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Motivation: Surrogate Models

• Fast-Model, Reduced Fidelity?

• Future exascale machines More
physics and resolution. Not
necessarily faster

• Applications that suffer
• Many Query: UQ, Data

assimilation, Optimization
• Real time simulations: Trajectory

correction
• Coupled multi-physics: High

fidelity may not pay off

• Emerging Need for Climate models:
Ocean Spin-up, UQ

Figure: Temperature from E3SM simulation
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Surrogate Model Quick Course

• Data—driven, fast model with reduced fidelity

• Model order techniques:

Machine learning, Reduced order modeling
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Surrogate Model Quick Course

• Data—driven alone may not cut it

• Physics known & Low data: Physics or structure preserving surrogate models

• Leverage Physics to improve solution of surrogate model

Data Machine Learning Physics Constaints

PDE Galerkin Project to Data Space Modify ROM

• Reduced order Model (ROM) which preserves Hamiltonian Structure
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Previous Work

■ Kevin Carlberg, Ray Tuminaro, Paul Boggs, Preserving Lagrangian structure in
nonlinear model reduction with application to structural dynamics (2015)

■ Liqian Peng and Kamran Mohseni,Symplectic model reduction of Hamiltonian
systems (2016)

■ Yuezheng Gong, Qi Wang, Zhu Wang, Structure-Preserving Galerkin POD
Reduced-Order Modeling of Hamiltonian Systems (2016)

■ Babak Afkham, Jan Hesthaven Structure preserving model reduction of
parametric Hamiltonian systems (2017)

■ Kevin Carlberg, Youngsoo Choi, Syuzanna Sargsyan Conservative model reduction
for finite-volume models (2018)

■ Jan Hesthaven, Cecilia Pagliantini Structure-Preserving Reduced Basis Methods
for Hamiltonian Systems with a Nonlinear Poisson Structure (2018)

■ Bulent Karasozen, Suleyman Yildiz, Murat Uzunca Structure Preserving Model
Order Reduction of Shallow Water Equations (2019)
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Rotating Shallow Water Equations (RSWE)

Serves as proxy to ocean model (primitive equations)

Variables: fluid thickness h and velocity V. Domain 12 C S2
an = —V • (hV) in f2,at

=
at 

 —qh(1( x V) — gV(h b)— VK g[n, i n f 2 ,

V• n = 0 on af2 ,

• Kinetic energy: K[V] = 102/2

• Potential vorticity: q[h, = (k • V X 17+ f)/h

• Forcing: g[n, vJ - wind, drag, difFusion,...
• Gravitational acceleration g, coriolis force parameter f, bottom topography

b < 0, unit vector normal to sphere k

• Mimetic TRiSK scheme is used in space discretization
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Hamiltonian Framework

• Define monolithic variable u(t) = (h(t),v(t)), u E H =(I°",(•,•)H), u: H

= uTMu

• Energy conservation at abstract level: Two ingredients required

• Skew-adjoint operator J[u] and Hamiltonian (total energy)

J[u] = 
0 

H[u] = (hv, v)H g(h, h 2b)H
—V qkx)

• Gradient of Hamiltonian

(v2 
v 

g(h b)
VH[u] =

h )

• RSWE are non-canonical Hamiltonian system:

ut = J[u]VH[u]--G[u]

• G[u] is extraneous to the framework
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Sym metries

• J[u] is skew-adjoint in H

(y, J[u] = —(J[u] y, <=>. MJ = —JTM

• Hessian of Hamiltonian V2H[u] is self-adjoint in H

(y,V2H[u]z)H = (.72H[u] y, z)H .#> MV2H[u] = V2H[u]TM

■ lf the Hamiltonian is given by a quadratic form Hqdul, then

Hqf[u] = (u, V2Hqf

• Conservation of Energy

dH 

dt

[u]
  — (VH[u]. L)H = (VH[u], J[u]VH[u])H = 0



Hamiltonian Model in a Hilbert Space

• Consider weighted discrete L2 space X

(u, v)x = uT Xv = UMW ,

where M is mass matrix and Q is weighting.

• Ingredients: Vx and - I x

H' = (V H[u], z)14 = (V) ( H[u], z)H V x H[u] = Q-1VH[u]

du
= J[u]VH[u] = Jx[u]VxH[u] Jx[u] = J[u]S2

dt

• Weighting is trivial in full model but not in reduced model

• Alternative approach to weighting: Petrov—Galerkin
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Proper Orthogonal Decomposition (POD): Construct A Basis

• Consider set of snapshots (in time) in matrix Y.

Y = (Y1, yz, " • , Yin)

Typical: Y = u2, • • • , Um)

Mass—Free: Y = (ui — us, u2 — us, • • • , Um — u5)

• Basis (I) E R"r which solves minimization problem in weighted L2 space such as
X

m

min 
Rank(4))=r

Ellyi ("*Yill2X

subject to (1)*(1) = Ir

• Solve eigenvalue problem / SVD for most dominant r modes in X space

• Reduced space Xr = (Rr, (•, )x,), Euclidean inner product

(I) : Xr —> X

<V: X Xr
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Galerkin Projection: POD-ROM

• Consider Hamiltonian System

du

dt 
= Jx[u]V)(H[u]

• Test with Ow, w E Xr and project to Xr, r < n undetermined system

(ow, du =
(Ow, Jx[u]Vx H[up 

<=> 
x 

w 40, du

dt 

)) 

x dt

• Ansatz: u(t) =1.a(t) + us, a E Xr

( w da)
= (w, (1)*Jx[4:ia us]VxHP:Da uspxr

dt xr

• Strong Form

= (w, (1)* Jx [u]Vx HILIDxr

da 
= 0:1)

*
Jx1<l)a +usre H[ta + us]

dt

• 4)*J[cba + us] is not skew-symmetric in general.
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Structure-Preserving Reduced Order Model

• How to retain Hamiltonian structure?

• Following Gong, Wang, Wang 2016: Additional ansatz: 3 Jx, E R"'"

Jx,[a]0* = (1)*Jx[Pa + us] Jxr [a] = (1)*Jx[Pa us].12.

• insert into reduced model

da
= Jx [Oa + us] Vx H[Pa + us] Jxr[a]O*VxH[Pa + us]

dt

= Jx [cPa us].:1:4*Vx H[Pa + u5]

• Define Fl[a] = H[Pa + u5]

H[loa + us] = Vxr H[a]

• Hamiltonian reduced model: Conserves Energy

da

dt = [a]O*Vx' H[a]
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Error Estimate

• Assume continuity in time:

Theorem
Let u(t) be the solution of the time-continuous full model and let a(t) be the solution
of the time-continuous HSP-ROM, and with the initial condition a(0) = (Vu(0), then
the following error estimate is satisfied

fo r 111.1(t) (.1)a(t)+ us)1l2x dt < C(T) (LI - (1).**u(t)la dt

fi IIVXH[11(t)] — .14.*VxH[u(t)]Il cl.t) ,
)

where C(T) = max{1 + qoe(T)T , qa(T)T1 , and a(T) = 2 foT e(2c1(7--,))

• 1:4*V)(H[43.a] Enriched snapshot matrix

Y = (ui — us, u2 — us, , um — us, VxH[ui], Vx hi[u2], , OX H[um]) ,
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A Blessing and a Curse

• New snapshots give typically error estimate and convergence

fo 
T 

(0a(t) — us)112x dt < C(T) (f — 4)(1)*u( 01 dt

f
T  H[u(t)] — 4)4>*Vx H[u(tA113( dt) = C(T) ak •

0 k=r+1

where d is number of singular values in SVD.

• VH possess no mass conservation principle.

• Resulting reduced model does not conserve mass
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Mass Conservation

• Define space of mass free functions K.: u us , u E

• Mass Conservation:

(1,u),4 = (lx,u)x = us)x (lx x = >us));

du
ci) (1x, -lxVxH[u])x = 0 <=> lx E ker Jx

• Gradient in Xc, Vxc H E Xc

H = (Vxs H, IP)x = (Vx H,IP)x , VIP E Xc ,

(lx,Vxc H) = 0

• Satisfied by adding Lagrange multiplier

Vxc H[u] = Vx H[u] +

(Vx̀ H, = (Vx + A(lx, = (VxH, 'IP)x ,V1,1) E Xc.

• Second condition leads to

1/11/20
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Mass—Conserving HSP—ROM

• New snapshot matrix is mass—free: Leads to mass conserving model

Y = (ui, u2, • • • um, Vxc H[ud, Vxc H[u2], . . . , Vxc H[um])

• How full is model changed?

du
= Jx[u]VxcH[u] = Jx[u]VxH[u] A.1x1x = Jx[u]Vxf-i[u]dt

• Model not effected. What about the reduced model

da 
=4)

* 
Jx [4)a us]4)4)*Vxc H[4)a + us]

dt

=0*Jx[0a + us]OVV)(1-1[0a + u5] + AO*Jx[cPa + us]0(1)*lx

=1)*Jx[4)alOO*Vx H[(1)a]
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Quadratic Hamiltonians and Approximate Energy Space

• We have not specified weighting Q

• Claim: An optimal Q exists for Quadratic Hamiltonian systems

• Let 4= V2H, V2H is SPD, X is now "approximate energy inner product space"

• For Hq given by quadratic form

Hq[u] = LOX

Theorem
If the Hamiltonian H[u] is at most quadratic in u, and ueq is chosen to be the
equilibrium state, such that V H[u,q] = 0, and the snapshot matrix is given by

Y = (ui — usq, U2 — Ueq, • • • , Um —

which means that us = usq, then the projection of Vx H[:Pa ueq] in the space X,
(1:4.*VxH[ta ueq], is exact

H[ueq Oa] — 1:4*VxH[usq + Oa] = 0 .

1/11/20 17



Quadratic Hamiltonians and Approximate Energy Space

Theorem
If the Hamiltonian H[u] is at most quadratic in u, ueq is chosen to be the equilibrium
state, such that V H[ued, and the snapshot matrix is given by

Y = (u1 — us, U2 — Us, • • • — us)

= (U1 — Ueq — (Us — Ueq), U2 — Ueq (Us Ueq), • • • • Um Ueq (Us Ueq)) ,

where us is some appropriate shift. Furthermore, also let the basis 0, constructed
from Y, be enriched with the following basis function

—
11(l "*1-1)11x

to give the enriched basis 0 = [0, t/,], and 11= Us — ueq. Then the projection

$(1)*Vx H[us + Oa] is exact

H[us + Oa] = 00*Vx H[us + Oa] . (1)

(l — 00*fi)
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Equivalence of POD-ROM and HSP-ROM

1/11/20

Theorem
The HSP-ROM model in X for a Hamiltonian system with a quadratic Hamiltonian is
equivalent the POD-ROM derived in the space X. This means that

-I xr[a(t) + us]VxrH[a(t)] = 0*J[1>a(t)]7H[1>a(t) + u5] . (2)
dt

This means that the POD-ROM model in the space X also conserves energy for
systems with Quadratic Hamiltonians. Furthermore, in the more general case where
the system is shifted by u5, by using the enriched basis (1) , this result also holds true.

da(t) 

19



Error Esitmate Quadratic Hamiltonian

Theorem
Let u be the solution of the time-continuous full model and let a be the solution of
linear Casimir preserving, time-continuous HSP-ROM in X for a system with a
quadratic Hamiltonian using a basis 1) be constructed from the following snapshot
matrix

¥ = (iii,ii2,• • • Jim) ,
and enriched to become using $ for a shifted system. The error becomes

I'.
T T

11 11(t) — (Us + (Sa(t))113< dt = f Ilii(t)—(Sa(t)d dt

T

< ''-'(T) f Ilu(t) — iii*u(t)llx dt = C(T) E Ak ,
o k=r+1

where for a solution independent J we have, C(T)= 1+ -qT , and for a solution
dependent J we have where E(T)= 1+ ¿poi T , and 0(T) = 10T e(2el(T—r)) dr,
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What Does This Mean?

■ X space + enriched basis means POD conserves energy

■ POD also has vastly improved error estimate

■ In more general Hamiltonian system, quadratic and lower order contributions to
error benefit from this. If H.O.T are small, improved error is seen.
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Application to the RSWE

• RSWE has cubic Hamiltonian, 3rd order term is small in magnitude

• Energy conservation to time-truncation error

• ue, = uref = (b, 0) the resting state. Recall S2 = 72 H[Lired

• ROM can use larger time-steps than full model

• Proper treatment of dissipative terms

• Efficient treatment of nonlinearities: Lifting and tensorial POD
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Energy Conserving Test Case

• Demonstrate energy conservation to truncation error for HSP-ROM

• Ocean basis of 3000km wide , 16km resolution (P:30,000 cells)

• 10 day, geostrophic initial condition

• RK4 time integrator with 75% of CFL constrained time-step in full model
(approximately 80 seconds)

• Reproductive run
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Numerical Results

Method Space Errortfin.rx ErrorEn.rgy, rel

HSP-ROM X 2.45e-2 6.82e-7
HSP-ROM H 1.79 1.06e-6
POD-ROM X 2.54e-2 3.83e-4
POD-ROM H 1.06 5.34e-2

Table: 15 basis functions and 10 times full model's time step

Method Space Errortfin.rx ErrorEn.rgy, rel

HSP-ROM X 2.45e-2 1.04e-11
HSP-ROM H 1.79 1.79e-11
POD-ROM X 2.52e-2 3.72e-4
POD-ROM H 1.06 5.34e-2

Table: 15 basis functions and same as full model's time step
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Numerical Results: 25 Basis Function

4.5

Method Space Errortfinal,x ErrorEn.ngy,

HSP-ROM X 2.65e-2 1.47e-6
HSP-ROM H 1.58 2.59e-6
POD-ROM X 2.59e-2 7.65e-5
POD-ROM H — —

Table: 25 basis functions and 10 times full model's time step
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Figure: Energy of HSP-ROM and POD-ROM with a decoupled basis in H (left). Mass of
HSP-ROM method (right).
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Conclusions and Future Research

Conclusions
■ Method in Gong 2017 extended to weighted Hilbert space

■ Convergent method with mass conservation

■ Approximate energy space gives vast advantages

■ Poisson Bracket interpretation is natural

Future Research
■ Preserving more quantities (nonlinenar Casimirs)

■ Including hyper-reduction methods for nonlinear terms

■ Real applications
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Petrov-Galerkin Interpretation

• Using (I) as basis for u and VH seems odd

• We can reason from the directional derivative that VH are in a dual space

• Assume second basis W, a cobasis and projection x114)* such that (1)*Uf = I

• Petrov-Galerkin Projection

• New ansatz

• Reduced Model

(Ww'w—dt) = 
(Ww, [4:.a]Vx H[4:.a]

x 

Jx, = = IV% III

da
= krJxkl1).*Vx H[13a]

dt
1/11/20 27



Petrov-Galerkin Interpretation

• In some case Petrov-Galerkin and Galerkin are the same

Theorem
IfW ERN" and (I)*klf =11*(1) = /, then there exists an SPD operator T : X —> X
such that

11/ =

• If we choose X with trivial weighting and T = Q, we arrive at previous model.

• Thus for quadratic Hamiltonians, W= V2H(I) is optimal basis for VxH[u]

klf(I)*VxH[u] = H[u]
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The Poisson Bracket

• Time evolution of a functional of the solution u, F[u], F : H

• insert cl-Idt

dF[u] OF[u] du\

dt l au dt)H

dF[u] 
= (V F[u], J[u]VH[u])H

dt

• Skew-symmetric bilinear form Poisson bracket

J[u](F[u], H[u]) = (V F[u], J[u]V H[u]) H

• Invariant under of choice Hilbert space

dF[u]
  = {F[u], H[u]}[u]
dt

1/11/20 29



Weak Formulation of Hamiltonian Systems

• Weak formulation for Hamiltonian system

seek u E H , such that ,

(z, 

dt 

du) =
(z, J[u]VH[u])H ,

H
Vz EH.

• Time evolution of functional F z[u] = (z, u(t)) H

d F z [u]
= {F z [u] , H[u]}[u] ,

dt

specified in the space H

where VFz[u] = z

1/11/20

(z, ddut)H _
(z, ..I[u]VH[CH

30



Conserved Quantities and Casimirs

• Quantities conserved by symmetry: Energy, momentum, angular momentum, etc.

• Energy conservation:
dH[u] — 

H[u], H[u][u] = 0;
dt

• Casimirs: Conversed quantities for non-canonical systems (degenerate J[u],
ker(J[u]) is non trivial)

• Consider Casimir C[u], defined by

which implies

{C[u], F[u]}[u] = 0 .=> VC[u] E ker(MJ[u])

dC[u] 
{C[u], H[u]l[u] = 0;

dt

C[u(t)] = c , Vt

• Mass is Casimir and linear-invariant in RSWE

• Casimir is

1/11/20

(1, h)i = cmass

Cmass[u] = (2, L)H , 2 = (01) E H
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Mass-Free Model

• Add A times linear Casimir to Hamiltonian, define mass—free Vic

Vtic H[u] = VH[u] + AV C[u]

• Linear Casimirs make finding A easy

• insert into Poisson Bracket

dF[u]
={F[u],H[u]}[u] = (VHc F, JVH̀dt

=(V F, JV H)H

because VC E ker J.

1/11/20 32



HSP-ROM from the Poisson bracket

• Time evolution of functional Fz[u] = (z,u(t))11

d F z [u]
— F z [u] , V H [u]l[u] ,

dt

• Ansatz
u = <Da

VF = Uht*VF

• insert in Poisson Bracket, and let z = Ww

d F z [u]
= (111(1)*VFz[0a], J[1.a]kID*VH[(1)a]) = (Ww)*(011*J[0a]ID*VH[4.a] =

dt

where

= {VFz[u], VH[u]lr[a] ,

{-,.},[]=(v[]>(1v*-1[14W)q.1)H

• Thus we have a new Poisson bracket on reduced space
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Reduced Order Modeling (ROM)

• Physically constrained, data-driven method

• Ansatz: Solution lives on reduced manifold

• Build basis from data

• Galerkin Projection onto basis

1/11/20
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Novel Contributions
■ Hamiltonian-structure-preserving reduced order model for non-canonical

Hamiltonian system

■ Reduction through the Poisson Bracket

■ Use of novel inner product which improves accuracy

■ Mass conservation derived for model: Any linear invariant - Casimir can be
preserved
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Coupled and Decoupled Basis

• Consider systems of equations where y, = (x„ z,)T

• Monolithic SVD over Y. Basis:

• Does not preserve block structure of problem. One variable a

• SVD on each variable: Basis

(ox o
0 (13.z)

• Preserves block structure, variable number of basis functions. Two variables
a = (ax, az)
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Galerkin Projection: POD-ROM

• Consider Hamiltonian System

• Test with <l)w, w E Xr

du
= J[u]VH[u]

dt

(ow, ddut )x
(1)w,J[u]VH[u])x

• Project to Xr, r < n undetermined system

cv du )
= (w. (1)*J [u] V H [UN,dt xr

• Ansatz: u(t) = (I)a(t), a E Xr

(w 
da 

= (w, JVhar7H[4>a])x,
dt x„

• Strong Form

1/11/20

da 
= ch'

,
J[cl>a]VH[cl>a]

dt

RI
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SOMA Inspired Test Case

■ Wind forcing, bottom drag, bi-harmonic smoothing

■ Ten year spin-up initial condition

■ 1 year test case with model in X

■ Reproductive run

■ In this case statistics will be compared, the RMSSSHA (square root of the
variance in h)
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Coupled Versus Decoupled basis

• POD-ROM and HSP-ROM methods tested for 1 year with coupled and decoupled
basis in X
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Figure: The spin-up initial condition in the SOMA test case for h (left) and v (right).
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Coupled Versus Decoupled Basis (121

Method Basis Type r SYPD Errortfin.1 ErrorRMSSSHA,H,rel

Full — 2.09 —
HSP-ROM Decoupled 45 1157 1.03 3.3685
HSP-ROM Decoupled 125 105.7 3.82e-2 4.94e-2
HSP-ROM Coupled 45 1153 1.07 2.49e-1
HSP-ROM Coupled 125 104.1 1.38e-2 5.Ole-3
POD-ROM Decoupled 45 — 9.69e-1 3.63e-1
POD-ROM Decoupled 125 — 1.79e-2 1.16e-2
POD-ROM Coupled 45 — 9.65e-1 6.78e-2
POD-ROM Coupled 125 1.02e-2 2.50e-3

Table: Errors in final solution and RMSSSHA
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Coupled Versus Decoupled Basis: HSP-ROM
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Figure: The RMSSSHA for the coupled basis with 45 basis functions (top left), for the
decoupled basis with 45 basis functions(top right), for the coupled basis with 125 basis
functions (bottom left), and for the decoupled basis with 125 basis functions(bottom right)
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Coupled Versus Decoupled Basis: POD-ROM
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Figure: The RMSSSHA for the coupled basis with 45 basis functions (top left), for the
decoupled basis with 45 basis functions(top right), for the coupled basis with 125 basis
functions (bottom left), and for the decoupled basis with 125 basis functions(bottom right)
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Prediction and Validation

• 10 year reproductive test case to build basis, 2 year prediction

• Coupled basis in X, 125 basis functions

• RK4 for reduced model with 100 times full model's RK4 time-step

• Dynamics behavior makes only statistics reliable

Method Sim. SYPD ErrorRMSSSHA H rel

HSP-ROM 10 yr. Rep. 103.2 4.79e-2
HSP-ROM 2 yr. Pred. 103.4 6.81e-2
POD-ROM 10 yr. Rep 5.18e-2
POD-ROM 2 yr. Pred. 5.082-2

Table: The performance in SYPD and relative error of the RMSSSHA in the H norm,
compared to the full model, for both the ten year reproductive run (10 yr. Rep) and the two
year predictive run (2 yr. Pred).
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Prediction and Validation
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Figure: The RMSSSHA over ten years for the full model (left), for the HSP-ROM model
(center), and the POD-ROM model (right).
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Century Predictions

■ Prediction, no validation, over a century

■ Demonstrates stability

■ Previous 10 year basis is used
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Century Predictions
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Figure: The solution, h and v, at the end of the century time-horizon and the RMSSSHA over
the century time-horizon for the HSP-ROM method.
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Century Predictions: Mass and Energy
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Conclusions and Future Research

Conclusions
■ HSP-ROM method conserves energy and mass is conserved

■ Either model in derived in the space X has much better accuracy

■ Large speedups can be attained with the HSP-ROM method

■ Coupled basis is better than decoupled for small basis

■ Both methods are stable in the forced test-case over a century

Future Research
■ Primitive equations

■ Non-intrusive physics preserving method

■ Conserving more general Casimirs

■ Hyper-reduction techniques for nonlinearities.

■ Applications: uncertainty quantification, data assimilation, spin-up
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