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Typical coaxial load on Z




Typical stripline load on Z




Pulsed Power




Advanced experimental platforms
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Fully self-consistent, 2D MHD simulations required

10 mm wide stripline




Integration of theory, computation, and experiment required
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The Shock and Multiphysics Family of Codes
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Stripline short-circuit loads on the Z machine can produce
planar shockless compression of solids to 400+ GPa

Vs

* current pulse of 7-26 MA delivered to load

* controllable pulse shape, rise time 100-1500 ns

* stripline = parallel flat-plate electrodes shorted at one end, identical loading of sample pairs

* magnetic (J*xB) force induces ramped stress wave in electrode material

* stress wave propagates into ambient material, de-coupled from magnetic diffusion front
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Lagrangian analysis can extract compressibility
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* « in-situ measurements > Direct Lagrangian Analysis (DLA)

* real measurements are free-surface or window-interface

= map measured u(7) into in-situ u*(7), then apply DLA

= shockless compression: map by iterative characteristics technique?

» referred to as Iterative Lagrangian Analysis (ILA)

= single-sample: use “zero-thickness” sample velocity from drive
» deduce B-field from drive velocity using 1-D MHD simulation
» outer-loop iteration of simulating electrode/sample velocity
» advantage = greatly reduce effect of thickness uncertainty
» advantage = amenable to forward-only analysis (optimize models)
» disadvantage = requires accurate electrode models, code physics

1S. D. Rothman & J. Maw, J. Physique IV 134, p745 (2006)
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LiF windows alleviate ILA errors due to elastic sound speed in
local regions of decompression for high-strength materials
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* Reference model = Sesame 90210* + Steinberg-
Guinan fit to ramp-release strength data?

* Strength interaction with free surface (ILA)

—> Localized deviations in apparent ¢, (u*)
- Partial cancellation in dual-sample case

1C. Greeff et al, AIP Conf. Proc. 1195, 681 (2009)
2J. L. Brown et al, J. Appl. Phys. 115, 043530 (2014)

LA o

in-situ
—>
DLA

Simulations of free-surface

—>

A

ILA

free-surface

Ta experiments

Pulse-shape design can help, but not enough
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Lagrangian wave speed (km/s)
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LiF windows alleviate ILA errors due to elastic sound speed in
local regions of decompression for high-strength materials m

Simulations of LiF-windowed
Ta experiments

LiF window significantly reduces

compression velocity (km/s)

* Reference model = Sesame 90210* + Steinberg-
Guinan fit to ramp-release strength data?

1C. Greeff et al, AIP Conf. Proc. 1195, 681 (2009)
2J. L. Brown et al, J. Appl. Phys. 115, 043530 (2014)
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c, (km/s)

index of refraction

Results thus far suggest current models for the mechanical m

and optical r

* 1-D hydrocode computes u
* update u,,,, from measured u

* iterate until simulation matches measured u

esponse of LiF are adequately accurate

* refractive index non-linear in density
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2-D MHD can correct for asymmetry in magnetic drive
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* Asymmetric wave reverberations in electrodes

* Left (drive): reflection from free surface

* Right (sample): reflection from high-impedance material
* Resulting 2-D effects cause asymmetric B-field topology
* Can occur prior to time of peak current
* Use 2-D B-field Sample/Drive ratio to correct 1-D B-field

* Only if experiment is really 2-D!

= rectangular samples and panel features




Velocimetry data accumulated in past two years on several
metal standards has yet to be fully analyzed
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QMD calculations of the hydrogen/deuterium Hugoniot |Z.i
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Let’s not just pick on the theorists...
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Current state-of-the-art: deuterium Hugoniot
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High-precision quartz standard developed on Z

P TP
0.1 0.3 resglfée( 0_8) 12 15 » Nearly 300 Hugoniot points for quartz have been obtained between

1 and 15 Mbar

* Arelease model was developed using release measurements
obtained from TPX, and both ~200 mg/cc and ~100 mg/cc aerogel
and based on insight gained from QMD calculations
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High-precision Hugoniot data for deuterium
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Temperature (K)

Metallization at high-density / low-temperature
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Temperature (1000 K)

Metallization of hydrogen / deuterium
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- All functionals considered
predict a first-order, liquid-
liquid phase transition ending
in a critical point at ~2k K

* This transition is concurrent
with an insulator to metal
transition (IMT)

* Low-density phase is mostly
molecular, the high-density
phase is mostly atomic

* Pressure and density of the
transition is extremely
sensitive to the particular
exchange-correlation
functional

Knudson, Desjarlais, Becker, Redmer, et al. Science 348, 1455 (2015)



Experimental configuration

Knudson, Desjarlais, Becker, Redmer, et al. Science 348, 1455 (2015)
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Representative data
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Comparison of reflectivity from aluminum and deuterium

Reflection from aluminum coating Reflection from deuterium

Redflection from Aluminurm Reflection frorm Creuterium
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Liquid-liquid, insulator-to-metal transition (LL-IMT)
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Vaporization key mechanism during planet formation ShIOCk' —
release

and evolution

simualatians of plane @y dynamics Large uncertainty in onset of vaporization
suggest high impact velocities

# of Impacts
8 & 8

o

10 15 20 25 30 35 40
Impact Velocity [km/s]

3}

Does an iron meteor:

* plow into a planet as a bullet?

* splatter as a drop of rain?

e vaporize into a cloud of iron to return as iron rain?

Fluid instabilities CAN NOT sufficiently mix the incoming The outcome de pen ds on the HED prope rties
iron cores to explain observed iron content in the mantel or

the similarity in isotopics between the earth and the moon. of iron — pa rticula rIy Va porization

N-body simulations from Raymond et al. 2009



Shock-
Vaporization by planet forming impacts can be studied on Z

* Flyer plates on Z can exceed 40 km/s
* Liquid-vapor dome located via shock-

Iron Shock and Release Data
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R.G. Kraus et al., Nature Geoscience 8, 269 (2015)



Z Fundamental Science Program is a growing community
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12+ students are currently involved

Resources over 10 years
» 115 dedicated ZFSP shots (5-7% of all Z shots)

» Ride-along experiments on Z program shots, guns,
DICE, and THOR

Science with far-reaching impact
= Nature, Nature Geoscience, SCIENCE

= 7 Phys. Rev. Lett, 3+ Physics of Plasmas, 5+ Physical
Review (A,B,E)

= More than 40 total peer reviewed publications and 10
conference proceedings

= 70+ invited presentations

Popular outreach
= National Public Radio, “All things considered”, 2014
= Discover Magazine
= Reportage 9/16/2012
= Jron rain #62 in top 100 Science stories in 2015

= Albuquerque Journal Front Page 9/2017
= Twice local TV coverage on planetary science



ZFS Program has transitioned to a yearly Call for Proposals

Two-year award period

ZFSP is a core part of our research strategy
» 100+ dedicated shots since the start in 2011

» About 10% of the shots on Z, so 15 per year -

* 4 -7 independent projects

Proposal format
= 12 page research narrative

» Shot plan, target- and diagnostics needs, etc
= P| CV/resume

Review
= Facility review for safety and readiness (target, diagnostics)

= Review of scientific relevance and impact by an independent
review panel

ZFSP 2020 workshop TBD, Albuquerque
= Sunday evening — Wednesday afternoon

= Typically been held at Hotel Andaluz, downtown ABQ

Sandia National Laboratories
Pulsed Power Sciences

Call for Proposals Package for the Z Facility
Fundamental Science Program for the Period
July 1, 2020 to June 30, 2022

Issue Date: June 17, 2019
Due Date: September 16, 2019

Point of Contact: Dr. Marcus D. Knudson
DMTS, Dynamic Material Properties
Sandia National Laboratories
P.O. Box 5800 MS 1195
Albuquerque, NM 87185-1195
(505) 844-1575
mdknuds@sandia.gov
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