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New analysis method confirmed experiment reproducibility and |
enabled accurate systematic study of Cr, Fe, and Ni opacity |

Is iron opacity inaccurate?

* Fe opacity is measured at solar interior condition
* Severe disagreement with modeled opacity 2> Why?

Data analysis method is refined

- At solar interior Ty, 1,
F Data
- Model

e Large volume of calibration-shot statistics
* Error propagation with Monte Carlo
 Method tested

Fe o |,}-:

New analysis improved reproducibility, providing insight into the problem |
* Improved reproducibility: 10-20% > Cr
* First systematic study published by PRL EE
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T. Nagayama et al, PRL 122, 235001 (2019) ‘ .
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Is the decade-old solar problem caused by inaccuracy |
of opacity models? |
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* Solar physicists: solar models need 10-30% higher mean opacity at CZB [1] I
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 Hypothesis: Iron opacity calculated at CZB is underestimated

Let’s measure and check Fe opacity at CZB conditions ‘

[1]. Basu, S. & Antia, H. M. Physics Reports 457, 217-283 (2008).




Severe opacity model-data disagreement was found as |
condition approaches solar interior conditions |

Convection Zone Base: T,=185 eV, n, = 90e21 e/cc
o
Data at T,=156 eV, n_=7e21 e/cc
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What'’s causing the discrepancy? Theory? Experiment?

[1] Bailey et al., Nature 517, 56 (2015) * PrismSPECT: MacFarlane et al, JQSRT (2003)




There are long lists of hypotheses for the discrepancy ) =
both in opacity experiment and theory Labortories

Experiments: Theory:

* Plasma T, and n, errors Atomic data accuracy:

* Sample areal density errors * Cross-section

* Analysis errors e Oscillator strengths

e Spatial non-uniformities * Transition energy

 Temporal non-uniformities * Population

 Departures from LTE  Completeness in excited states
* Density effects

* Fe self emission
 Tamper self emission
e Extraneous background

e Spectral line shape
 Continuum lowering
Missing physics

e Sample contamination  Multi-photon processes
 Tamper transmission difference * Transient space localization




No systematic error has been found that explains the @m
model-data discrepancies abortones

Potential systematic errors :
— Evaluated with experiments and simulations Experimental evidence

* Plasma T, and n, errors > +49% and +25%, respectively [1]

 Sample areal density errors RBS measurements agree with Mg spectroscopy
* Analysis errors Transmission analysis on null shot shows +5%

e Spatial non-uniformities Al and Mg spectroscopy

 Temporal non-uniformities Backlight radiation lasts 3ns

 Departures from LTE

A 4

A 4

A 4

A 4

* Fe self emission » Measurement do not show Fe self-emission
 Tamper self emission
e Extraneous background

v

Quantified amount do not explain the discrepancy

A 4

e Sample contamination RBS measurements show no contamination

 Tamper transmission difference

Condition reproducibility: [1] Nagayama et al, Phys Plasmas (2014)



No systematic error has been found that explains the @m
model-data discrepancies abortones

Potential systematic errors :
— Evaluated with experiments and simulations Numerical evidence

* Plasma T, and n, errors » Suggested n, error did not explain the discrepancy

. Samplg areal density errors Nagayama et al, High Energ Dens Phys (2016)
* Analysis errors Iglesias et al, High Energ Dens Phys (2016)
e Spatial non-uniformities

 Temporal non-uniformities
 Departures from LTE

* Fe self emission » Simulation found they were negligible
 Tamper self emission
e Extraneous background

Nagayama et al, Phys Rev E 93, 023202 (2016)
Nagayama et al, Phys Rev E 95, 063206 (2017)

e Sample contamination

 Tamper transmission difference —
——




No systematic error has been found that explains the @m
model-data discrepancies abortones

Potential systematic errors :
— Evaluated with experiments and simulations

* Plasma T, and n, errors

 Sample areal density errors

* Analysis errors Rescrutinized recently
e Spatial non-uniformities

 Temporal non-uniformities

 Departures from LTE

* Fe self emission
 Tamper self emission
e Extraneous background

e Sample contamination

 Tamper transmission difference
——



Old analysis method revealed experiments are reproducible
within =20% I
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 Fundamental property of HED plasma measured within £20% is decent
* But, is it possible that some of this variation is caused by insufficient analysis accuracy?

[1] Supplement material of Bailey et al., Nature 517, 56 (2015)



Refined analysis revealed actual experiment reproducibility is
much better than originally believed
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Focus of the talk:

i) Challenges associated with opacity data analysis
ii)How we analyze the data statistically




How does experiment work? |




Iron opacity at solar interior conditions is measured |
using bright radiation generated by Z-pinch |
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P4~ 220TW (+10%), Y..,~ 1.6 MJ (+7%) I

Sanford, PoP (2002); Bailey et al., PoP (2006); Slutz et al., PoP (2006); Rochau et al., PPCF (2007) ”



Iron opacity at solar interior conditions is measured |

using bright radiation generated by Z-pinch |
KAP crystal Z—a>|<is =
X-ray film A g0 :+9o A L 150 ‘
l 1%
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Wavelength [A]

Half-moon ,-
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Z experiment satisfies challenging requirements:
* Uniform heating * Condition measurements I
Z-pinch L . : o
..  Mitigating self emission * Checking reproducibilit
radiation 5 & & rep y |
source

[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)




Iron opacity at solar interior conditions is measured |

using bright radiation generated by Z-pinch |
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Z experiment satisfies challenging requirements:
* Uniform heating * Condition measurements I
Z-pinch L . : o
radiation Mitigating self emission Checking reproducibility |
source

[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)




Iron opacity at solar interior conditions is measured |

using bright radiation generated by Z-pinch |
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Z experiment satisfies challenging requirements:
* Uniform heating * Condition measurements I
Z-pinch L . : o
..  Mitigating self emission * Checking reproducibilit
radiation 5 & & rep y |
source

[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)




Severe opacity model-data disagreement was found as |
condition approaches solar interior conditions |

Convection Zone Base: T,=185 eV, n, = 90e21 e/cc
o
Data at T,=156 eV, n_=7e21 e/cc

alculated opacity*
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[1] Bailey et al., Nature 517, 56 (2015) * PrismSPECT: MacFarlane et al, JQSRT (2003)




What are the main sources of measurement uncertainty? |




Iron opacity at solar interior conditions is measured |

using bright radiation generated by Z-pinch |
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[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)




Iron opacity at solar interior conditions is measured |

using bright radiation generated by Z-pinch |
T =] atten/[ unatt ‘
V A% A%
 Why is transmission error so significant? InT |
K,= - -
v (PL)ges

* Isthere a way to reduce transmission error?

* How can we propagate different sources of
errors to opacity error?

Source of K, uncertainty:

* Transmission error, AT',, (20%)
* Areal density error, ApL (4%)

 Background subtraction |
o error, AB, (3%) |

[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)




Sample transmission is inferred by dividing sample-

attenuated radiation by unattenuated radiation
KAP crystal Z-axis

X-ray film A 0 , o A
- +

slits WA 1

Intensity [J/str/A]

Aperture
8 9 10 11 12 13 14
Wavelength [A]

Half-moon ,-

sample N But, interpretation of measured intensities are complicated

by spatial distribution and limited reproducibility
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[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)




Observing finite-area backlighter through half-moon |

sample at +9° produces complicated spatial shape |
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Observing finite-area backlighter through half-moon
sample at +9° produces complicated spatial shape
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Observing finite-area backlighter through half-moon |

sample at +9° produces complicated spatial shape |
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/ opacity platform

measures transmitted intensity as a

function of space and wavelength )
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If backlighter is perfectly reproducible at two sides, |

analysis is as simple as described earlier |
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However, calibration shot shows backlight reproducibility

at two sides are limited to +/-20% |
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However, calibration shot shows backlight reproducibility
at two sides are limited to +/-20% |
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However, calibration shot shows backlight brightness |

reproducibility at two sides are limited to +/-20% |
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We should analyze spatial shape too! |

Half-moon spatial profile has both attenuated and unattenuated |
intensities, enabling accurate analysis
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‘ If the unattenuated shape is known, we can determine FeMg transmission accurately ‘l



We should analyze spatial shape too! |

Half-moon spatial profile has both attenuated and unattenuated |
intensities, enabling accurate analysis
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‘ If the unattenuated shape is known, we can determine FeMg transmission accurately ‘l




We should analyze spatial shape too!

Half-moon spatial profile has both attenuated and unattenuated
intensities, enabling accurate analysis
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‘ If the unattenuated shape is known, we can determine FeMg transmission accurately ‘




We should analyze spatial shape too! |

Half-moon spatial profile has both attenuated and unattenuated |
intensities, enabling accurate analysis
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‘ If the unattenuated shape is known, we can determine FeMg transmission accurately ‘l




Challenge comes from the fact that both shape and |
brightness are known to limited accuracy |
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Challenge comes from the fact that both shape and

brightness are known to limited accuracy |
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Challenge comes from the fact that both shape and
brightness are known to limited accuracy

Reproducibility in unattenuated
spatial shape and brightness
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Good news: We have accumulated large
volume of backlight radiation statistics

48 spectral images from 12 calibration shots
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Challenge comes from the fact that both shape and

brightness are known to limited accuracy |
48 spectral images from 12 calibration shots
Reproducibility in unattenuated collected over a decade

spatial shape and brightness

Intensity [J/str/A]

0
Dist from BL [um]

Good news: We have accumulated large
volume of backlight radiation statistics %

‘The analysis method can be improved by performing rigorous propagation of this statistics




New analysis propagate calibration-shot statistics and
propagate three sources of uncertainties properly |

Step 1: Calibration-shot statistics Step 2: Statistics conversion Step 3: Error propagation ‘

Transmission PDF*
Areal density PDF*
Background PDF*

Analytic
conversion l Monte Carlo

Transmission PDF* Opacity PDF*

Calibration shot
statistics

*PDF = Probability Distribution Function



ii) Calibration-shot statistics can be analytically converted

to transmission PDF (=Probability Distribution Function) '
Example: Transmission at 8A from brightness | ‘
T ISA We measure this l N | | | |
A BSA +«—— We know this value statistically,{uB and a; from ?5" .
m g 50 ’5
o g - - L - i
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| Key idea: If we know P(B), we can analytically derive P(T) | |
Fury ample
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dT&& 8 or =0.025 I
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Calibration shot gives statistics on absolute, spectra, and spatial shapes = Multiple ways to get PDF |




Another example: transmission from boundary-slope

statistics |
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Another example: transmission from boundary-slope

statistics |
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ii) Calibration-shot statistics can be analytically converted j

to transmission PDF (=Probability Distribution Function)
|

Repeating this analysis at every wavelength gives you:

 We follow detailed
transmission PDF

* Multiple methods and data
are easily combined
through joint probability

P(T,)

Analysis-method accuracy is confirmed through synthetic-data analysis




iii) Transmission PDF is converted to opacity PDF using
Monte-Carlo technique, propagating various uncertainties

Transmission PDF, P, (T)

Monte Carlo

P(xy)
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Wavelength (A)
Analysis returns asymmetric non-Gaussian opacity PDF as a function of wavelengths

*PDF = Probability distribution function




New analysis was applied to old data;
Experiment reproducibility is better than we believed
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Excellent reproducibility is confirmed from all three |

elements, demonstrating experiment/analysis reliability |
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Model-data discrepancy as a function of atomic number helped narrow down sources
of discrepancies [1]

[1] T. Nagayama et al, Phys. Rev. Lett. 122, 235001 (2019)



First systematic study of high-temperature L-shell opacities o

were performed for Cr, Fe, and Ni at two conditions

Anchorl: T, ~ 165 eV, n, ~ 7 x 10?1 cm™3

Anchor2: T, ~ 180 eV, n, ~ 30 x 10?* cm™3
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* Opacities are measured at T, > 150 eV
* T, and n, are diagnosed independently
* Reproducibility is confirmed

—Systematically performed for Cr, Fe, Ni at two conditions

MODELS: ATOMIC, NOMAD, OPAS, SCO-RCG, SCRAM, TOPAZ



New analysis method confirmed experiment reproducibility and enabled; I
accurate systematic study of Cr, Fe, and Ni opacity |

- At solar interior Ty, 1,
F Data
- Model

Is iron opacity inaccurate?

* Fe opacity is measured at solar interior condition
* Severe disagreement with modeled opacity 2> Why?

Data analysis method is refined

e Large volume of calibration-shot statistics
* Error propagation with Monte Carlo
* Method tested

* Improved reproducibility: 10-20%
* First systematic study published by PRL

T. Nagayama et al, PRL 122, 235001 (2019) ‘ Wavelength




