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New analysis method confirmed experiment reproducibility and
enabled accurate systematic study of Cr, Fe, and Ni opacity

Is iron opacity inaccurate? 

• Fe opacity is measured at solar interior condition

• Severe disagreement with modeled opacity 4 Why?

Data analysis method is refined 

• Large volume of calibration-shot statistics

• Error propagation with Monte Carlo

• Method tested
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New analysis improved reproducibility, providing insight into the problem 

• Improved reproducibility: 10-20%

• First systematic study published by PRL

T. Nagayama et al, PRL 122, 235001 (2019)
Wavelength



Is the decade-old solar problem caused by inaccuracy
of opacity models?
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Sim: Standard Solar Model-
: Obs: Helioseismology :4

• Solar physicists: solar models need 10-30% higher mean opacity at CZB [1]

• Hypothesis: Iron opacity calculated at CZB is underestimated

Let's measure and check Fe opacity at CZB conditions

[1]. Basu, S. & Antia, H. M. Physics Reports 457,217-283 (2008).



Severe opacity model-data disagreement was found as
condition approaches solar interior conditions
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What's causing the discrepancy? Theory? Experiment?
1 2

N

[1] Bailey et al., Nature 517, 56 (2015) * PrismSPECT: MacFarlane et al, JQSRT (2003)



There are long lists of hypotheses for the discrepancy
both in opacity experiment and theory

Experiments:

.

.

.

.

.

.

.

.

.

.

.

Plasma Te and ne errors
Sample areal density errors
Analysis errors
Spatial non-uniformities
Temporal non-uniformities
Departures from LTE

Fe self emission
Tamper self emission
Extraneous background

Sample contamination
Tamper transmission difference

Theory:
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• Atomic data accuracy:
• Cross-section
• Oscillator strengths
• Transition energy

• Population
• Completeness in excited states

• Density effects
• Spectral line shape
• Continuum lowering

• Missing physics
• Multi-photon processes
• Transient space localization



No systematic error has been found that explains the
model-data discrepancies
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Potential systematic errors  :
4 Evaluated with experiments and simulations Experimental evidence 

• Plasma Te and ne errors  . +4% and +25%, respectively [1]
• Sample areal density errors RBS measurements agree with Mg spectroscopy
• Analysis errors  . Transmission analysis on null shot shows +5%
• Spatial non-uniformities . Al and Mg spectroscopy
• Temporal non-uniformities Backlight radiation lasts 3ns
• Departures from LTE

• Fe self emission  
• Tamper self emission  
• Extraneous background  

• Sample contamination 
• Tamper transmission difference

. Measurement do not show Fe self-emission

► Quantified amount do not explain the discrepancy

. RBS measurements show no contamination

Condition reproducisi ity: 1 Nagayama et a , P ys P asmas (2014)



No systematic error has been found that explains the
model-data discrepancies

Potential systematic errors  :
4 Evaluated with experiments and simulations Numerical evidence 

Sandia
National
Laboratories

• Plasma Te and ne errors  ► Suggested ne error did not explain the discrepancy
• Sample areal density errors
• Analysis errors
• Spatial non-uniformities 
• Temporal non-uniformities 
• Departures from LTE  

• Fe self emission
• Tamper self emission
• Extraneous background

• Sample contamination
• Tamper transmission difference

Nagayama et al, High Energ Dens Phys (2016)

Iglesias et al, High Energ Dens Phys (2016)

 ► Simulation found they were negligible

Nagayama et al, Phys Rev E 93, 023202 (2016)

Nagayama et al, Phys Rev E 95, 063206 (2017)



No systematic error has been found that explains the
model-data discrepancies

Potential systematic errors  :
4 Evaluated with experiments and simulations

• Plasma Te and ne errors
• Sample areal density errors
• Analysis errors 4 
• Spatial non-uniformities
• Temporal non-uniformities
• Departures from LTE

• Fe self emission
• Tamper self emission
• Extraneous background

• Sample contamination
• Tamper transmission difference

Rescrutinized recently
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Laboratories



Old analysis method revealed experiments are reproducible
within ±20%
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• Fundamental property of HED plasma measured within ±20% is decent
• But, is it possible that some of this variation is caused by insufficient analysis accuracy?

1

I [1] Supplement material of Bailey et al., Nature 517, 56 (2015) I



Refined analysis revealed actual experiment reproducibility is
much better than originally believed

2014 (old method)
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i
I1 til

2019 (new method)
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Focus of the talk:
i) Challenges associated with opacity data analysis
ii)How we analyze the data statistically



How does experiment work?



I Iron opacity at solar interior conditions is measured
using bright radiation generated by Z-pinch

4 cm

Prad r%j 220TW (±10%), Yrad ri 1.6 MJ (±7%)

I

Sanford, PoP (2002); Bailey et al., PoP (2006); Slutz et al., PoP (2006); Rochau et al., PPCF (2007)



Iron opacity at solar interior conditions is measured
using bright radiation generated by Z-pinch I
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Z experiment satisfies challenging requirements: 

• Uniform heating • Condition measurements

• Mitigating self emission • Checking reproducibility
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[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)



Iron opacity at solar interior conditions is measured
using bright radiation generated by Z-pinch
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• Uniform heating • Condition measurements

• Mitigating self emission • Checking reproducibility
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[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)



Iron opacity at solar interior conditions is measured
using bright radiation generated by Z-pinch
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Z experiment satisfies challenging requirements: 

• Uniform heating • Condition measurements

• Mitigating self emission • Checking reproducibility

[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)



Severe opacity model-data disagreement was found as
condition approaches solar interior conditions
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What are the main sources of measurement uncertainty?
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Iron opacity at solar interior conditions is measured
using bright radiation generated by Z-pinch
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Source of lcv uncertainty: 

• Transmission error, AT', (20%)

• Areal density error, ApL (4%)

• Background subtraction

error, AB, (3%)
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[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)
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Iron opacity at solar interior conditions is measured
using bright radiation generated by Z-pinch
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Why is transmission error so significant?

Is there a way to reduce transmission error?

How can we propagate different sources of
errors to opacity error?
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• Transmission error, AT', (20%)

• Areal density error, ApL (4%)
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[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)



Sample transmission is inferred by dividing sample-
attenuated radiation by unattenuated radiation
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But, interpretation of measured intensities are complicated
by spatial distribution and limited reproducibility

[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)



Observing finite-area backlighter through half-moon
sample at +9° produces complicated spatial shape
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Observing finite-area backlighter through half-moon
sample at ±9° produces complicated spatial shape
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Observing finite-area backlighter through half-moon
sample at ±9° produces complicated spatial shape
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Z opacity platform measures transmitted intensity as a
function of space and wavelength
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If backlighter is perfectly reproducible at two sides,
analysis is as simple as described earlier
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However, calibration shot shows backlight reproducibility
at two sides are limited to +/-20%
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However, calibration shot shows backlight reproducibility
at two sides are limited to +/-20%
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However, calibration shot shows backlight brightness
reproducibility at two sides are limited to +/-20%
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• Reproducibility at two sides Shot-to-shot reproducibility
• This error is not systematic and hard to correct
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• Hypothesis: Misalignment of aperture?

Brightness reproducibility only will not be sufficiently accurate



We should analyze spatial shape too! 

Half-moon spatial profile has both attenuated and unattenuated
intensities, enabling accurate analysis
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If the unattenuated shape is known, we can determine FeMg transmission accurately L1



We should analyze spatial shape too! 

Half-moon spatial profile has both attenuated and unattenuated
intensities, enabling accurate analysis
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We should analyze spatial shape too! 

Half-moon spatial profile has both attenuated and unattenuated
intensities, enabling accurate analysis
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If the unattenuated shape is known, we can determine FeMg transmission accurately



We should analyze spatial shape too! 

Half-moon spatial profile has both attenuated and unattenuated
intensities, enabling accurate analysis
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It is easy to account for
brightness variation

If the unattenuated shape is known, we can determine FeMg transmission accurately



Challenge comes from the fact that both shape and
brightness are known to limited accuracy

Reproducibility in unattenuated spatial shape and brightness
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Reproducibility in unattenuated
spatial shape and brightness
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Good news: We have accumulated large
volume of backlight radiation statistics

Challenge comes from the fact that both shape and
brightness are known to limited accuracy

48 spectral images from 12 calibration shots
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The analysis method can be improved by performing rigorous propagation of this statistics



New analysis propagate calibration-shot statistics and
propagate three sources of uncertainties properly

Step 1: Calibration-shot statistics Step 2: Statistics conversion 
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Step 3: Error propagation 

Transmission PDF*

Areal density PDF*

Background PDF*

1 Monte Carlo

Opacity PDF*

It reduces transmission error by combining multiple uncorrelated
statistics, and propagate all uncertainties to the opacity uncertainty
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1

I *PDF = Probability Distribution Function



ii) Calibration-shot statistics can be analytically converted
to transmission PDF ( Probability Distribution Function)

Example: Transmission at 8Å from brightness
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Key idea: If we know P(B), we can analytically derive P(T)
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Another example: transmission from boundary-slope
statistics
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Another example: transmission from boundary-slope
statistics

1

Unattenuat

statistics

a + Aa

Space

Y
T = 

2 

Yi + a(x2 — x1)

Slope PDF*

P (a)
a

a
Slope

da

4, P (T) = P (a) cW

Az
,uT =0.518
o-T =0.025

0 0.2 0.4 0.6 0.8 1.0
Transmission

I

1
1

l *PDF = Probabilit distribution function I



ii) Calibration-shot statistics can be analytically converted
to transmission PDF ( Probability Distribution Function)

Repeating this analysis at every wavelength gives you:

• We follow detailed
transmission PDF

• Multiple methods and data
are easily combined
through joint probability

Analysis-method accuracy is confirmed through synthetic-data analysis



iii) Transmission PDF is converted to opacity PDF using
Monte-Carlo technique, propagating various uncertainties

Transmission PDF, PAT)
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New analysis was applied to old data;
Experiment reproducibility is better than we believed
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Excellent reproducibility is confirmed from all three
elements, demonstrating experiment/analysis reliability
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Model-data discrepancy as a function of atomic number helped narrow down sources
of discrepancies [1]

[ 1] T. Nagayama et al, Phys. Rev. Lett. 122, 235001 (2019)



First systematic study of high-temperature L-shell opacities
were performed for Cr, Fe, and Ni at two conditions
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New analysis method confirmed experiment reproducibility and enabled
accurate systematic study of Cr, Fe, and Ni opacity

Is iron opacity inaccurate? 

• Fe opacity is measured at solar interior condition

• Severe disagreement with modeled opacity 4 Why?

Data analysis method is refined 

• Large volume of calibration-shot statistics
• Error propagation with Monte Carlo
• Method tested
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New analysis improved reproducibility, providing insight into the problem 

• Improved reproducibility: 10-20%
• First systematic study published by PRL

T. Nagayama et al, PRL 122, 235001 (2019)
Wavelength


