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Pulsed Power

shorting cap cathode
Pulse of electric current through

rectangular coaxial electrodes (shorted
at one end) induces magnetic field
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Typical coaxial load on Z



Typical stripline load on Z





Advanced experimental platforms
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Fully self-consistent, 2D MHD simulations required
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Integration of theory, computation, and experiment required

ALEGRA
The Shock and Multiphysics Family of Codes
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Stripline short-circuit loads on the Z machine can produce
planar shockless compression of solids to 400+ GPa Ramp

c

• current pulse of 7-26 MA delivered to load

• controllable pulse shape, rise time 100-1500 ns

• stripline = parallel flat-plate electrodes shorted at one end, identical loading of sample pairs

• magnetic (JXB) force induces ramped stress wave in electrode material

• stress wave propagates into ambient material, de-coupled from magnetic diffusion front

-,

• sound speed c increases with pressure (normal materials)

• ramp steepens into a shock
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1 Lagrangian analysis can extract compressibility

Uptrneasured

/I
map windowed to

in-situ

do-x = pocLdu*
00 dp du*

u* = "compression velocity"
(mechanical-EOS variable)

2
P POCL

*
U in-situ x material

response

Lagrangian analysis

(*) = AX cL(u*)

t
iterate 

• in-situ measurements 4 Direct Lagrangian Analysis (DLA)

• real measurements are free-surface or window-interface
• map measured u(t) into in-situ u*(t), then apply DLA
• shockless compression: map by iterative characteristics technique1

➢ referred to as iterative Lagrangian Analysis (ILA)
• single-sample: use "zero-thickness" sample velocity from drive

>deduce B-field from drive velocity using 1-D MHD simulation
> outer-loop iteration of simulating electrode/sample velocity
>advantagt = greatly reduce effect of thickness uncertainty
>advantagt = amenable to forward-only analysis (optimize models)
>disadvantage = requires accurate electrode models, code physics

backward

calculation

at "drive"

iterate

forward

calculation

t

111 input .*.
in-situ i

.
..
•.
.
...

1S. D. Rothman & J. Maw, J. Physique IV 134, p745 (2006) Single-sample approach
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LiF windows alleviate ILA errors due to elastic sound speed in
local regions of decompression for high-strength materials
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J.-P. Davis et al, J. Appl. Phys. 116, 204903 (2014) _
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• Reference model = Sesame 902101+ Steinberg-
Guinan fit to ramp-release strength data2

• Strength interaction with free surface (ILA)

4 Localized deviations in apparent CL(0)
4 Partial cancellation in dual-sample case

1 C. Greeff et al, AIP Conf. Proc. 1195, 681 (2009)

2 J. L. Brown et al, J. Appl. Phys. 115, 043530 (2014)
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LiF windows alleviate ILA errors due to elastic sound speed in
local regions of decompression for high-strength materials
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• Reference model = Sesame 902101+ Steinberg-
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1 C. Greeff et al, AIP Conf. Proc. 1195, 681 (2009)

2 J. L. Brown et al, J. Appl. Phys. 115, 043530 (2014)

3.7 ____-_-____

Ramp

Simulations of LiF-windowed 
Ta experiments

LiF window significantly reduces
extent of decompression regions

3.6 - : - - - - - - -
--1-50°- 

: yokitieti

_-_ ___ _ts-decriatli
ie.° --____ ----______

3.5 =
____ Two ________________ - - -

-_:_=-2-=2-3-00: - -  :: ----- - -
-3.4 _____.,.3.6 ------ -- -- _

s s r

3.3

3.2  • ------
---tme con

3.1 -
----Rithiiann invariants

u
P 
± U*

3.0

1
A

goo surfac
600

300

0 200 400 600 800 1000 1200 1400

Lagrangian position in sample (pm)



s•

in
de
x 
of
 r
ef
ra
ct
io
n 

Results thus far suggest current models for the mechanical
. and optical response of LiF are adequately accurate
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Ramp

• refractive index non-linear in density

• 1-D hydrocode computes Uapparent from given U true

• update utrue from measured Uapparent

• iterate until simulation matches measured Uapparent
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I 2-D MHD can correct for asymmetry in magnetic drive

Snapshots with line-outs from Alegra simulation of Z2434 mid-height position
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• Asymmetric wave reverberations in electrodes
• Left (drive): reflection from free surface
• Right (sample): reflection from high-impedance material

• Resulting 2-D effects cause asymmetric B-field topology

• Can occur prior to time of peak current

• Use 2-D B-field Sample/Drive ratio to correct 1-D B-field
• Only if experiment is really 2-D!
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Velocimetry data accumulated in past two years on several
metal standards has yet to be fully analyzed
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I QMD calculations of the hydrogen/deuterium Hugoniot
Molecular Hydrogen
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Let's not just pick on the theorists...

Kerley03

Desjarlais QMD

O Z Data

• Hicks reanalyzed

Boriskov (liquid)

► Boriskov (solid)

All of the previous data

used aluminum as an

impedance match
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uncertainties in p/po of

order 10%
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Current state-of-the-art: deuterium Hugoniot
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High-precision Hugoniot experiments on deuterium
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High-precision quartz standard developed on Z
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• Nearly 300 Hugoniot points for quartz have been obtained between
1 and 15 Mbar

• A release model was developed using release measurements
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103

101
10 15 20

Particle Velocity (km/s)
25

Ef
fe

ct
iv

e 
G
a
m
m
a
 

0.8

0.6

0.4

0.2

0

—0.2

• 0.8

//
/ 0.6
//
//
/

0.4"
38 40 42

10 15 20
Quartz Shock Velocity (km/s)

25

Knudson and Desjarlais, PRL 103, 225501 (2009) Knudson and Desjarlais, PRB 88, 184107 (2013)



High-precision Hugoniot data for deuterium
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Metallization at high-density / low-temperature
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I Metallization of hydrogen / deuterium

Critical
Point

100 200 300
Pressure (GPa)

400

Shock-
ramp

• All functionals considered
predict a first-order, liquid-
liquid phase transition ending
in a critical point at -2k K

• This transition is concurrent
with an insulator to metal
transition (IMT)

• Low-density phase is mostly
molecular, the high-density
phase is mostly atomic

• Pressure and density of the
transition is extremely
sensitive to the particular
exchange-correlation
functional

Knudson, Desjarlais, Becker, Redmer, et al. Science 348, 1455 (2015)



I Experimental configuration
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Knudson, Desjarlais, Becker, Redmer, et al. Science 348, 1455 (2015)



Experimental configuration
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LiF
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Knudson, Desjarlais, Becker, Redmer, et al. Science 348, 1455 (2015)



Representative data
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Comparison of reflectivity from aluminum and deuterium

Reflection from aluminum coating Reflection from deuterium
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I Wavelength dependence of reflectivity indicative of a metal
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1 Liquid-liquid, insulator-to-metal transition (LL-IMT)
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Vaporization key mechanism during planet formation
and evolution

Simulations of planetary dynamics
suggest high impact velocities

•1
10 15 20 25 30 35 40

impact Velocity [km/s]

Fluid instabilities CAN NOT sufficiently mix the incoming
iron cores to explain observed iron content in the mantel or
the similarity in isotopics between the earth and the moon.

Shock-
release

Large uncertainty in onset of vaporization

Does an iron meteor:
• plow into a planet as a bullet?
• splatter as a drop of rain?

• vaporize into a cloud of iron to return as iron rain?

The outcome depends on the HED properties
of iron — particularly vaporization

N-body simulations from Raymond et al. 2009



Vaporization by planet forming impacts can be studied on Z

• Flyer plates on Z can exceed 40 km/s

• Liquid-vapor dome located via shock-
release experiments
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2+ students are currently involved

is a growing community

Resources over 10 years
• 115 dedicated ZFSP shots (5-7% of all Z shots)

• Ride-along experiments on Z program shots, guns,
DICE, and THOR

Science with far-reaching impact
• Nature, Nature Geoscience, SCIENCE

• 7 Phys. Rev. Lett, 3+ Physics of Plasmas, 5+ Physical
Review (A,B,E)

• More than 40 total peer reviewed publications and 10
conference proceedings

• 70+ invited presentations

Popular outreach
• National Public Radio, "All things considered", 2014

• Discover Magazine

• Reportage 9/16/2012

• lron rain #62 in top 100 Science stories in 2015

• Albuquerque Journal Front Page 9/2017

• Twice local TV coverage on planetary science



ZFS Program has transitioned to a yearly Call for Proposals

ZFSP is a core part of our research strategy

• 100+ dedicated shots since the start in 2011

• About 10% of the shots on Z, so 15 per year

• 4 -7 independent projects

Proposal format

• 12 page research narrative

• Shot plan, target- and diagnostics needs, etc

• PI CV/resume

Review

• Facility review for safety and readiness (target, diagnostics)

• Review of scientific relevance and impact by an independent
review panel

ZFSP 2020 workshop TBD, Albuquerque

• Sunday evening — Wednesday afternoon

• Typically been held at Hotel Andaluz, downtown ABQ

Two-year award period

Sandia National Laboratories

Pulsed Power Sciences

Call for Proposals Package for the Z Facility
Fundamental Science Program for the Period
July 1, 2020 to June 30, 2022

issue Date: June 17, 2019

Due Date: September 16, 2019

Point af Contact: Dr. Marcus D. Knudsan

DMTS, Dynamic Material Properties

Sandia National Laborataries
P.O. Box 5800 MS 1195

Albuquerque, NM 87185-1195

(505) 844-1575

rndknuds@sandia.gov
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