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Objective: Maintain all the desirable attributes
of conventional diesel combustion (CDC)...
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...with 10X 100X lower soot & nitrogen oxides (NOx) emissions

...while harnessing synergies with sustainable, home-grown fuels.



Ducted fuel injection (DFI) shows promise for achieving I°
large, simultaneous reductions in engine-out soot & NOx:
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• With dilution, DFI can break the long-standing diesel soot/NOx trade-off, even
with current diesel fuel.



Fig. 6.

What is DFI?

• A simple, mechanical approach to improve

diesel combustion
— Motivated by Bunsen burner concept

Bunsen and Roscoe,

Phil. Trans. Royal Soc.

London 147:355-380,

1857.



What is DFI?

• A simple, mechanical approach to improw
diesel combustion
— Motivated by Bunsen burner concept
— Modifies mixture, thermal, & velocity field!

— A refinement of CDC —> behaves similarly

Basic idea: inject the fuel spray
down a small tube aligned
with the spray axis

Fuel-injector tip

Duct

Liquid fuel
IL Vapor-fuel/charge-gas mixture

Autoignition zone
% / Products of rich combustion
— Diffusion flame

Thermal NO production zone

C.J. Mueller et al., doi:10.1016/j.apenergy.2017.07.001



What is DFI?

• A simple, mechanical approach to improve
diesel combustion
— Motivated by Bunsen burner concept
— Modifies mixture, thermal, & velocity fields

— A refinement of CDC —> behaves similarly

• Effective at curtailing/eliminating soot

CDC ' DFI
ii

Duct
Little to
no soot

Fuel-injector tip Piston bowl rim

S. Ashley, https://www.scientificamerican.com/
article/can-diesel-finally-come-clean/



What is DFI?

• A simple, mechanical approach to improve
diesel combustion
— Motivated by Bunsen burner concept
— Modifies mixture, thermal, & velocity fields

— A refinement of CDC —> behaves similarly

• Effective at curtailing/eliminating soot

• Tolerant to dilution for cost-effective
NOx control

Can renewable, oxygenated fuels
provide additional benefits?

RIP

S. Ashley, https://www.scientificamerican.com/
article/can-diesel-finally-come-clean/



Experimental setup: Two (2) duct assembly

• Key duct parameters D2L12G36
— Inner diameter (D [mm])  t-T-A—w--1 '‘Yj

— Length (L [mm]) 
— Standoff distance (G [mm]) 
— Inlet/outlet shape (Greek letter) 

D2L12G36

configuration

was used for

all exp'ts

reported

herein.

Duct/holder

fabricated

from 304 SS.

u



Experimental setup: Optical engine

Research engine Single-cylinder

Cycle 4-stroke CIDI

Valves per cylinder 4

Bore 125 mm

Stroke 140 mm

Displacement per cyl. 1.72 liters

Conn. rod length 225 mm

Conn. rod offset None

Piston bowl diameter 90 mm

Piston bowl depth 16.4 mm

Squish height 1.5 mm

Swirl ratio 0.59

Compression ratio 12.5:1

Simulated compr. ratio 16.0:1

ii

• Cylindrical piston bowl
with flat bottom

• Solenoid common-rail
fuel injector
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Experimental matrix

• Three (3) fuels:

— CFB = No. 2 S15 emissions certification diesel fuel

— MD25 = 25 vol% methyl decanoate (ester) in CFB

o
C11H2202

2n.c.-F-
2 

ny
 = 73.4OndviD25 = no

(see SAE 2005-01-3705 for details)

— T25 = 25 vol% tri-propilene glycol mono-methyl 

ether in CFB
c10H2204

,,o.s,s,,#L0,,,ry
OH

On,T25 = 36.3

• Two (2) dilution levels: 16 & 21 mol% 02

• Two (2) combustion strategies: DFI vs. CDC
16
mol%
02

T25

), 21
mol%
02

CDC



Operating conditions & diagnostics

Engine speed

Load (gross IMEP)

Injector tip

Injection pressure

Injected energy

Injection schedule, duration

Start of combustion timing

Intake manifold abs. press.

Intake manifold temperature

Coolant temperature

Fired cycles per run

Runs per condition

1200 rpm

—2.6 bar

2 x 0.108 mm x 140°

180 MPa

1.22 kJ

Single inj., 3.4-3.7 ms

TDC

2.00 bar c=.,' 1.3 bar ME

90 °C c=.,' 21 °C ME*

90 °C

180
> 3

*ME = corresponding intake conditions for a metal engine with a

16.0:1 compression ratio

ra

• Cylinder pressure

— Apparent heat-release rate,

temperature

• Engine-out emissions

— Smoke, NOx, HC, CO, 02, &

CO2

• Fuel injection

— Mass & rate

• Natural luminosity

— Spatially integrated natural

luminosity (SINL)
► A sensitive but qualitative

measure of hot in-cyl. soot
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Results



DFI with two ducts has been tested successfully in the
optical engine with diesel fuel & two oxygenates.

• DFI exhibits apparent hea
release rates (AHRRs) tha
are similar in shape &
features to CDC
— DFI has larger pre-

mixed burns & slightly
shorter combustion
durations than CDC -10

• AHRR is slightly longer foi
oxygenates due to their lower
energy densities & correpondingly longer injection durations
— T25 has approximately twice the oxygen content of MD25
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Both fuel oxygenation & DFI are effective at curtailing
incandescence from in-cylinder soot (no dilution).
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• Changing from CDC to DFI lowers SINL more than adding 25 vol% of either oxy.

• Fuel effect is larger for DFI than for CDC (on a percentage basis)
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Similar trends are observed under dilute conditions.
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• Changing from CDC to DFI lowers SINL more than adding 25 vol% of either oxy.

• Fuel effect is larger for DFI than for CDC (on a percentage basis)
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Fuel oxygenation & DFI together can curtail SINL by
"1100X on average, often preventing soot formation.

CFB CDC @ 16 mol% 02 MD25 DFI @ 16 mol% 02 T25 DFI @ 16 mol% 02

Status quo:

Significant engine-out soot

Transition:

ra

Leaner lifted-flame combust.

"Zero" engine-out soot (LLFC): "Zero" in-cyl. soot



Aside from much lower soot, DFI with oxygenated fuels
produces emissions levels similar to those for CDC.
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• Indicated specific (IS) soot emissions track with SINL trends from movies

• ISNOx typically .1. with fuel oxygenation

• ISHC is typically maintained or improved via oxygenation & DFI

• ISCO typically T with oxygenation & DFI; levels controllable with oxi-cat



Combustion & fuel-conversion efficiencies are similar
between DFI & CDC.
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• Combustion efficiencies (Tic) are typically 99%, may T or .1. with fuel & DFI

• Fuel-conversion efficiencies (rifig) typically .1. with oxygenation (< 1.0% abs.) &

with DFI (< 1.6% abs.)
— Likely due to T inj. duration & T heat transfer to piston bowl wall, respectively
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Conclusions

• DFI with only 25 vol% of an oxygenated fuel can:
— Attenuate soot incandescence by —100X
► -10X from DFI, —10X from fuel oxygenation
► Without large impacts on other emissions, efficiency, or controllability

— Facilitate operation at low-NOx  conditions (via dilution) that aren't otherwise
feasible due to excessive soot

— Thereby enable simultaneous reductions in MCCI engine-out soot & NOx

• Even with current diesel fuel, DFI can enable simultaneous, orders-of-
magnitude reductions in engine-out soot & NOx emissions
— Importance of fuel oxygenation is likely to increase with engine load

DFI with oxygenated, renewable fuels provides a promising potential path to
practical, clean, and sustainable transportation for the future.


