW) -- ML correction

Rotor Thrust (kN) -- ML correction

Generator Power

KQimiilatinn 1IN

Rotor Thrust

Flapwise Moment (kN-m) -- ML correction

ML correction

),_

N W Ak OO N 0 ©

Edgewise Moment (KN-m

Flapwise Moment

6
Simulation ID

Edgewise Moment
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Sampling Study Results

Extrapolated estimator performance for generator power and rotor thrust

» Lower estimator StDev indicates higher reliability of sampling method

» Generator Power (least to most reliable): MC, MLMC-21, MLLMC-31, MLLMF-21, MLLMF-31

» Rotor Thrust (least to most reliable): MLLMC-21, MC/MLMC-31, MLLMF-21, MLLMF-31

Estimators StDev

i
=
=

B
@
=
<)
o
—
=
e
S
@
D
(&)

Generator Power

10 100 1000
Equivalent HF simulations

1001

-- Estimators StDev

Rotor Thrust (kN)

Rotor Thrust

10 100 1000
Equivalent HF simulations

10000

MC
MLMC-3I
MLMF-3I1

MLMC-21 -
MLMF-21 -
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Extrapolated estimator performance for flapwise and edgewise bending moments

» Flapwise Moment (least to most reliable): MC, MLMC-21, MLMC-31, MLMF-21, MLLMF-3]

» BEdgewise Moment (least to most reliable): MC, MLLMC-21, MLMC-31, MLLMF-21, ML.LMF-31

» Order of sampling method efficiency is consistent among Qols with exception of rotor thrust

Estimators StDev

E
=
X
=
@
IS
[S)
=
®
L
=
o
©
(e

Flapwise Moment

10 100 1000
Equivalent HF simulations

Edgewise Moment

Estimators StDev

Edgewise Moment (kN-m) --

10 100 1000
Equivalent HF simulations

10000

MC
MLMC-3I
MLMF-3I

MLMC-2| ---o --
MLMF-2] --&--
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General sampling method performance
is consistent

» MLMF > MILMC > MC for all Qols
except rotor thrust

» Poor performance of MLMC for rotor
thrust may be attributable to weakly
monotonic decay of Y}

Relative estimator efficiency
improvements between sampling
methods vary significantly by Qol

» Edgewise moment estimator performance
is improved dramatically by MLMC and
MLMF methods

» Generator power estimator performance
improvements are small for MLMC and
MILMF methods

» Control variate usage with OpenFAST
model MLMC — MLMF) is generally
more effective than adding a resolution
level (21 — 3I)

Generator Power (kN) -- Estimators StDev

-- Estimators StDev

Rotor Thrust (kN)

Generator Power

10 100 1000
Equivalent HF simulations

T T

10 100 1000
Equivalent HF simulations

Rotor Thrust

10000

Estimators StDev

Flapwise Moment (kN-m) --

-- Estimators StDev

Edgewise Moment (kN-m)

Flapwise Moment

I I

10 100 1000
Equivalent HF simulations

10 100 1000
Equivalent HF simulations

Edgewise Moment

10000

MC ——
MLMC-3I
MLMF-3I
MLMC-2| --
MLMEF-2| --

MC ——
MLMC-3I
MLMF-3I
MLMC-2| --
MLMEF-2I --
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MLMF methods consistently demonstrate higher efficiency than MC/MLMC methods
» High MLLMF efficiency shows agreement with previous MLMF study (Maniaci et al., 2018)
» BEdgewise bending moment shows greatest improvement for MLLMF methods
» OpenFAST is an effective low-fidelity simulation tool for powet, thrust and bending moments
Third-level sampling strategies consistently demonstrate higher efficiency than second-level sampling strategies

» Previous MLMF study (Maniaci et al., 2018) showed second-level sampling methods were more reliable than third-level sampling
methods

MLMF methods demonstrated greater consistency of effectiveness than MLMC methods
» MLMC methods showed poor performance for rotor thrust

» Weakly monotonic convergence of ¥; = 0 for [ = 00 may result in ineffective MLMC applications
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Development of URANS capability in Nalu-Wind and incorporate within MLMF framework
» Offers additional mid-fidelity model within Nalu-Wind

Look at more complex, higher-order Qols

» Damage equivalent loads (DEL)

MLMF UQ study for ABL parameters

» Validation of newly implemented BC changes in Nalu-Wind for convective and stable ABL simulations

MLMF UQ study for turbine wake characteristics :
» FAST.Farm and WindSE computational wind farm models
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