

LA-UR-20-24387 (Accepted Manuscript)

A Short-lived Three-Belt Structure for sub-MeV Electrons in the Van Allen Belts: Time Scale and Energy Dependence

Hao, Y. X.; Zong, Qiugang; Zhou, X. Z.; Zou, H.; Rankin, R.; Sun, Y. X.; Chen, X. R.; Liu, Y.; Fu, S. Y.; Baker, D. N.; Spence, H. E.; Blake, J. B.; Reeves, Geoffrey D.; Claudepierre, S. G.

Provided by the author(s) and the Los Alamos National Laboratory (2021-01-12).

To be published in: Journal of Geophysical Research: Space Physics

DOI to publisher's version: 10.1029/2020JA028031

Permalink to record: <http://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-20-24387>

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

A Short-lived Three-Belt Structure for Sub-MeV Electrons in the Van Allen Belts: Time Scale and Energy Dependence

Y. X. Hao¹, Q. -G. Zong¹, X. -Z. Zhou¹, H. Zou¹, R. Rankin², Y. X. Sun¹, X. R. Chen¹, Y. Liu¹, S. Y. Fu¹, D. N. Baker³, H. E. Spence⁴, J. B. Blake⁵, G. D. Reeves⁶ and S. G. Claudepierre^{5,7}

Q.-G. Zong, Institute of Space Physics and Applied Technology, Peking University.(qgzong@pku.edu.cn)

¹Institute of Space Physics and Applied Technology, Peking University, Beijing, China.

²Department of Physics, University of Alberta, Edmonton, Alberta, Canada.

³Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, USA.

⁴Department of Physics Institute for Earth, Oceans and Space, University of New Hampshire, Durham, New Hampshire, USA.

Abstract.

In this study we focus on the radiation belt dynamics driven by the geomagnetic storms during September 2017. Besides the long lasting three-belt structures of ultra-relativistic electrons (>2 MeV, existing for tens of days), which has been studied intensively during the Van Allen Probe era, it is found that magnetospheric electrons of hundreds of keVs can also have three-belt structures at similar L extent during storm time. Measurements of 500 keV \sim 800 keV electrons from MagEIS instrument onboard Van Allen Probes show double-peaked ($L = 3.5$ and 4.5 respectively) flux-versus-L-shell profile in the outer belt, which lasted for 2-3 days. During the time interval of such transient three-belt structure, the energy-versus-L spectrogram show novel distributions differing from both “S-shaped” and “V-shaped” spectrograms

⁵Space Science Applications Laboratory,
The Aerospace Corporation, El Segundo,
California, USA

⁶Los Alamos National Laboratory, Los
Alamos NM USA and The New Mexico
Consortium, Los Alamos NM, USA.

⁷Department of Atmospheric and Oceanic
Sciences, University of California, Los
Angeles, CA, USA.

reported previously. Such peculiar distribution also illustrates the energy dependent occurrence of the three-belt profile. The gradual formation of “reversed energy spectrum” at $L \sim 3.5$ also indicates that hiss scattering inside the plasmapause contributed to the fast decay of sub-MeV remnant belt.

1. Introduction

1 Since their discovery in late 1950s [*Van Allen et al.*, 1958; *Van Allen*
2 and *Frank*, 1959], the morphology and evolution of the radiation belts surrounding Earth
3 have been a fundamental topic of space physics. Multiple processes dominating the accel-
4 eration, loss and transport of relativistic ($>\sim 500$ keV) and ultra-relativistic ($>\sim 2$ MeV)
5 [e.g., *Mann et al.*, 2016] have been discussed and their competing contributions to ra-
6 diation belt dynamics have been hotly debated. Energetic particle measurement with
7 unprecedented resolution in energy, space and time from Van Allen Probes mission re-
8 vealed plenty of unexpected features of the electron radiation belts.

9 One of the most textbook-rewriting discovery during the Van Allen Probes era is the
10 three-belt structure of ultra-relativistic electrons [*Baker et al.*, 2013b]. A previously un-
11 seen “storage ring” of intense ultra-relativistic electron flux stood out between the slot re-
12 gion and the outer belt after 2 September 2012 and lasted for weeks. Such ultra-relativistic
13 three-belt structure were also found in SAMPEX data sets. Eight SAMPEX three-belt
14 events of 1.5-6.0 MeV electrons during both CME- and CIR-driven storms were reported
15 by *Yuan and Zong* [2013]. Focusing on the energy range from 1.8 MeV to 7.6 MeV, statis-
16 tical study by *Pinto et al.* [2018] reported 30 three-belt events during the first five years of
17 Van Allen Probes mission. *Mann et al.* [2013] suggested that such three-belt structure can
18 be formed by radial transport of electrons driven by ultra-low-frequency waves. In most
19 of the ultra-relativistic three-belt events, the storage ring (otherwise termed as “remnant
20 belt”) that had survived from the outer belt dropout lasted for more than 10 days. Such

21 an unusual persistence of the ultra-relativistic storage ring has been attributed to the low
22 efficiency of hiss wave scattering in that energy range [*Shprits et al.*, 2013].

23 Unlike the ultra-relativistic electrons, electrons with energy <1 MeV have been found to
24 be quite sensitive to scattering caused by hiss waves. After the filling process of the outer
25 belt, which commonly leaves a “V-shaped” distribution in energy versus L spectrogram
26 [Reeves *et al.*, 2016], hiss waves inside the plasmasphere could deplete the flux of sub-MeV
27 electrons by scattering them to atmosphere, causing an “S-shaped” distribution [Ripoll
28 *et al.*, 2016]. The slice of an S-shaped distribution at certain L shell yields bump-on-tail
29 spectrum, which has been found to dominate inside the plasmasphere [Zhao *et al.*, 2019b].

30 Zhao *et al.* [2019a] also suggested that the bump-on-tail spectra with a valley at sub-MeV
31 energy range are formed by energy-preferential loss through hiss wave scattering.

32 To date, all the three-belt events reported are in the energy range >1 MeV, due to the
33 attention on ECT-REPT (on Van Allen Probes) [e.g., Baker *et al.*, 2013b; Mann *et al.*,
34 2013; Pinto *et al.*, 2018] and PET (on SAMPEX) [e.g., Yuan and Zong, 2013] data sets.

35 Three-belt structure has not been regarded as a type of morphology for sub-MeV electrons.
36 However, all the processes that are essential to form a three-belt structure, namely, partial
37 dropout and subsequent replenishment in favorable radial extent, are sure to happen in
38 both ultra-relativistic and sub-MeV energy range. In this work, we report a three-belt
39 event in the energy range 529 keV~814 keV that lasted only for ~ 2 days. Its time
40 evolution, unenduring nature and energy dependence are investigated and compared with
41 the well-documented ultra-relativistic three-belt structures. Based on electron spectral
42 evolutions during this event, we demonstrate that the formation of a sub-MeV three-belt
43 structure can be driven by the similar mechanism as previously discussed ultra-relativistic

⁴⁴ three-belt but its remnant belt may decay faster due to more efficient pitch angle scattering
⁴⁵ and henceforth faster precipitation to atmosphere driven by hiss waves. Besides, novel
⁴⁶ types of electron distributions in energy spectrogram and phase space density profile are
⁴⁷ revealed, adding to broader knowledge on the morphology of terrestrial radiation belt.

2. Instrumentation

⁴⁸ In this work we focus on measurements from Magnetic Electron Ion Spectrometer
⁴⁹ (MagEIS) [Blake *et al.*, 2013] of Energetic Praticle, Composition, and Thermal plasma
⁵⁰ (ECT) suite [Spence *et al.*, 2013] onboard Van Allen Probe A and B [Mauk *et al.*, 2014] to
⁵¹ reveal the three-belt structure of hundreds of keVs during September 2017. Background-
⁵² corrected fluxes [Claudepierre *et al.*, 2015] are used to avoid contaminations due to protons
⁵³ and bremsstrahlung X-rays. Relativistic Electron Proton Telescope (REPT) [Baker *et al.*,
⁵⁴ 2013a] measurements provide the ≥ 1.8 MeV part of the electron energy spectra. BeiDa
⁵⁵ Image Electron Spectrometer (BD-IES)[Zong *et al.*, 2016, 2018; Zou *et al.*, 2018] onboard
⁵⁶ a Chinese 55° inclined geosynchronous orbit satellite provides the fluxes of $50 \sim 600$ keV
⁵⁷ electrons above $L = 6.6$, which serve as the outward boundary condition of the outer
⁵⁸ radiation belt in this study.

⁵⁹ Magnetic field strength from Electric and Magnetic Field Instrument Suite and Inte-
⁶⁰ grated Science (EMFISIS) [Kletzing *et al.*, 2012] is used when calculating electron phase
⁶¹ space density (PSD) from MagEIS flux data. Geomagnetic indices and solar wind param-
⁶² eters shifted to terrestrial magnetopause presented in this article are provided by NASA
⁶³ OMNI database (<http://omniweb.gsfc.nasa.gov/>).

3. Transient Three-belt Event of Sub-MeV Electrons in September 2017

3.1. Precondition of the Three-belt Event

64 Figure 1 presents the geomagnetic indices and evolution of terrestrial radiation belts
 65 from 1 to 24 September 2017. Two halo coronal mass ejections (CME) related with
 66 M2.4 and X9.3 X-ray flares in AR12673 region were launched from the sun at 2028UT
 67 on 4 September and 1153UT on 6 September. The interplanetary shocks ahead of these
 68 two CMEs impinged terrestrial magnetosphere separately at 2345UT on 6 September
 69 and 2300UT one day later, leading to increases of +40 and +50nT in SYM/H index
 70 and magnetopause's being compressed into $L < 8$ region. Dropout of the outer belt
 71 electrons was recorded by both Van Allen Probes and BD-IES at the heart and the
 72 outward boundary of the outer belt immediately after the passage of the high pressure
 73 solar wind (fluxes of 500~600 keV channel presented in Figure 1), which can be explained
 74 as the shadowing effect of the sudden compressed magnetopause to the particles' drift
 75 orbit and possible outward diffusion that follows [e.g., *Turner et al.*, 2012].

76 Consecutive passage of two CME structures triggered an intense geomagnetic storm
 77 with double dips in Dst (also SYM/H) index, which is similar to the time profile of the
 78 well-known March 2003 storm [e.g., *Farrugia et al.*, 2006]. On 8 September, dips of -
 79 145nT and -120nT emerged on 0100UT and 1800UT in SYM/H index (Dst = -124nT
 80 and -109nT correspondingly). The outer belt was replenished rapidly right after the first
 81 dip of the storm and the acceleration process continued during the recovery phase of the
 82 storm, (from 9 to 12 September). As shown in Figure 1, flux enhancement in 500 ~
 83 600 keV channel was observed both at the heart and outer boundary of the outer belt
 84 by MagEIS and BD-IES. Note that the flux enhancement happened throughout MagEIS

85 channels, please check Figure S1 for other channels. As to the \sim 600 keV channel, electrons
86 gradually penetrated into $L = 2.5$ region from 8 September to 10 September and stayed
87 there for several days, which gave rise to the precondition of the subsequent third belt
88 event to be discussed in this article.

3.2. Three-belt Structure After a Dynamic Pressure Pulse

89 A solar wind dynamic pressure pulse accompanied by fluctuating IMF B_z impinged
90 magnetosphere at 2005UT on 12 September, right after the recovery phase of the previous
91 intense storm. The arrival of the pressure pulse was recorded by an increase of +29 nT
92 in SYM/H time profile, and was followed by a moderate storm (minimum SYM/H = -70
93 nT at 0012UT on 13 September). As shown in Figure 1, magnetopause stand-off distance
94 (calculated according to *Shue et al. [1998]*) dropped to $L = 7$ region due to the pressure
95 pulse. Flux depletion of 500 \sim 600 keV electron at $L > 4$ was recorded by BD-IES and
96 MagEIS after the pressure pulse impingement, while the electrons inside $L = 4$ seems
97 to remain unaffected by the pressure pulse. During the recovery phase of the moderate
98 storm, the $L > 4$ region was refilled, leaving a slot-like local flux minimum at $L \sim 4$. Such
99 process forms a three-belt structure, which lasted for about 2 days in \sim 600 keV channel
100 in this event. Such a three-belt structure was most significant in the 529-667 keV channel
101 (centered at 599.6 keV, therefore henceforth referred to as 600 keV three-belt structure)
102 in MagEIS-B and was also slightly recognizable in 667.2-813.7keV (centered at 742.5keV),
103 not appeared in other energy channels during the time interval. Please check Figure 5(c)
104 and Figure S1 for more details.

105 Figure 2 presents a zoom-in view of the time interval 12 September - 15 September
106 (marked with the small green color box in Figure 1). As marked by the black dashed

107 line in panel (f), the pre-existing outer belt (henceforth referred to as “remnant belt”)
 108 peaked at $L = 3.5$ and was gradually decaying during the time interval. A newly-born belt
 109 (henceforth referred to as “external outer belt”) emerged above $L = 4$ on 13 September
 110 and peaked at $L \sim 4.5$. On 15 September, the remnant belt was no longer recognizable in
 111 the 600 keV channel. The radiation belt turned back to double-belt structure again, while
 112 the “outer belt” has already been replaced by the new populations accelerated during the
 113 recovery phase of the 13 Sep storm.

114 Panel (a) - (e) of Figure 2 present the energy-dependent evolution of the radiation belt
 115 in the format of $j(E_k, L)$ snapshots (same format as *Reeves et al.* [2016]). As shown in
 116 panel (a), before the pressure pulse arrival, the radiation belt show typically “V-shaped”
 117 boundaries at slot region in energy-versus-L-shell plane, which is frequently observed by
 118 Van Allen Probes after the outer belt enhancement events [cf. *Reeves et al.*, 2016, Figure
 119 11]. As marked with the black arrow, the flux maximum of outer belt appeared at $L =$
 120 3.5, which corresponds to the remnant belt populations (black arrows have been plotted
 121 at the same place in the rest panels). The energy-spatial distribution of electrons shown
 122 in panel (a) could be regarded as the initial condition of the three-belt event discussed in
 123 this work, which was largely formed by the recovery phase of the intense storm discussed
 124 in the Section 3.1.

125 Comparing the $j(E_k, L)$ snapshots plotted in Figure 2 (a) - (e) in a chronological se-
 126 quence, one can tell that there are two predominant processes driving the developing and
 127 fading-out of the three-belt structures: the decaying of the remnant belt and the emerging
 128 of the external belt. As shown in panel (b), the flux maximum of >500 keV electrons at
 129 $L = 3.5$ persisted after the pressure pulse passage while the flux of <500 keV electrons

began to intensify at $L > 4$. The flux enhancement at $L > 4$ extended to higher energy channels in panel (c), leading to a tri-peak distribution in $j(E_k, L)$. The fading of the remnant belt and the flux enhancement of the external belt continued in panel (d) and (e). Finally, the local flux maximum at $L = 3.5$ was no longer observed and the $j(E_k, L)$ snapshot turned back to “V-shaped”, while the outer boundary of “V” has been replaced by the new external outer belt accelerated during the moderate magnetic storm.

We note that during the period of three-belt event of 600 keV channel (see Figure 2 (c) and (d)), the flux of radiation belt electrons as a function of energy and L shell presented peculiar distributions significantly different from the well-known “S-shaped” or “V-shaped” contours [Reeves *et al.*, 2016; Ripoll *et al.*, 2016; Turner *et al.*, 2019]. At $L < 4$, the outer belt population accelerated by the previous intense storm was not completely depleted after the pressure pulse arrival. Meanwhile at $L = 4 \sim 5$, the new populations were gradually emerging and penetrated to deeper L shell at lower energy channels. One may term such kind of $j(E_k, L)$ distributions as “V-shaped distributions with a remnant belt”. Another noteworthy observational feature is that, in Figure 2 (d), the outer boundary of the slot region was “S-shaped” (as pointed by the red arrow), which indicates an energy preferential decaying process at $L = 3.1 \sim 3.5$. The energy-dependent decaying process of the remnant belt will be discussed in detail in Section 5.

4. Temporal Evolution of Two Outer Belts in Phase Space Density Profile

In the previous section, the evolutions of the outer belt during the September 2017 three-belt event have been presented in the form of flux versus L shell. As the change of local magnetic field in magnetosphere may result in significant flux increases and depletions, removing the adiabatic effects is necessary to figure out the exact acceleration,

152 loss and radial transport process of the radiation belt population. Particle detector mea-
 153 surements provide us particle fluxes of different energy and pitch angles at different L
 154 shells ($j(E_k, \alpha, L)$). Converting them to phase space density (PSD) in the coordinate of
 155 three adiabatic invariants ($f(\mu, K, L^*)$) enables space physicists to differentiate various
 156 physical processes that drive the acceleration or loss of the radiation belt. Here μ is the
 157 first adiabatic invariant ($\mu = \frac{p_1^2}{2m_0 B}$) describing the gyro motion of the particle and the
 158 second adiabatic invariant K , given by $K = I\sqrt{B_m}$, describes their bounce motion [see
 159 *Reeves et al.*, 2013; *Morley et al.*, 2013]. The quantity L^* is Roederer's generalized L
 160 shell [Roederer, 1970], which defines the geocentric radial location of the drift motion of
 161 magnetospheric particles.

162 Figure 3 (c) and (d) show the evolution of PSD as a function of L^* at fixed first and
 163 second adiabatic invariant ($\mu = 60$ MeV/G, $K = 0.3R_E G^{1/2}$), which correspond to the
 164 developing and fading-out stage of the three-belt structure respectively. Panel (e) and
 165 (f) are similar plots for $\mu = 120$ MeV/G and the same K value. Tsyganenko (TS) 04
 166 geomagnetic field model [Tsyganenko and Sitnov, 2005] is adapted for the computation
 167 of K and L^* while in situ magnetic field strength from EMFISIS is used to calculate μ for
 168 each MagEIS energy and pitch angle channel. Fluxes of 600 keV electrons as a function of
 169 L shell during the same intervals have been plotted in panel (a) and (b). $\mu = 60$ MeV/G
 170 and 120 MeV/G are selected as they corresponding to \sim 600 keV at $L^* = 3.5$ and 4.5
 171 respectively, at which the fluxes of 600 keV remnant belt and external outer belt peaks
 172 (see Figure S2 for the $E_k(L^*)$ profile for the given μ and K).

173 As presented in Figure 3(e), after the depletion triggered by the solar wind pressure
 174 pulse at 2005UT on September 12, the outer belt at $L^* > 4$ replenished to its previous

175 level, while phase space density at $L^* < 4$ remained to be low, thus forming a two-step-
 176 like radial PSD profile on September 14 (marked with number 1,2 and 3). Such an outer
 177 belt replenishment with limited radial penetration resulted in the additional peak of flux
 178 radial profile at $L \sim 4.5$ in 600 keV channel, and therefore the three-belt structure. The
 179 filling-up of the external outer belt continued in the following two days (marked with
 180 number 4 and 5) and the phase space density of 120 MeV/G electrons in the external
 181 outer belt exceeded its pre-event value on September 16.

182 For the remnant belt population, phase space density profiles presented in Figure 3(c)
 183 and (d) indicate that they were suffering from continuous loss process throughout the
 184 whole three-belt event. As marked with number 6,7,8 and 9, the phase space density
 185 of 60MeV/G electrons at $L^* = 3.5$ decreased gradually from $2 \times 10^{-4} MeV^{-3} cm^{-3}$ to
 186 $4 \times 10^{-5} MeV^{-3} cm^{-3}$ in 96 hours. The fast decay of the remnant belt and the replenishment
 187 of the external belt “destroyed” the three-belt structure. As shown in panel (b), (d) and
 188 (f), the two-step-like PSD profile disappeared as the damping of the remnant belt and the
 189 outer belt returned to be single-peaked, while the peak was composed of the new external
 190 outer belt. Note that during the whole time interval of interest, the radial gradient in
 191 phase space density profile of 60MeV/G electrons are mostly positive around the spatial
 192 extent of the remnant belt (in other words, $\frac{\partial f}{\partial L^*} \Big|_{K=0.3R_E G^{1/2}}^{\mu=60 MeV/G} > 0$ at $2.5 < L^* < 4$), which
 193 seems not in favor of net outward transport driven by radial diffusion. Thus such a
 194 continuous loss of remnant belt electrons are not likely to be simply explained with radial
 195 diffusion. Local loss mechanism (e.g. precipitation to atmosphere driven by wave-particle
 196 interactions by hiss waves or EMIC waves) is required for the fast decay of the remnant
 197 belt, which will be discussed in the following section.

5. Fast Decay of the Remnant Belt

198 Another note-worthy character of the sub-MeV three-belt structure is its relatively
 199 short time scale. Unlike the ultra-relativistic three-belt structures reported during the
 200 Van Allen Probe mission [e.g., *Baker et al.*, 2013b; *Mann et al.*, 2016; *Pinto et al.*, 2018],
 201 which could last for weeks, the three-belt structure of 600 keV electrons studied in this
 202 paper only lasted for 2-3 days. As discussed in the previous sections, the unenduring
 203 nature of the 600 keV three-belt structure in this case can be largely attributed to the
 204 fast decay of the remnant belt. In this section, the lifetime of the sub-MeV remnant belt
 205 is quantified and the possible mechanism that drives the decaying process is discussed.

206 The spin-averaged flux versus time profile of \sim 600 keV electrons at the heart of the
 207 remnant belt ($L=3.5$, as marked with dashed black line in Figure 2(f)) has been plotted
 208 in Figure 4(a) in logarithmic scale. After the strong enhancement event during the intense
 209 storm on September 7 \sim 9, the flux of \sim 600 keV electrons at $L=3.5$ decayed monotonically
 210 in the following two weeks, which is consistent with the absence of the deep inward
 211 penetration of 60MeV/G electrons that reaches $L^* = 3.5$ (check Figure 3(c) and (d)).
 212 During the time interval of 600 keV three-belt structure, the flux profile fits well into an
 213 exponential decay. The mean lifetime τ evaluated from the function $j(t) = j_0 e^{-t/\tau}$ is 2.05
 214 days. Note that such estimated lifetime is quite close to the theoretical prediction of hiss
 215 wave scattering by *Shprits et al.* [2013] (check Figure 2c in their paper) and empirical
 216 estimation by *Claudepierre et al.* [2020]. The \sim 2 days lifetime of the remnant belt
 217 explains why the three belt structure no longer existed after September 15 0000UT. In
 218 other words, the flux of \sim 600 keV electrons damps so fast at the heart of the remnant
 219 belt that the remnant belt became no longer comparable with the new external belt after

220 days. Comparing with the lifetime of ultra-relativistic electron remnant belts estimated
 221 by *Pinto et al.* [2018], which is in an order of tens of days, the 600 keV remnant belt
 222 reported in this case presents a rather unstable trapping feature.

223 The energy dependence of wave-particle interaction is likely to explain the significant
 224 difference in lifetime of 600 keV and ultra-relativistic electron remnant belt. *Shprits et al.*
 225 [2013] suggested that ultra-relativistic electrons inside the remnant belt can remain unaf-
 226 fected by plasma waves for weeks, which is consistent with the statistics from Van Allen
 227 Probe measurements [*Pinto et al.*, 2018; *Claudepierre et al.*, 2020]. The energy-dependence
 228 of the electrons' lifetime at L=3.5 is presented in Figure 4(b). Lifetime increases as a
 229 function of energy throughout the energy range from 500 keV to >2 MeV. For sub-MeV
 230 electrons, the lifetime at L=3.5 lies below 5 days in this event. For electrons of energy
 231 greater than 1MeV, their lifetime measured in this case increases to the value in agreement
 232 with previous statistical results [cf. *Pinto et al.*, 2018, Figure 4 (left bottom)].

233 In order to further investigate the energy dependent physical processes of the remnant
 234 belt, the spectral evolution at the heart of the remnant belt during the sub-MeV three
 235 belt event is presented in Figure 4(c). The spectra of electrons with 90° local pitch angle
 236 measured by MagEIS and REPT at L=3.5 are combined and plotted in the same format
 237 as [cf. *Zhao et al.*, 2019a, Figure 2]. Bump-on-tail (BOT) distribution with flux minimum
 238 at \sim 600 keV emerged gradually during the fading-out stage of the remnant belt. BOT
 239 distributions have been proven to be a consequence of particles' loss to atmosphere driven
 240 by hiss wave scattering [*Zhao et al.*, 2019a, b; *Ni et al.*, 2019]. *Zhao et al.* [2019a] and
 241 *Ni et al.* [2019] suggested that interaction with hiss waves inside the plasmapause could
 242 effectively scatter electrons with the energy of hundreds keV to the loss cone, which

243 results in the BOT distributions. Statistical results by *Zhao et al.* [2019a] indicated that
 244 the BOT spectra are confined inside the plasmapause and take $\sim 1 - 2$ days to form. The
 245 emerging BOT distribution during the fading of the remnant belt in this event is consistent
 246 with those previous observations. The plasmapause derived from the spacecraft potential
 247 (plotted with the white line in Figure 2(f)) were mostly located at higher L shell than the
 248 remnant belt during the time interval. Hiss wave activities in the plasmasphere were also
 249 observed by Arase spacecraft (see Figure S3). Therefore we suggest that the hiss wave
 250 scattering could be an interpretation to the quick fading-out of the ~ 600 keV remnant
 251 belt reported in this case. *Ripoll et al.* [2016]; *Zhao et al.* [2019a] also concluded that the
 252 forming of “S-shaped” inner boundary of the outer belt in energy-L shell spectrogram is
 253 a consequence of the energy-dependent hiss scattering. In the three-belt event we report,
 254 the “S-shaped” inner boundary of the remnant belt during its fading-out stage is also
 255 likely to be driven by the same physical process. At higher L shell, due to the leak
 256 of plasmaspheric hiss waves, the spectral evolution was dominated by the replenishing
 257 process and BOT distributions were not recorded at the heart of the external outer belt
 258 (see Figure 4(e)). The evolution of the electron energy spectra during 14-16 September
 259 was dominated by flux enhancement that reached >500 keV range.

6. Discussion

6.1. The Formation and Decay of Sub-MeV Three-belt Structure

260 In the previous sections we have presented detailed observational results of the sub-
 261 MeV three-belt event in September 2017. For ~ 600 keV energy channel, which show clear
 262 three-belt structure, the evolutions at $L > 4$ (namely, the external outer belt) and $L < 4$
 263 (remnant belt) are governed by different physical processes.

264 For the electrons at $L > 4$, fast depletion following the pressure pulse and subsequent
 265 replenishment built up the new external outer belt. The fast depletion after the strong
 266 pressure pulse (solar wind dynamic pressure upto 15nPa, Δ SYM/H upto +29nT) is likely
 267 to be driven by the magnetopause shadowing effect accompanied with the outward radial
 268 diffusion [e.g., *Turner et al.*, 2012, 2014; *Xiang et al.*, 2017]. High solar wind pressure is
 269 able to compress the magnetopause and the drift shell of particles at large L shell will
 270 encounter the magnetopause, leading to substantial loss at large L shell. After the passage
 271 of high pressure solar wind, radial diffusion driven by ULF waves could further deplete
 272 the phase space density of electrons at lower L shell although their drift orbit are not
 273 large enough to encounter the magnetopause.

274 As to the replenishing process of electrons in the external outer belt, its limited radial
 275 penetration depth is key to form the sub-MeV three-belt structure. In term of electron
 276 spectra (see Figure 4(c-e)), the flux enhancement of 500~800 keV electrons observed
 277 at the heart of the external outer belt did not penetrate to the remnant belt, which
 278 is consistent with the “V-shaped distributions with a remnant belt” type of $j(E_k, L)$
 279 discussed in Section 3. In terms of PSD, the filling-up of 120MeV/G electron did not
 280 cover the whole outer belt zone, forming a two-step-like $f(L^*)|_{\mu, K}$ profile. Similar two-
 281 step-like PSD profile has also been recorded previously by THEMIS [*Turner et al.*, 2013]
 282 and Van Allen Probes observations (cf. Supplementary Figure 3 of *Mann et al.* [2016] and
 283 Figure 11 of *Da Silva et al.* [2019]), but for \sim 1000s MeV/G electrons, which correspond
 284 to ultra-relativistic electrons at the heart of outer belt. In both cases the formation of
 285 such two-step-like PSD profile coexists with the development of ultra-relativistic three-
 286 belt structure (namely, 3.4 MeV channel on 6 September 2012 and 2.1 MeV channel on

287 25 September 2014). As addressed by *Mann et al.* [2016], the formation of a three-belt is
288 sensitive to the penetration of ULF power, otherwise the merging of remnant belt and the
289 external belt will result in a two-belt structure. The $L^* > 4$ part of the 60 MeV/G and 120
290 MeV/G electron PSD profile in this event did not show clear local peak during the refilling
291 process, indicating that the formation of external outer belt within the Van Allen Probe
292 orbital reach is possibly driven by pure radial transport [*Reeves et al.*, 2013]. However,
293 since the evolution of PSD profile could be dominated by multiple processes and inevitable
294 error in PSD calculation, the contribution of local acceleration could not be simply ruled
295 out. Although diagnosing the exact acceleration mechanism of the external outer belt in
296 this event is beyond the scope of this study, we would like to note that, similar to the
297 electrons with first adiabatic invariant of thousands of MeV/G (ultra-relativistic), the two-
298 step-like radial PSD profile of hundreds MeV/G electrons also denotes an L-dependent
299 refilling process of sub-MeV electrons during the recovery of outer belt depletion.

300 For the sub-MeV electrons in the remnant belt, evolutions in PSD profile and energy
301 spectrum indicate a gradual local loss process. Estimated lifetime of the 600 keV electrons
302 at the heart of the remnant belt is around 2 days. The emerging BOT distribution with
303 a local valley at \sim 600 keV is consistent with the scenario that electrons were scattered
304 to loss cone by hiss waves and precipitated to atmosphere during the vanishing of the
305 remnant belt. The relatively short lifetime of the sub-MeV remnant belt comparing with
306 the previous studied ultra-relativistic storage ring explains the unenduring nature of the
307 sub-MeV three-belt structure, and somehow, the reason why it has not been easily noticed
308 before this study.

309 Our scenario interpreting the mechanism of development and fading-out of the sub-
310 MeV three-belt structure is summarized schematically in Figure 5(d). Sudden depletion
311 of outer belt at large L shell leaves a remnant belt restricted within small L shell. The
312 subsequent inward transport and/or the local acceleration at large replenished the large
313 L shell region with a moderate penetration depth, resulting in a “second slot” between
314 the external outer belt and the remnant belt. Such a three-belt structure can last for
315 several days until the remnant belt are fully depleted by the gradual loss to atmosphere
316 driven by wave-particle interaction. When the remnant belt is no longer recognizable, the
317 radiation belt turns back to a two-belt structure, while the outer belt has been replaced
318 by the newly formed external outer belt. Such scenario is similar to the formation of ultra-
319 relativistic three belts [Baker *et al.*, 2013b; Mann *et al.*, 2016]. However, ultra-relativistic
320 electrons in the remnant belt are mostly unaffected by the hiss wave and therefore fierce
321 geomagnetic activities are needed to break down the pre-existing three-belt structure, while
322 sub-MeV three-belt structure could fade out automatically in short time period due to
323 the unenduring remnant belt under the efficient scattering by plasmaspheric hiss waves.

6.2. Electron Distributions During A Three-belt Event

324 Multiple pieces of peculiar features in the spatial and energy distributions of electrons
325 appeared during the developing and fading-out stage three-belt event (double-peaked
326 outer belt, two-step-like PSD profile, V-shaped $j(E_k, L)$ distribution with a remnant belt,
327 BOT spectrum, etc.). It is easy for one to find that these various phenomena are strongly
328 correlated. Here we recall the MagEIS measurement from an outbound pass of Van
329 Allen Probe B during the time interval of sub-MeV three-belt structure. In Figure 5(b)
330 the electron differential flux as a function of L shell and energy has been plotted, using

the same data as Figure 2(d). The PSD as a function of L^* for $\mu = 60$ MeV/G and $K = 0.3R_E G^{1/2}$ electrons is plotted at left and the fluxes as a function of L for 349.8 keV, 599.6 keV and 1049.8 keV energy channel are plotted at right. As discussed by Reeves *et al.* [2016]; Turner *et al.* [2019], the penetration depth in L shell of outer belt enhancement in response to storms is energy dependent. Lower energy channels always have a deeper penetration depth and a stronger enhancement, leading to a positive slope in the inner boundary of the outer belt, which composes the right part of the V-shaped boundary in $j(E_k, L)$ spectrogram. In the sub-MeV three-belt event we studied, such kind of V-shaped boundary also exists between the inner belt and the external outer belt. One thing additional to the V-shaped structure is the remnant belt. Unlike the total extinction of outer belt populations on September 7, 2017, the dropout event on September 12 is not significant at $L \leq 4$. Therefore a remnant belt structure which peaks at $L \sim 3.5$ was superposed above the V-shaped distribution, forming a peculiar “V-shaped distribution with a remnant belt” spectrogram. Between the inner belt and growing external outer belt, the inner boundary of the fading-out remnant belt show a S-shaped structure. Such an S-shaped structure indicates that the remnant belt was depleted by an energy-dependent process [Ripoll *et al.*, 2016]. High energy electrons are able to stay for a long time (as previously discussed in Section 5) and form a local flux maximum in energy spectrum. Therefore the BOT distribution was observed inside the remnant belt. The gradual shift of flux minimum energy to higher energy channels of BOT spectra presented in Figure 4(c) could also be explained by the competing between emerging external outer belt with a V-shaped inner boundary (which lifts the low energy end of the spectrum) and the continuous hiss scattering (which depletes the flux at moderate energy channels).

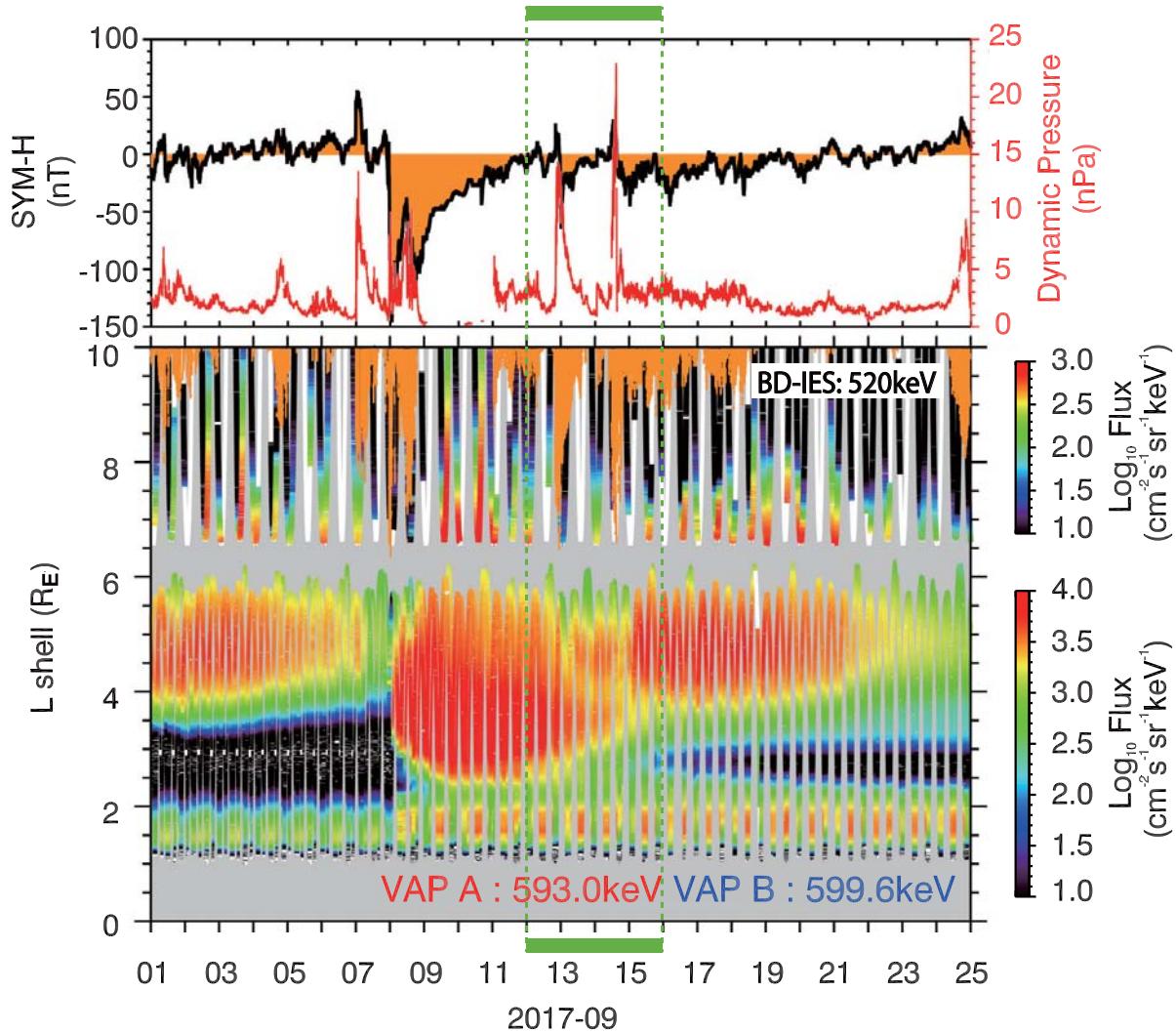
354 Since the slice of $j(E_k, L)$ at fixed E_k gives the radial profile of electron flux, such a
355 “V-shaped with a remnant belt” spectrogram could help us in understanding the energy-
356 dependent morphology of the outer belt (see Figure 5(c) and please check Figure S1 for
357 the time evolutions of radiation belt at different energy channels). On one hand, the
358 external belt produced by the replenishing process did not reach energy channels above
359 600 keV at that time, while the remnant belt still survived, which explains the single
360 outer belt with a peak at $L \sim 3.5$ in 1049.8 keV channel (also in 891.9 keV and 1541.0
361 keV channel). On the other hand, the replenishing process was sufficient at 349.8 keV
362 and 466.8keV channel. At the same time, hiss wave scattering were efficiently removing
363 electrons inside the plasmasphere (forming an S-shaped boundary in panel (b) and Figure
364 2(d)). Therefore the flux radial profile of 349.8 keV and 466.8keV channel at the time
365 point was also single-peaked, but the peak was located at $L \sim 4.5$. In brief, the radial
366 profile of >1 MeV channel represents the “old” outer belt surviving from the dropout
367 at SSC and the profile of <500 keV channel represents the “new” belt produced by the
368 recovery phase of the moderate storm. For the transitional energy channel, 500 keV~800
369 keV in this case, the components of the new belt and the old belt are comparable, but
370 peaking at different L shell, which results in a double-peaked radial profile of outer belt.
371 We note that such flux profile looks quite similar to a superposition of the normalized
372 profile in <500 keV and >1 MeV channels. For the electrons in the transitional energy
373 channels, both the replenishing of external outer belt and the decaying at $3 < L < 4$ are
374 moderate, which is able to form an external belt at high L shell and meanwhile leaves the
375 remnant belt population distinctive.

376 The two-step-like PSD profile, which has been observed previously but not being widely
 377 discussed, could also be illustrated from the prospective of $j(E_k, \alpha, L) \rightarrow f(\mu, k, L^*)$. As
 378 the white dashed-and-dotted curve in Figure 5(b) marked, the constant μ line of certain
 379 first adiabatic invariant could confront both the inner edge of the remnant belt and the
 380 external outer belt. Then there is no surprise that there are two steep positive radial
 381 gradient in $f(\mu, k, L^*)|_{\mu,k}$ and therefore a two-step-like PSD radial profile. Note that
 382 the color-coded fluxes that white dashed-and-dotted curve crosses in this panel do not
 383 accurately correspond to the flux that is converted to $f(\mu, k, L^*)|_{\mu,k}$, as the pitch angle
 384 is varying along the L shell for a given k value. However it will not bring much difference
 385 to our illustration as the inner boundaries of both belts are distinctive in $j(E_k, L)$ space
 386 at all pitch angle in this case.

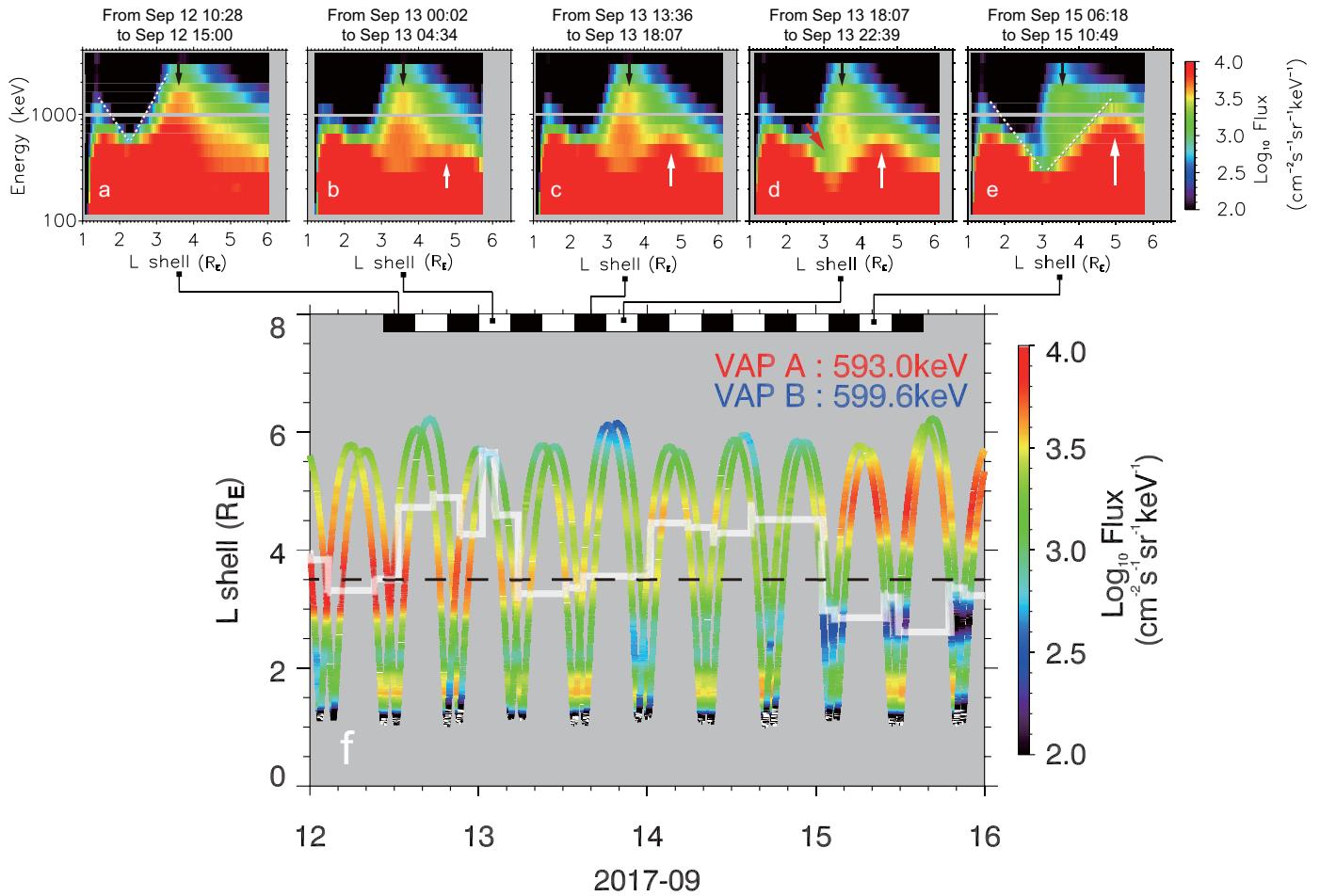
7. Conclusions

387 To conclude, in this study we report the existence of three-belt structure in sub-MeV
 388 energy channel. Double-peaked outer belt in 500 keV~800 keV energy range were doc-
 389 umented by Van Allen Probes after a moderate storm that followed the September 2017
 390 intense storm and lasted for 2 ~ 3 days. The main results we get from this case study are
 391 the following:

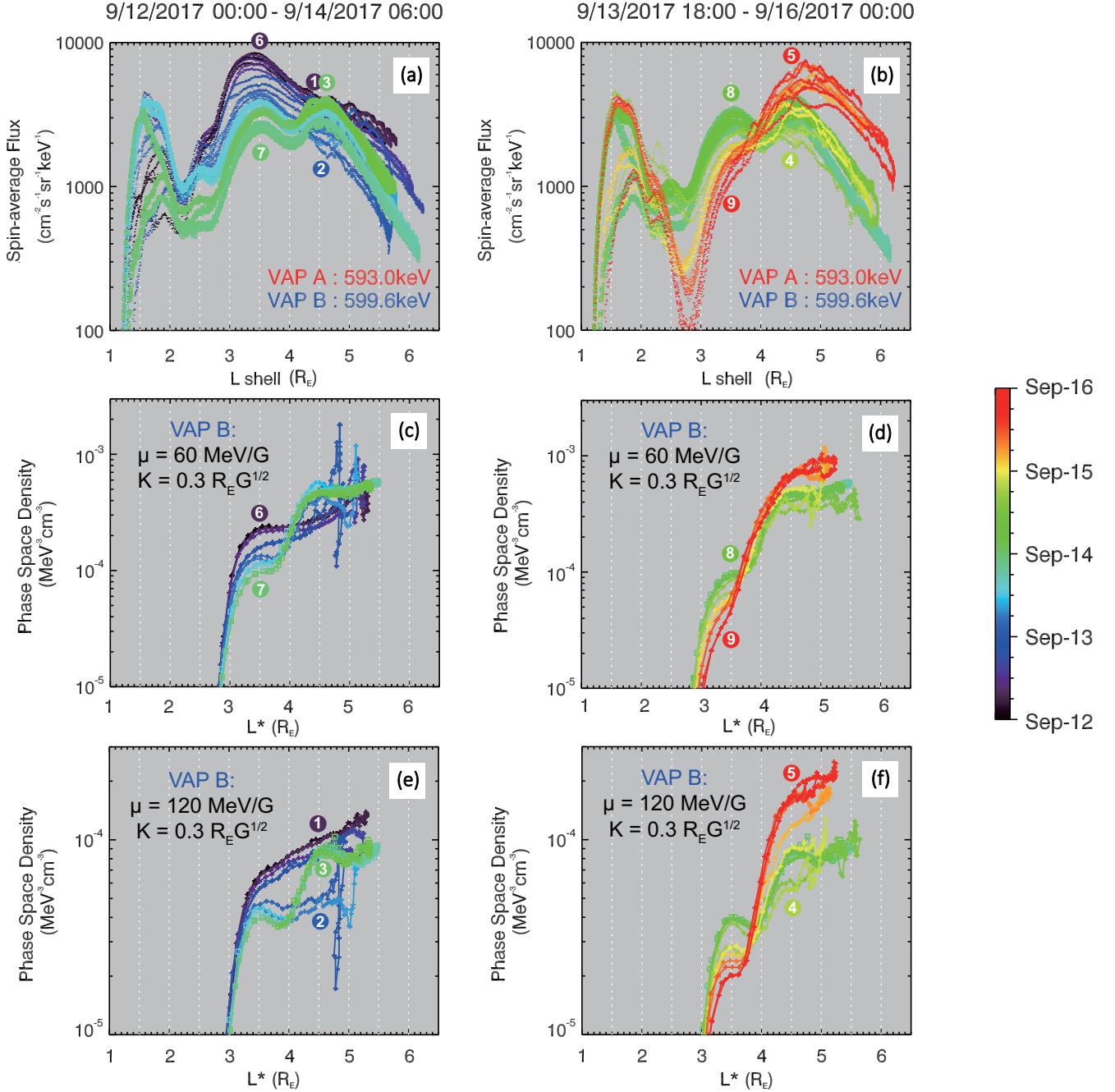
392 1. Three-belt structure is not restricted to ultra-relativistic electrons and could be highly
 393 energy dependent. The formation of the sub-MeV three-belt structure is a combination
 394 of a partial outer belt dropout and a replenishing process that do not penetrate deep into
 395 the remnant belt, which does not differ much from the ultra-relativistic three-belt cases.
 396 More attention on sub-MeV energy range from the radiation belt community will lead to
 397 a more complete and comprehensive knowledge of radiation belt dynamics.

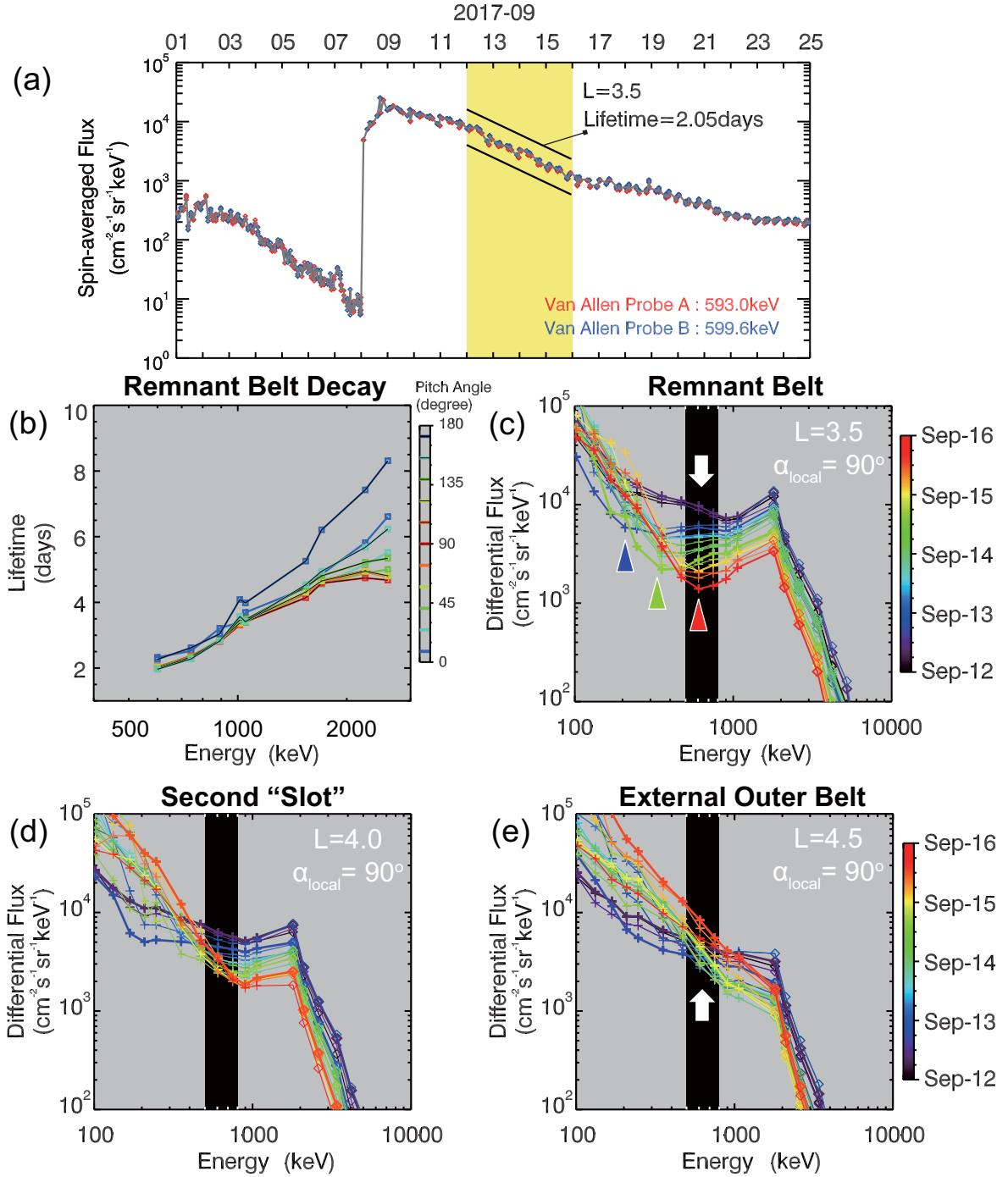

398 2. The energy dependence of three-belt structure occurrence can be explained by energy
399 and L shell dependence in the replenishing and loss processes. A transition energy channel
400 at which the emerging “new” outer belt component and “old” component survived from
401 flux dropout are comparable in intensity and distinctive in L shell will show a three-belt
402 structure.

403 3. The remnant of sub-MeV electrons seems not as persistent as the ultra-relativistic
404 remnant belts reported in previous studies. The fast decaying of the remnant belt is
405 likely to be a result of particles’ loss to atmosphere driven by hiss wave scattering, which
406 is evidenced by bump-on-tail spectra. The short-lived nature of sub-MeV remnant belt
407 may explain why sub-MeV three-belt structures are hard to get recognized from electron
408 flux profile plotted for a large time scale.


409 4. Novel types of radiation belt electron distributions arise during the sub-MeV three-
410 belt phase. A remnant belt population in addition to the typical V-shaped distribution in
411 $j(E_k, L)$ is a typical spectrogram for sub-MeV three-belt event. The inner boundary of the
412 remnant belt can further evolve to S-shape during the fading-out stage of the three-belt
413 structure. These novel spatial-energy distributions give rise to a two-step-like PSD radial
414 profile at certain first adiabatic invariant that meets the inner edges of both the remnant
415 belt and the external outer belt.

8. Acknowledgement


416 This work was supported by National Natural Science Foundation of China (41421003,
417 41627805). R. Rankin acknowledges financial support from the Canadian Space Agency
418 and NSERC. Processing and analysis of the MagEIS and REPT data was supported
419 by Energetic Particle, Composition, and Thermal Plasma (RBSP-ECT) investigation
420 funded under NASA's Prime contract no. NAS5-01072. All RBSP-ECT data are
421 publicly available at the Web site <http://www.RBSP-ect.lanl.gov/>. RBSP-EFW and
422 RBSP-EMISIS data used to derive plasmapause location and phase space density are
423 also publicly available at the Web sites <http://www.space.umn.edu/rbspefw-data/> and
424 <http://emfisis.physics.uiowa.edu/data/index/>. BD-IES data are publicly available at the
425 Web site <http://www.beidou.gov.cn/yw/gfgg/201912/>.


Figure 1. (Top) Geomagnetic $SYM-H$ index (in black) and the solar wind dynamic pressure from OMNI data (in red) during 1 - 24 September 2017. (Bottom) Spin-averaged fluxes of ~ 600 keV electrons using data from MagEIS instrument on Van Allen Probes and omni-directional electron fluxes of 520 keV electrons from IES instrument on Chinese IGSO satellite. Time intervals lack of data coverage are plotted with white lines. Areas shaded by orange color in the bottom panel show the magnetopause location calculated with OMNI data based on the empirical model from *Shue et al.* [1998].

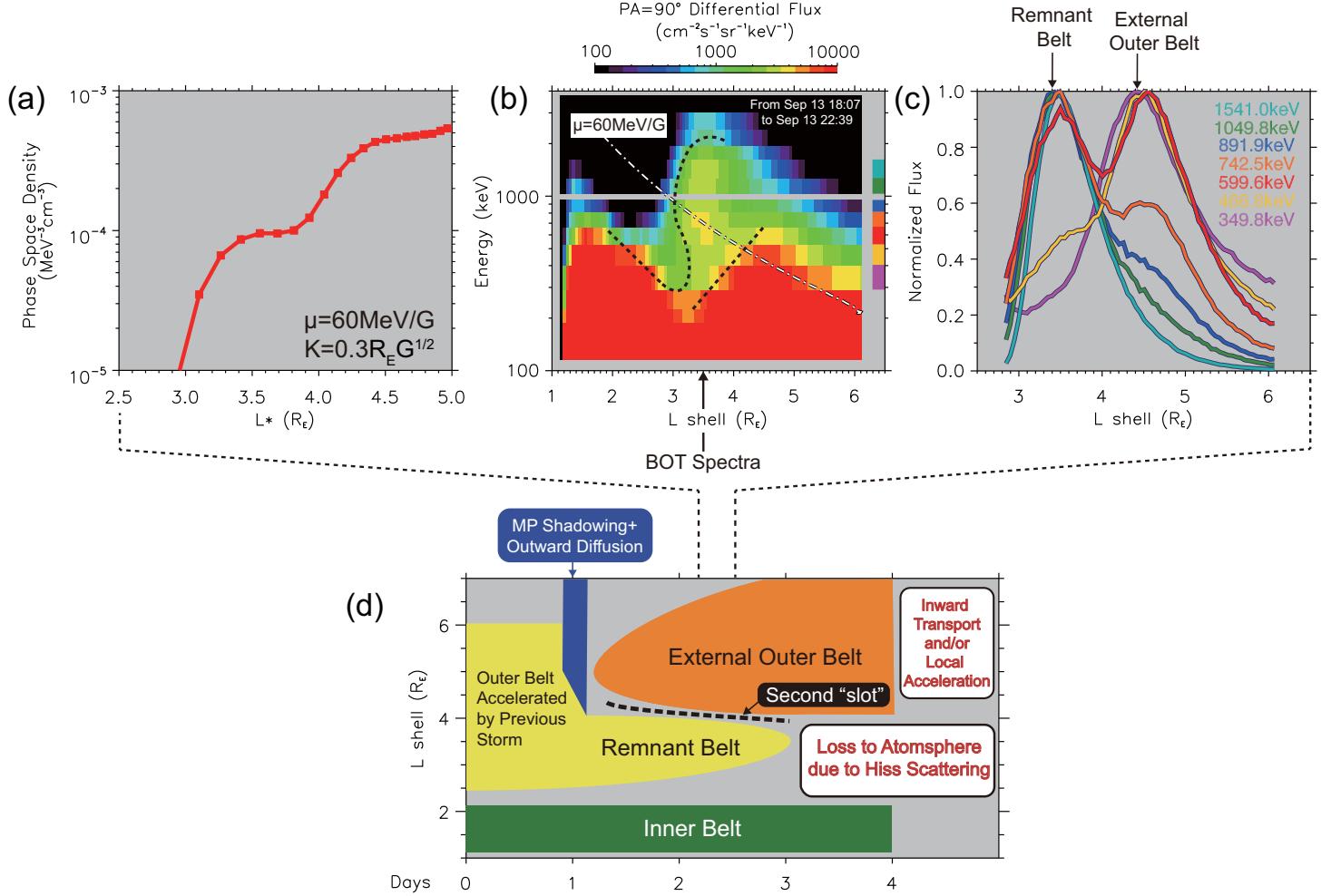

Figure 2. A zoom-in view of the MagEIS flux data during the 600 keV three-belt phase in September 2017 (time interval marked with green dashed lines in Figure 1). (a-e) Radiation belt flux as a function of L shell and energy for selected Van Allen Probe B passes. Black arrows indicate the position of remnant belt ($L = 3.5$) and white arrows indicate the growing external outer belt populations. (f) Zoom-in plot of the ~ 600 keV electron fluxes as a function of time and L shell from Van Allen twin Probes. White line shows the plasmapause location derived from the spacecraft potential data from EFW-B. Black dashed line at $L = 3.5$ indicates the remnant belt maximum.

Figure 3. Differential flux and phase space density evolution during the developing (left column) and fading out (right column) stage of the 600 keV 3-belt structure. (a) Flux of ~ 600 keV electrons measured by MagEIS-A and -B as a function of L shell during the developing stage of 3-belt structure. (c) Temporal sequence of electron phase space density as a function of L^* at given $\mu = 60 \text{ MeV}/G$ and $K = 0.3 R_E G^{1/2}$ during the developing stage of 3-belt structure. 60 MeV/G corresponds to ~ 600 keV at $L^* = 3.5$. (e) Similar to (c) but for $\mu = 120 \text{ MeV}/G$, which corresponds to ~ 600 keV at $L^* = 4.5$. (b, d and f) Same format as left panels, depicting the fading out stage of the 3-belt structure.

Figure 4. (a) Time series of spin-averaged flux of ~ 600 keV electrons at the heart of the remnant belt ($L = 3.5 \pm 0.01$) recorded by Van Allen Probes and its best fit of the decay rate during the time interval between 12 - 15 September (marked in yellow). (b) Lifetime as a function of energy and pitch angle at $L = 3.5 \pm 0.01$. (c-f) Energy spectra evolutions during the time interval of interest from MagEIS-B (crosses) and REPT-B (diamonds) at $L=3.5$, 4.0 and 4.5. Colored spikes indicate the energy of flux minimum. Black areas mark the energy range showing three-belt structure.

Figure 5. (a-c) Snapshots of the radiation belt during the 3-belt phase: (b) gives the flux of 90° pitch angle electrons as a function of energy and L shell (same data as Figure 2d). Black dashed curves mark the energy dependence of “S-shaped” inner boundary of the remnant belt and “V-shaped” inner boundary of the external outer belt. White dashed-and-dotted curve gives the energy as a function of L shell for a set of constant μ and K . Panel (c) gives the radial profile of normalized flux in the outer belts for selected energy channels in panel (b). Panel (a) gives the PSD profile against L^* for $\mu = 60\text{MeV}/\text{G}$ and $K = 0.3R_EG^{1/2}$, which corresponds to the white dashed lines in panel (b). (d) A schematic diagram showing the processes forming and fading the three-belt structure below 1 MeV.

References

Baker, D., et al., The relativistic electron-proton telescope (rept) instrument on board the radiation belt storm probes (rbsp) spacecraft: Characterization of earth's radiation belt high-energy particle populations, *Space Science Reviews*, 179(1-4), 337–381, doi:10.1007/s11214-012-9950-9, 2013a.

Baker, D., et al., A long-lived relativistic electron storage ring embedded in earth's outer van allen belt, *Science*, 340(6129), 186–190, 2013b.

Blake, J., et al., The magnetic electron ion spectrometer (mageis) instruments aboard the radiation belt storm probes (rbsp) spacecraft, *Space Science Reviews*, pp. 1–39, 2013.

Claudepierre, S., et al., A background correction algorithm for van allen probes mageis electron flux measurements, *Journal of Geophysical Research: Space Physics*, 120(7), 5703–5727, 2015.

Claudepierre, S. G., Q. Ma, J. Bortnik, T. P. O'Brien, J. F. Fennell, and J. B. Blake, Empirically estimated electron lifetimes in the earth's radiation belts: Comparison with theory, *Geophysical Research Letters*, 47(3), e2019GL086,056, 2020.

Da Silva, L. A., et al., Contribution of ulf wave activity to the global recovery of the outer radiation belt during the passage of a high-speed solar wind stream observed in september 2014, *Journal of Geophysical Research: Space Physics*, 124(3), 1660–1678, 2019.

Farrugia, C., V. Jordanova, M. Thomsen, G. Lu, S. Cowley, and K. Ogilvie, A two-ejecta event associated with a two-step geomagnetic storm, *Journal of Geophysical Research: Space Physics*, 111(A11), 2006.

Kletzing, C., et al., The electric and magnetic field instrument suite and integrated science (emfisis) on rbsp, *Space Science Reviews*, pp. 1–55, 2012.

Mann, I. R., et al., Discovery of the action of a geophysical synchrotron in the earth's van allen radiation belts, *Nature communications*, 4, 2013.

Mann, I. R., et al., Explaining the dynamics of the ultra-relativistic third van allen radiation belt, *Nature Physics*, 12(10), 978, 2016.

Mauk, B., N. J. Fox, S. Kanekal, R. Kessel, D. Sibeck, and A. Ukhorskiy, Science objectives and rationale for the radiation belt storm probes mission, in *The Van Allen Probes Mission*, pp. 3–27, Springer, 2014.

Morley, S., M. Henderson, G. Reeves, R. Friedel, and D. Baker, Phase space density matching of relativistic electrons using the van allen probes: Rept results, *Geophysical Research Letters*, 40(18), 4798–4802, 2013.

Ni, B., et al., Parametric sensitivity of the formation of reversed electron energy spectrum caused by plasmaspheric hiss, *Geophysical Research Letters*, 46(8), 4134–4143, 2019.

Pinto, V. A., J. Bortnik, P. S. Moya, L. R. Lyons, D. G. Sibeck, S. G. Kanekal, H. E. Spence, and D. N. Baker, Characteristics, occurrence, and decay rates of remnant belts associated with three-belt events in the earth's radiation belts, *Geophysical Research Letters*, 45(22), 12–099, 2018.

Reeves, G., et al., Electron acceleration in the heart of the van allen radiation belts, *Science*, 341(6149), 991–994, 2013.

Reeves, G. D., et al., Energy-dependent dynamics of kev to mev electrons in the inner zone, outer zone, and slot regions, *Journal of Geophysical Research: Space Physics*, 121(1), 397–412, 2016.

Ripoll, J.-F., et al., Reproducing the observed energy-dependent structure of earth's electron radiation belts during storm recovery with an event-specific diffusion model, *Geophysical Research Letters*, 43(11), 5616–5625, 2016.

Roederer, J. G., *Dynamics of geomagnetically Trapped radiation*, Springer-Verlag, New York, 1970.

Shprits, Y. Y., D. Subbotin, A. Drozdov, M. E. Usanova, A. Kellerman, K. Orlova, D. N. Baker, D. L. Turner, and K.-C. Kim, Unusual stable trapping of the ultrarelativistic electrons in the van allen radiation belts, *Nature Physics*, 9(11), 699, 2013.

Shue, J.-H., et al., Magnetopause location under extreme solar wind conditions, *Journal of Geophysical Research: Space Physics*, 103(A8), 17,691–17,700, 1998.

Spence, H. E., et al., Science goals and overview of the radiation belt storm probes (rbsp) energetic particle, composition, and thermal plasma (ect) suite on nasa's van allen probes mission, *Space Science Reviews*, 179(1-4), 311–336, 2013.

Tsyganenko, N., and M. Sitnov, Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, *Journal of Geophysical Research: Space Physics*, 110(A3), 2005.

Turner, D., V. Angelopoulos, W. Li, M. Hartinger, M. Usanova, I. Mann, J. Bortnik, and Y. Shprits, On the storm-time evolution of relativistic electron phase space density in earth's outer radiation belt, *Journal of Geophysical Research: Space Physics*, 118(5), 2196–2212, 2013.

Turner, D., et al., On the cause and extent of outer radiation belt losses during the 30 september 2012 dropout event, *Journal of Geophysical Research: Space Physics*, 119(3), 1530–1540, 2014.

Turner, D., et al., The response of earth's electron radiation belts to geomagnetic storms: Statistics from the van allen probes era including effects from different storm drivers, *Journal of Geophysical Research: Space Physics*, 2019.

Turner, D. L., Y. Shprits, M. Hartinger, and V. Angelopoulos, Explaining sudden losses of outer radiation belt electrons during geomagnetic storms, *Nature Physics*, 8(3), 208–212, 2012.

Van Allen, J. A., The geomagnetically trapped corpuscular radiation, *J. Geophys. Res.*, 64, 1683–1689, 1959.

Van Allen, J. A., and L. A. Frank, Radiation around the Earth to a radial distance of 107,400 km, *Nature*, 183, 430–434, 1959.

Van Allen, J. A., G. H. Ludwig, E. C. Ray, and C. E. McIlwain, Observations of high intensity radiation by satellites 1958 Alpha and Gamma, *Jet Propulsion*, 28, 588–592, 1958.

Xiang, Z., W. Tu, X. Li, B. Ni, S. K. Morley, and D. Baker, Understanding the mechanisms of radiation belt dropouts observed by van allen probes, *Journal of Geophysical Research: Space Physics*, 122(10), 9858–9879, 2017.

Yuan, C., and Q. Zong, The double-belt outer radiation belt during cme-and cir-driven geomagnetic storms, *Journal of Geophysical Research: Space Physics*, 118(10), 6291–6301, 2013.

Zhao, H., et al., Characterization and evolution of radiation belt electron energy spectra based on the van allen probes measurements, *Journal of Geophysical Research: Space Physics*, 2019a.

Zhao, H., et al., Plasmaspheric hiss waves generate a reversed energy spectrum of radiation belt electrons, *Nature Physics*, 15(4), 367, 2019b.

Zong, Q., Y. Wang, H. Zou, L. Wang, R. Rankin, and X. Zhang, New magnetospheric substorm injection monitor: Image electron spectrometer on board a chinese navigation igso satellite, *Space Weather*, 16(2), 121–125, 2018.

Zong, Q., et al., Radial propagation of magnetospheric substorm-injected energetic electrons observed using a bd-ies instrument and van allen probes, *Science China Earth Sciences*, 59(7), 1508–1516, 2016.

Zou, H., et al., Imaging energetic electron spectrometer onboard a chinese navigation satellite in the inclined geo orbit, *Science China Technological Sciences*, 61(12), 1845–1865, 2018.