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Motivation: Surrogate Models

m Fast-Model, Reduced Fidelity?

m Future exascale machines = More
physics and resolution. Not
necessarily faster

= Applications that suffer
= Many Query: UQ, Data Figure: Temperature from E3SM simulation

assimilation, Optimization
m Real time simulations: Trajectory
correction

m Coupled multi-physics: High 3
fidelity may not pay off E SM
Energy Exascale

Earth System Model

m Emerging Need for Climate models:
Ocean Spin-up, UQ

MPAS-O
Model for Prediction Across Scales

1/11/20 2




Surrogate Model Quick Course .

m Data—driven, fast model with reduced fidelity

Uncertainty
Quantification

m Model order techniques:

Machine learning, Reduced order modeling

High p

Fidelity Build Inexpensive
model Reduced Ensemble

/ Data Model Simulations

Acquisition

Data
Assimilation

Offline (Expensive) Spin-up

Online (Very Cheap)
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Surrogate Model Quick Course .

m Data—driven alone may not cut it
m Physics known & Low data: Physics or structure preserving surrogate models
m Leverage Physics to improve solution of surrogate model

Data = Machine Learning = Physics Constaints

PDE = Galerkin Project to Data Space = Modify ROM

m Reduced order Model (ROM) which preserves Hamiltonian Structure

1/11/20 4
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Previous Work (="

m Kevin Carlberg, Ray Tuminaro, Paul Boggs, Preserving Lagrangian structure in
nonlinear model reduction with application to structural dynamics (2015)

m Ligian Peng and Kamran Mohseni,Symplectic model reduction of Hamiltonian
systems (2016)

m Yuezheng Gong, Qi Wang, Zhu Wang, Structure-Preserving Galerkin POD
Reduced-Order Modeling of Hamiltonian Systems (2016)

m Babak Afkham, Jan Hesthaven Structure preserving model reduction of
parametric Hamiltonian systems (2017)

m Kevin Carlberg, Youngsoo Choi, Syuzanna Sargsyan Conservative model reduction
for finite-volume models (2018)

m Jan Hesthaven, Cecilia Pagliantini Structure-Preserving Reduced Basis Methods
for Hamiltonian Systems with a Nonlinear Poisson Structure (2018)

m Bulent Karasozen, Suleyman Yildiz, Murat Uzunca Structure Preserving Model
Order Reduction of Shallow Water Equations (2019)
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Rotating Shallow Water Equations (RSWE) .

Serves as proxy to ocean model (primitive equations)

Variables: fluid thickness h and velocity V. Domain Q C S2

% = V. (h?7) in Q
97 = —qh(k x V)~ gV (h+b) ~ VK +Gln, 7] in 9,

V-n=0 on 002,

m Kinetic energy: K[V] = |V]?/2
m Potential vorticity: q[h, V] = (k- V X T+ f)/h
m Forcing: G[h, V] - wind, drag, diffusion,...

m Gravitational acceleration g, coriolis force parameter f, bottom topography
b < 0, unit vector normal to sphere k

m Mimetic TRiSK scheme is used in space discretization

1/11/20 6
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Sandia
Hamiltonian Framework (],

m Define monolithic variable u(t) = (h(t),v(t)), ue H=(R",(-,-)n), u: R —- H
(u,u)y =u' Mu
m Energy conservation at abstract level: Two ingredients required

m Skew-adjoint operator J[u] and Hamiltonian (total energy)

0 -V
J[l']:(_e q;;), H[u] = (hv,v)y + g(h,h + 2b)},

m Gradient of Hamiltonian

VH[u] = (v2 + gh(vh + b))

m RSWE are non-canonical Hamiltonian system:
u; = J[u]VH[u]+G[u]

m Gu] is extraneous to the framework

1/11/20 7




Symmetries (D=

= J[u] is skew-adjoint in H

(v, U] 2)y = —(u]y,2)y & MI=—JTM

m Hessian of Hamiltonian V2H[u] is self-adjoint in H

(y, V2H[ul2)y = (V?H[uly, 2)y < MV2H[u] = VZH[u] "M

m If the Hamiltonian is given by a quadratic form Hg¢[u], then

Hg¢[u] = (u, Vquf u)y

m Conservation of Energy

dHJu]
dt

= (VHI[u],u)y = (VH[u],J[ulVH[u])y =0

1/11/20 8
—



Hamiltonian Model in a Hilbert Space .

m Consider weighted discrete L2 space X
(u,v)x =u' Xv=u' QMv,

where M is mass matrix and Q2 is weighting.

m Ingredients: VX and Jx
H' = (VH[u],2)y = (VXH]u],2)y = VXH[u] = Q7 1VH]u]

% = J[u]VH[u] = Ix[u] VX H[u] = Jx[u] = J[u]®

m Weighting is trivial in full model but not in reduced model

m Alternative approach to weighting: Petrov—Galerkin

1/11/20 °
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Proper Orthogonal Decomposition (POD): Construct A Basis B

m Consider set of snapshots (in time) in matrix Y.

Y =(y1,y2,  * »¥m)

Typical: Y = (ug,u2, -+ ,um)
Mass—Free: Y = (u; — us,uz —us,--- ,um — us)

m Basis ® € R"*" which solves minimization problem in weighted L2 space such as
X

i ¢¢*i2
Ratin_, ZW yillk

subJect to d*P =1,
m Solve eigenvalue problem / SVD for most dominant r modes in X space
m Reduced space X, = (R, (+,-)x, ), Euclidean inner product

X o X
% X = X,

1/11/20 10
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Galerkin Projection: POD-ROM (L=

m Consider Hamiltonian System

% = Jx[u]VX H][u]

m Test with ®w, w € X, and project to X, r < n undetermined system

(d)w, %;)X = (ow, Jx[u] VX H[u])x < (w, w%)x, = (w, ®*Jx[u] VX H[u])x,

m Ansatz: u(t) = da(t) + us, a € X,

<w, %) = (w, " Jx[®a + us] VX H[®a + us])x,
Xr
m Strong Form

d
d—: = &* Jx[®a + us] VX H[da + ug]

m ®*J[Pa + ug] is not skew-symmetric in general.

1/11/20 11
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Structure-Preserving Reduced Order Model B

= How to retain Hamiltonian structure?
m Following Gong, Wang, Wang 2016: Additional ansatz: 3 Jx, € R™*"
Jx [a]®" = d*Ix[Pa + us] = Jx [a] = P*Ix[Pa + us]P

m Insert into reduced model

d
d—j = &* Jx[®a + us] VX H[®a + us] ~ Jx, [a]®* VX H[da + us]

= O* Jx[Pa + us]dd* VX H[da + us]
u Define H[a] = H[®a + us]
&* VX H[®a + us] = VX HI[a]
m Hamiltonian reduced model: Conserves Energy

% = Jx, [a]®* V> HI[a]

1/11/20 12



Error Estimate .

® Assume continuity in time:

Theorem

Let u(t) be the solution of the time-continuous full model and let a(t) be the solution
of the time-continuous HSP-ROM, and with the initial condition a(0) = ®*u(0), then
the following error estimate is satisfied

T i
[ hute) = (@a(e) + wi ae < () ([ ) - 0% u(e)  a
0 0
i
+ [V Hlu(] - 00" VX Hu(o)  at )

where C(T) = max{l+ C2a(T)T , C2a(T)T}, and o(T) = 2f0T eG(T=7)) dr,
s ®d*VXH[®a] — Enriched snapshot matrix

Y = (u1 —us,u2 —us,...,un — Us, VXH[ul], VXH[uz], R VXH[u,,,]) ,

1/11/20 13



A Blessing and a Curse

= New snapshots give typically error estimate and convergence

T 2 T 2

/0 [[u(t) — (Pa(t) — us)|lx dt < C(T) (/o [lu(t) — @ u(t)|[x dt
T d
+ [ I ] - 00 X Hol g ar) = C(T) 3 o
0 k=r+1
where d is number of singular values in SVD.

m VH possess no mass conservation principle.

m Resulting reduced model does not conserve mass

1/11/20 14
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Sandia
Mass Conservation .

m Define space of mass free functions Xc.: u=u+us, u € X

m Mass Conservation:
(L,u)y = (1x,u)x = (Ix,us)x + (1x,u)x = (1x,us)x

d
(1X, d—‘:) (1x,IxVXH[u])x = 0 < 1x € ker Jx

m Gradient in Xo, VX H € X,
H' = (V*H,9)x = (V¥H,$)x V¥ € Xc
(1x,V*H) =0
m Satisfied by adding Lagrange multiplier
VX< H[u] = VXH[u] 4+ A\1x
(VH,9)x = (VH, $)x + M1x, ¥) = (VH, $)x , Vo € Xe
m Second condition leads to
_ (1x, VX H[u])x
(Ix,1x)x

1/11/20 15
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Mass—Conserving HSP-ROM ®E=

m New snapshot matrix is mass—free: Leads to mass conserving model

Y = (ug,uz,...,um VHui], VXH[uz], ..., V**H[um]) ,

m How full is model changed?

du

= Ix[u]VXH[u] = Jx[u]VXH[u] + Mx1x = Jx[u]lVX H[u]

m Model not effected. What about the reduced model

% =d* Ix[Pa + us]dD* Ve H[da + us]

=d*Jx[Pa + us]Pd* VX H[da + us] + Ad* Jx[da + us]dd* 1
=d* Jx[Pa]dd* VX H[da]

1/11/20




Quadratic Hamiltonians and Approximate Energy Space B

We have not specified weighting
Claim: An optimal Q exists for Quadratic Hamiltonian systems

Let Q = V2H, V2H is SPD, X is now "approximate energy inner product space"

For Hq given by quadratic form

Hglu] = (u, u)x

Theorem

If the Hamiltonian Hlu] is at most quadratic in u, and ueq is chosen to be the
equilibrium state, such that V H[ueq] = 0, and the snapshot matrix is given by

Y:(Ul—Ueq;UZ—ueqw-wum_ueq)7

which means that us = ueq, then the projection of VXH[¢a + ueq] in the space X,
od* VX H[Pa 4 ueg], is exact

VX H[ueq + Pa] — d0* VX Hlueg + ®a] =0 .

1/11/20



Quadratic Hamiltonians and Approximate Energy Space B

Theorem

If the Hamiltonian Hlu] is at most quadratic in u, ueq is chosen to be the equilibrium
state, such that VH[ueq], and the snapshot matrix is given by

Y = (u1 —us,uz —Us,...,up — Us)

= (U1 — Ueg — (Us — Ueg), U2 — Ueg — (Us — Ueg), - -, Um — Ueg — (Us — Ueq))

where us is some appropriate shift. Furthermore, also let the basis ®, constructed
from Y, be enriched with the following basis function

(I — dd* i)

Y= 0= eea)x

to give the enriched basis & = [®, 4], and G = us — ueq. Then the projection
$d*VX H[us + da) is exact

VX Hlus + ®a] = $&* VX H[u; + ®a] . (1)

1/11/20 18




Equivalence of POD-ROM and HSP-ROM .

Theorem
The HSP-ROM model in X for a Hamiltonian system with a quadratic Hamiltonian is
equivalent the POD-ROM derived in the space X. This means that

da(t)
dt

= Jx [a(t) + us] V¥ H[a(t)] = &* J[®a(t)]VH[®a(t) + us] . )

This means that the POD-ROM model in the space X also conserves energy for
systems with Quadratic Hamiltonians. Furthermore, in tfie more general case where
the system is shifted by us, by using the enriched basis ® , this result also holds true.

1/11/20 19



Error Esitmate Quadratic Hamiltonian B

Theorem

Let u be the solution of the time-continuous full model and let a be the solution of
linear Casimir preserving, time-continuous HSP-ROM in X for a system with a
quadratic Hamiltonian using a basis ® be constructed from the following snapshot
matrix

Y= (617627"'7Em) ’

and enriched to become using & for a shifted system. The error becomes
7 & 2 T e & 2
/0 [[u(t) — (us + ®a(t))[[x dt = /0 [[u(t) — ®a(z)|lx dt

. T R A s d
< C(T)/o lu(t) — & u(t)|lx dt = E(T) 3= A,

k=r+1

where for a solution independent J we have, E( T)=1+ 622 T , and for a solution
dependent J we have where E( T)=1+ 6225( T)T , and B(T) = fOT e(G(T-7)) gr,

1/11/20 20




What Does This Mean? (="

m X space + enriched basis means POD conserves energy
m POD also has vastly improved error estimate

= In more general Hamiltonian system, quadratic and lower order contributions to
error benefit from this. If H.O.T are small, improved error is seen.

1/11/20 21
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Application to the RSWE e

m RSWE has cubic Hamiltonian, 3rd order term is small in magnitude
m Energy conservation to time-truncation error

B Ueg = Upes = (b, 0) the resting state. Recall Q = V2H|[u,]

m ROM can use larger time-steps than full model

m Proper treatment of dissipative terms

m Efficient treatment of nonlinearities: Lifting and tensorial POD

1/11/20 22
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Energy Conserving Test Case .
m Demonstrate energy conservation to truncation error for HSP-ROM
m Ocean basis of 3000km wide , 16km resolution (=30,000 cells)
m 10 day, geostrophic initial condition

m RK4 time integrator with 75% of CFL constrained time-step in full model
(approximately 80 seconds)

m Reproductive run

Lon Lon

1/11/20 Figure: The geostrophic initial condition for h (left) and v (right). 23
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Numerical Results

Method Space ETVO"tﬁ"al,x Errorgnergy, rel
HSP-ROM X 2.45e-2 6.82e-7
HSP-ROM H 1.79 1.06e-6
POD-ROM X 2.54e-2 3.83e-4
POD-ROM H 1.06 5.34e-2

Table: 15 basis functions and 10 times full

model's time step

Method Space  Errory, . x  Errorgnegy rel
HSP-ROM X 2.45e-2 1.04e-11
HSP-ROM H 1.79 1.79e-11
POD-ROM X 2.52e-2 3.72e-4
POD-ROM H 1.06 5.34e-2

Table: 15 basis functions and same as full model’s time step

1/11/20




Numerical Results: 25 Basis Function B

Method Space Errortﬁnalyx Errorgnergy, rel
HSP-ROM X 2.65e-2 1.47e-6
HSP-ROM H 1.58 2.59e-6
POD-ROM X 2.59e-2 7.65e-5
POD-ROM  H —_ —

Table: 25 basis functions and 10 times full model’s time step

. 19
5210 <10
— HSP-ROM

| —POD-ROM 1.27272650909

1.27272650908995

1.2727265090899

8 4
§35 4 —
& = 1.27272650008985
3
1.2727265090898
25 1.27272650908975
2 1
o 1 2 3 4 5 0 4 6 8 10
Time (Days) Time (Days)

Figure: Energy of HSP-ROM and POD-ROM with a decoupled basis in H (left). Mass of
HSP-ROM method (right).
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Sandia
Conclusions and Future Research B

Conclusions
m Method in Gong 2017 extended to weighted Hilbert space

m Convergent method with mass conservation

m Approximate energy space gives vast advantages

m Poisson Bracket interpretation is natural
Future Research

m Preserving more quantities (nonlinenar Casimirs)

m Including hyper-reduction methods for nonlinear terms

m Real applications

1/11/20 26
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Petrov-Galerkin Interpretation B

m Using @ as basis for u and VH seems odd

= We can reason from the directional derivative that VH are in a dual space

Assume second basis W, a cobasis and projection W®* such that &*W¥ =/
m Petrov-Galerkin Projection

d
(\UW, ¢—a) = (Ww, Jx[®a] VX H[®a]
ar )

m New ansatz
Ix, @ =V lx = Jx, = V' IxV

m Reduced Model i
S _ yr Jwor VX Hidal
dt
1/11/20 27
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Petrov-Galerkin Interpretation B

m In some case Petrov-Galerkin and Galerkin are the same

Theorem
If W € RNXr apd &*W = W*®d = |, then there exists an SPD operator T : X — X
such that

Vv=T¢

m If we choose X with trivial weighting and T = 2, we arrive at previous model.

m Thus for quadratic Hamiltonians, W = V2H® is optimal basis for VX H[u]

Vo VX Hlu] = VXHJ[u]

1/11/20 28




The Poisson Bracket (="

m Time evolution of a functional of the solution u, Flu], F: H - R

dF[u] _ (aF[u] d_u)
H

dt du ’ dt

d
m Insert g7
dFJu]

o = (VFIulJ[uVHu)x

m Skew-symmetric bilinear form — Poisson bracket

Ju](Flu], H[u]) = (VF[u], Ju]VH[u])4

m Invariant under of choice Hilbert space

dF[u] _
dt

{Flu], H[u]}[u]

1/11/20 20




Weak Formulation of Hamiltonian Systems .

m Weak formulation for Hamiltonian system

seek u € H, such that,

z, du = (z,J[ulVH[u])y, VzeH.
( dt)H

m Time evolution of functional F,[u] = (z,u(t))y

dF;[u] _
dt

{Fz[u], H[u]}[u] ,

specified in the space H

z, du = (z,J[u]VH[u])y
( dt)H

where VF;[u] = z

1/11/20 30
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National

Conserved Quantities and Casimirs B

m Quantities conserved by symmetry: Energy, momentum, angular momentum, etc.

m Energy conservation:

—gp = Hiul, Bu][e] = 0;

m Casimirs: Conversed quantities for non-canonical systems (degenerate J[u],
ker(J[u]) is non trivial)

m Consider Casimir C[u], defined by

dHJu]
t

{CJu], F[u]}u] = 0 < VC[u] € ker(MJ[u])

which implies
dClu]

~ 2 = (Clul, Hul}u] =0

Clu(t)] =c, Vvt
m Mass is Casimir and linear-invariant in RSWE
(1,h); = Cmass
m Casimir is
Comasslt] = (L, )y, £ = ((IJ) €H
1/11/20



Mass-Free Model .

m Add ) times linear Casimir to Hamiltonian, define mass—free V'«
VHe H[u] = VH[u] + AVCJu]
m Linear Casimirs make finding \ easy

m Insert into Poisson Bracket

dg[t"] —{Fu], Hlul}[u] = (V" F, JV"e H),

=(VF,JVH)y

because VC € ker J.

1/11/20 32




HSP-ROM from the Poisson bracket B

= Time evolution of functional F;[u] = (z,u(t))y

P ), VM
m Ansatz
u=— da
VF = Vo*VF

m Insert in Poisson Bracket, and let z = Yw

d’;zt[u] = (VO*VF,[da],J[Pa]Vd*VH[Pa]) = (Vw) dW*J[Pa]V*VH[dba] =
= {VF:[u], VH[u]} [a] ,
where

{53l = (VL] (@[ We") V[ ])n
m Thus we have a new Poisson bracket on reduced space

1/11/20 33
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Reduced Order Modeling (ROM) .
m Physically constrained, data-driven method
m Ansatz: Solution lives on reduced manifold
m Build basis from data

m Galerkin Projection onto basis

High

Fideli )

nl'medI(:Iy BasF;sO(?on- Galerkin Inexpensive

/ Data struction iaiestion Model
Acquisition

it
Offline (Expensive) Online (Very Cheap)
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Novel Contributions

= Hamiltonian-structure-preserving reduced order model for non-canonical
Hamiltonian system

m Reduction through the Poisson Bracket
m Use of novel inner product which improves accuracy

m Mass conservation derived for model: Any linear invariant - Casimir can be
preserved

1/11/20 35
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Coupled and Decoupled Basis B

m Consider systems of equations where y; = (x,-,zi)T
m Monolithic SVD over Y. Basis:
o= (iﬁ) .
m Does not preserve block structure of problem. One variable a

m SVD on each variable: Basis
_(®x O
e ( 0 ¢Z) ,

m Preserves block structure, variable number of basis functions. Two variables
a = (ax,az)

1/11/20 36
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Galerkin Projection: POD-ROM B

m Consider Hamiltonian System

du

— =J[ulVH

o = IV Hu]
m Test with dw, w € X,

(3w.57), = (Gt o M

Project to X, r < n undetermined system

(W’“’*%)x, = (w, O* Il V H[ul)x,

Ansatz: u(t) = da(t), a € X

(w, %)x, = (w, ®"J[®a] V H[da])x,

m Strong Form
d
d—‘: = &* J[ba] V H[da]
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SOMA Inspired Test Case .

m Wind forcing, bottom drag, bi-harmonic smoothing
m Ten year spin-up initial condition

m 1 year test case with model in X

m Reproductive run

m In this case statistics will be compared, the RMSSSHA (square root of the
variance in h)

1/11/20 38



Coupled Versus Decoupled basis .

m POD-ROM and HSP-ROM methods tested for 1 year with coupled and decoupled
basis in X

Lon Lon

Figure: The spin-up initial condition in the SOMA test case for h (left) and v (right).
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Coupled Versus Decoupled Basis

Method Basis Type r SYPD  Errory, | Errorgmsssua, H rel
Full —_ 2.09 —_ —

HSP-ROM Decoupled 45 1157 1.03 3.3685

HSP-ROM Decoupled 125  105.7 3.82e-2 4.94e-2

HSP-ROM Coupled 45 1153 1.07 2.49e-1

HSP-ROM Coupled 125  104.1 1.38e-2 5.01e-3
POD-ROM Decoupled 45 — 9.69e-1 3.63e-1
POD-ROM Decoupled 125 — 1.79e-2 1.16e-2
POD-ROM  Coupled 45 — 9.65e-1 6.78e-2
POD-ROM  Coupled 125 — 1.02e-2 2.50e-3

1/11/20

Table: Errors in final solution and RMSSSHA
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Coupled Versus Decoupled Basis: HSP-ROM B

Lon Lon

Figure: The RMSSSHA for the coupled basis with 45 basis functions (top left), for the

decoupled basis with 45 basis functions(top right), for the coupled basis with 125 basis

functions (bottom left), and for the decoupled basis with 125 basis functions(bottom right)
1

/11/20 using the HSP-ROM method 4t




Coupled Versus Decoupled Basis: POD-ROM B

15 0 5 0 5 10 15 E
Lon Lon

Figure: The RMSSSHA for the coupled basis with 45 basis functions (top left), for the
decoupled basis with 45 basis functions(top right), for the coupled basis with 125 basis
functions (bottom left), and for the decoupled basis with 125 basis functions(bottom right)
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Prediction and Validation ()}

m 10 year reproductive test case to build basis, 2 year prediction
m Coupled basis in X, 125 basis functions
m RK4 for reduced model with 100 times full model's RK4 time-step

m Dynamics behavior makes only statistics reliable

Method Sim. SYPD ErrorRMSSSHA,H’rd

HSP-ROM 10 yr. Rep. 103.2  4.79e-2
HSP-ROM 2 yr. Pred. 103.4 6.81e-2
POD-ROM 10 yr. Rep — 5.18e-2
POD-ROM 2 yr. Pred. — 5.082-2

Table: The performance in SYPD and relative error of the RMSSSHA in the H norm,
compared to the full model, for both the ten year reproductive run (10 yr. Rep) and the two
year predictive run (2 yr. Pred).

1/11/20 a3
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Prediction and Validation ()}
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15 10 5 0 5 10 15
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Figure: The RMSSSHA over ten years for the full model (left), for the HSP-ROM model
3 a0 s 0 s 10 15

(center), and the POD-ROM model (right).
P
©
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0
2
ton - A

Figure: The RMSSSHA over the additional two years for full model (left), for the HSP-ROM
model prediction (center), and the POD-ROM model prediction (right).
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Century Predictions e

m Prediction, no validation, over a century
m Demonstrates stability

m Previous 10 year basis is used

1/11/20 45
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Century Predictions

s ] < An 12
o
oo
0o
oos
o
15 -10 -5 o 5 10 15 15 10 5 o 5 10 15

2 Z E )
Figure: The solution, h and v, at the end of the century time-horizon and the RMSSSHA over
the century time-horizon for the HSP-ROM method.

a5 10 5 0 5 10 15 a5 10 5 0 5 10 15 a5 10 5 0 5 10 15

Lon Lon Lon

Figure: The solution, h and v, at the end of the century time-horizon and the RMSSSHA over
1/11/20 the century time-horizon for the HSP-ROM method.
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Century Predictions: Mass and Energy
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Figure: The energy (top-left) and mass (bottom-left) for the HSP-ROM method, and the
1/11/20 energy (top-right) and mass (bottom-right) for the POD-ROM method over the century a7
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Sandia
Conclusions and Future Research B

Conclusions

m HSP-ROM method conserves energy and mass is conserved

m Either model in derived in the space X has much better accuracy

m Large speedups can be attained with the HSP-ROM method

m Coupled basis is better than decoupled for small basis

m Both methods are stable in the forced test-case over a century
Future Research

m Primitive equations

m Non-intrusive physics preserving method

m Conserving more general Casimirs

m Hyper-reduction techniques for nonlinearities.

m Applications: uncertainty quantification, data assimilation, spin-up
1/11/20 a8
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