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Abstract

The propagation and decay of waves in a nonlocal, one-dimensional, viscoelastic medium
is analyzed. Waves emanating from a source with constant amplitude applied at one end of a
semi-infinite bar decay exponentially with distance from the source. A method for computing
the attenuation coefficient explicitly as a function of material properties and source frequency
is presented. The results are compared with direct numerical simulations. The relationship
between the attenuation coefficient and the group velocity is investigated. It is shown that
in the limit of long waves (or small peridynamic horizon), Stokes' law of sound attenuation is
recovered.
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1 Introduction

An ultrasonic source applied to the surface of a body creates waves that propagate toward the in-
terior. As the waves propagate, they decay with distance, a phenomenon called attenuation. Wave
attenuation has a major effect on the depth at which ultrasonic imaging can be used in practice.
Higher frequencies, which are desirable because they provide higher image resolution, attenuate
much more rapidly than lower frequencies, and are therefore sometimes less practical. Although
multiple mechanisms, including scattering, are involved, viscoelasticity provides a dissipative mech-
anism that reproduces important features of wave attenuation. Viscoelastic material models have
been applied within the local theory of mechanics to the study of attenuation, for example [1]. If
the viscoelastic contribution to the stress is proportional to the rate of strain, the rate of wave at-
tenuation with distance varies quadratically with frequency, a result known as Stokes' law of sound
attenuation (see equation (69) below). However, real materials may exhibit more complex depen-
dence on frequency. It is therefore of interest to explore whether a nonlocal theory of mechanics
could reproduce features of attenuation data that are difficult to obtain with the local theory.

The effect of nonlocality on plane waves in viscoelastic media was investigated by Nowinski [8]
within the Kroener-Eringen nonlocal theory, including the behavior of attenuation coefficient in
certain limiting cases. More recently, nonlocal damping models have been applied to the vibrations
of nanoscale structures, especially carbon nanotubes and graphene monolayers, primarily using the
Eringen and strain gradient theories [13, 2, 6, 5, 12].

The peridynamic theory is a nonlocal theory of continuum mechanics [10] in which material
points that are sufficiently close together interact directly with each other through a material
model. The cutoff distance for interaction is called the horizon, denoted by .5, which can be finite
or infinite. The equation of motion in one dimension has the form

6
pii(x,t) = j f(x + ,x) ck +b(x)

—6
(1)

where p, b, and u are the density, body force, and displacement respectively, and f is the pairwise
bond force density function that specifies the force that the material point x + exerts on x. The
values of f are determined by the deformation according to the material model. To satisfy the
balance of linear momentum, f is required to satisfy the condition

f(x + ,x) = - f (x, x + O. (2)

The main advantages of peridynamics appear in the modeling of fracture, because the peridynamic
balance laws do not involve partial derivatives of the deformation, which do not exist on a growing
crack. Although most of its practical applications involve fracture, the theory also has useful
features in the modeling of waves. Among these features is wave dispersion, since a peridynamic
material model can be calibrated to reproduce measured dispersion data in a real material [15].

The remainder of this paper investigates the motion of waves in a linear viscoelastic peridynamic
material, with the purpose of showing how nonlocality interacts with dissipative mechanisms in a
material model to result in wave attenuation.
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2 Material model with bond damping

In a homogeneous body, the one-dimensional peridynamic equation of motion (1) for a bond-based
material model with rate dependence is given by

o
pii(x ,t) = f 

5 
F (u(x + 0 - u(x), n(x + 0 - n(x), e) de + b(x)

- 
(3)

where F is the material model. The body force density b will be assumed to vanish in the remainder
of this paper. The antisymmetry requirement (2) implies

F(-71,-i1,-0 = -F(11,7),0 (4)

for all y, 7'1, and e.

Let a one-dimensional bond-based peridynamic material model be given by

Ferbii, 0 = C(07/ + D(07./ (5)

where C is the micromodulus and D is the damping modulus. The material model (5) is essentially
the same as the one studied by Weckner and Mohamed [14]. A state-based viscoelastic material
model was proposed by Mitchell [7] but is not used here. From (4) and (5), the functions C and D
are required to possess the following symmetries:

C(-e) = C(e), D(-e) = D(e) (6)

for all e E [-S, 8]. The dissipation inequality derived from the second law of thermodynamics [10],
in the present notation, is written

f(5

L5D(0)2(e) de > 0

for all functions Y on [-6, 6]. This immediately leads to the following restriction on D:

D(e) ? 0 (7)

for all e E [-8, 6]. The restriction (7) will be assumed in the remainder of this paper. It is convenient
to treat C and D as functions on (oo, oo) that vanish outside [-6, 6]. With the material model
(5), and with zero body force density, the equation of motion (3) specializes to the following linear
integro-differential equation:

pii(x,t) = fc:C(e)(u(x + e,t) - u(x,t)) de + fo:0D(e)(71(x + e,t) - it(x,t)) de

for all x and t.

(8)

To relate the functions C and D to conventional material properties in the local theory, consider
a one-dimensional peridynamic model of a homogeneous bar with unit cross-sectional area. Assume
that the body is under constant strain E. The stress a is equal to the sum of all the bond forces
in bonds that have one endpoint with negative x and the other endpoint with positive x [11]. The
relative displacement between these endpoints is ri = ce. Therefore,

00 00

a = EE = i eC(e)(ce)de = c i e2C(e) de
o o

8
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where E is Young's modulus. Hence,

E = fcc 2C(0 k (10)
0

which provides the relation between C and Young's modulus. For a given value of E, many choices
of the function C are possible that reproduce it. These different choices result in different dispersion
curves.

Similarly, by considering the same body subjected to a uniform uniaxial strain rate e, it follows
that

( = f
oo

e D(0 k
o

where is the bulk viscosity.

An example of a peridynamic viscoelastic material model is illustrated in Figure 1, in which

C(0 = 
{rnax

if lel (5c,
otherwise,

MO = {

where Cmax, Dmax, 8c and 6D are positive constants, and

6 = max{k, SD } .

The computational examples below use the following values:

• P = 1,

• Sc = 1,

• 513 = 0.5,

• Cmax = 1,

• Dmax = 0.1.

9

Dmax if ll < 8D,
0 otherwise,

(12)



Modulus C,D
•

Cmax

Dmax

Micromodulus C(0

Damping modulus DM

6D SC

Figure 1. Example of a peridynamic viscoelastic material model.
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3 Waves with amplitude independent of position

Consider an infinite bar in which an initial condition is prescribed with oscillatory displacement as
a function of x and zero velocity everywhere:

u(x,0) = uo(x) := cos /cox, ii(x, 0) = vo(x) := 0 (13)

for all x, where k0 is a constant wavenumber. The propagation and decay of the resulting waves
will now be analyzed.

Denote by v(k) the Fourier transform of any real function v(x):

00
V(k) = T{v}(k) = f v(x)e-ikx dxoo 

with inverse given by

(14)

00
v(x) = T-1{V}(x) = —

1 
f V(k)eikx dk. (15)

27r ,

The convolution theorem for Fourier transforms states that for two functions v(x) and w(x),

T{v * w} = T{v}T{w}, (v * w)(x) := f cx) v(p)w(x - p) dp. (16)

Using the symmetries (6), (8) can be written in the form

pu = (C * u - Pu) + (D * U - Qa) (17)

where the real numbers P and Q are defined by

6 6
P = C(0) = i C(0 k Q = D(0) = i D(0 k

-6 -6
(18)

Taking the Fourier transform of (17) using (16) then leads to

pft(k,t) + (Q - D(k))u(k,t) + (P - C(k))ft(k,t) = 0 (19)

for all k and t. To analyze the waves resulting from the initial condition (13), assume a separable
solution to (19) of the form

U(k,t) = U(k)e't (20)

where w is the (complex) frequency and II is a complex-valued function. Taking the time derivative
of both sides of (20) yields

ti = -U..oft, U. = -2U.

From (19), (20), and (21),

(21)

[- pc.02 - i(Q - D)c4.; + (P - C)]U = 0. (22)

This implies that the transformed equation of motion (19) is satisfied for arbitrary U, provided
that

-pw2(k) - i(Q - D(k))w(k) + (P - C(k)) = 0 (23)

11



for all k. In an initial value problem, U is determined by the initial conditions. It is convenient to
rewrite (23) in the following form:

w2(k) 2ir(k)w(k) — Q(k) = 0 (24)

where r and Q are defined by

r(k) = 
Q — D(k) 

, Q(k) = 
P — C(k) 

2p
(25)

for all k. The functions r and Q are even and real-valued for real k. Applying the quadratic formula
to (24) results in

w(k) = —ir(k) 02(k) — r2 (k) (26)

for all k. After applying the inverse transform (15) to the transformed solution (20), the displace-
ment field is given by

r ei(kx—w(k)t),=,u(x,t) = u(tz) dk.
27i

After working through the details, the displacement field is given by

e—r(ko)t
u(x,t) =  2  [cos(kox — wo(ko)t) cos(kox + wo(ko)t)]

where wo is defined by

provided

(27)

(28)

wo(ko) = VQ(ko) — r2(ko) (29)

Q(ko) — r2(ko) 0. (30)

If the condition (30) is not met, the material has so much damping that the waves do not propagate:

cos /cx
u(x,t) =  

o 
[A2e—A1t — Aie—A21

A2 —
(31)

where Ai and A2 are real numbers defined by

Ai(ko) = r(ko) + Vr2(ko) — Q(ko),

A2(ko) = r(ko) — Vr2(ko) — Q(ko).

The expression (29) provides a damping-dependent dispersion relation for the material, since it
gives the frequency as a function of wavenumber. For the material model (12), such a relation is
shown in Figure 2 for four different choices of the damping modulus. These curves demonstrate that
propagating waves may or may not exist for different combinations of wavenumber and damping.
(This is true of the local theory too; see Appendix B.) The dispersion curves also illustrate that
for each choice of damping, there is a different cutoff frequency above which waves do not exist.
This leads us to expect that for a wave source applied to a boundary, waves cannot propagate into
the medium above a certain frequency that depends on the amount of damping. This expectation
is confirmed in Section 5.
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Figure 2. Dispersion relations for the viscoelastic material.
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4 Nonlocal stress within a wave

Again consider the initial value problem discussed in the previous section, which resulted in waves
whose amplitudes are independent of position but decay over time. In the local theory, the stress in
a wave in a viscoelastic material undergoes a phase shift relative to the strain, because the velocity
gradient, which contributes to the stress, is out of phase with the strain (see Appendix B). To
investigate the analogous phase shift in the peridynamic material, it is helpful to introduce the
complex bond micromodulus C* defined by

C* (,k) = C(0 — iw(k).1)(0 (32)

where w(k) is given by (26) and is in general complex-valued, the imaginary part representing a
decay constant. Observe that the symmetries (6) carry over to C*:

For a wave of the form

C* = C* (e, k). (33)

u x t 
= ei(kx—wt),

(,)

the bond extension n, which is now complex-valued, is given by

rj 
= ei(kx—wt)(eik 1).= u(x + — u(x,t)

For the material model (5), the bond force in terms of the complex micromodulus is given by

f (x + = C* = c* oei(kx—wt)(ei4 1).

(34)

(35)

(36)

In one, two, or three dimensions, the peridynamic stress tensor v(x) characterizes the nonlocal
forces that are exerted by bonds extending from one side of a surface through a point x to the
other side [4]. This tensor field has the property that the peridynamic equation of motion can be
expressed in a form that formally is the same as in the local theory:

pi = f f + b = V • v +b. (37)

In practical applications, the peridynamic stress tensor is generally not very useful, because it is
much more difficult to evaluate it and its divergence than it is to evaluate the integral in (37)
directly. However, in the present case of viscoelastic one-dimensional waves, it provides insight into
the effect of nonlocality.

In one dimension, the peridynamic stress v(x) due to the wave (34) is found by summing up
the bond forces f (x + x) in all the bonds that cross x:

t

v(x, t) = I f (x — z + x — z) dz (38)
o o

14



From (36) and (38), and using the symmetry (33),

where

v(x, t) = 
r5 ie

Jo J 

c* (. k)ei(kx —

O O

6ei(kx — cot) cr*( k)f

0

kz—wt)(eik — 1) dz ck

[1 e-ikz dz1 (eik 1) d

0
iei(kx—wt) fb

k 0
C* (, k)(e—ik — 1)(eik — 1) ck

iei(kx—wt) fb

k 0
Cv*( , k) (2 — eilc — e—ik) ck

iei(kx—wt)

k (P* — C* (k))

ipei(kx—wt)

k 
Q*(k)

TiP Q*(k)u(x, t)

Q*(k) = 
P* — C* (k) 

P

= 
( P — C(k) ic, i (k)  Q — D (k) 

P ) P )
Q — 2iw (k)r (k),

in which Q and r are defined by (25), and

C* = .F{C*}, P* = C*(0).

From (26) and (29), for a wave moving to the right,

w (k) = w 0(k) — ir (k), w 0 (k) = , 02(k) — r2 (k)

where Q(k), wo, and r are all real-valued. Using (42), (40) can be written
more clearly its real and imaginary parts:

Q*(k) = (wg(k) — r2 (k)) — 2iw0(k)r (k).

For a wave with displacement given by (34), the stress in (39) can alternatively by written as

v(x ,t) = iS (k)ez[kx—w(k)t-0(k)]

(39)

(40)

(41)

(42)

in a form that shows

(43)

(44)

where S is the stress amplitude (more precisely the ratio of the peak stress to the peak displacement)
and 0 is the phase shift. From (39), (43) and (44), these quantities are given by

S (k) = —Pk(wg(k) + r2 (k)), 0(k) = sin-1 (  2w°(k)r(k) (45)
cog (k) ± r2(k))

15



or equivalently, using the second of (42),

S (k) = PQ(k) k , 0(k) = sin-1 (2r (kW Q(k) — r2 (k))

Q(k) • (46)

Interestingly, the first of (46) shows that S (k) does not depend on the amount of damping in the
material, because the expression does not contain r (k) . (This is true in the local theory too; see
Appendix B.) However, because (26) shows that w(k) has imaginary part —r (k), the displacement
u(x , t) in (39) decays with time at a rate that depends on the amount of damping. Figure 3 shows
the stress amplitude and the phase shift as a function of wavenumber for the material model (12)
with damping Amax = 1. The dispersion curve for this material is among those shown in Figure 2.

16
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Figure 3. Stress amplitude and phase shift for a damped peri-
dynamic wave. See Figure 2 for the dispersion curve.
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5 Attenuated waves

The previous two sections concerned waves that decay with time but whose amplitude is indepen-
dent of x in an infinite medium. The present section instead concerns the propagation of waves from
a source with constant amplitude on a boundary. We seek waves whose amplitude is independent of
time but dependent on position. In the presence of material damping, these waves have amplitude
that decays, or attenuates, with distance from the boundary at which the source is applied.

Attenuated steady waves moving in the +x direction are by convention written in the form

u(x,t) = e—axei(kox—w0t) (47)

where ko, wo, and a are non-negative real numbers. a is called the attenuation coefficient, which,
like wo, can depend on the wavenumber ko. To find a, recall from Section 3 that any transformed
displacement field of the form (20) satisfies the equation of motion, provided that w satisfies (24).
Consider the choice

U(k) = 270(k — (ko + ia)) (48)

where A is the delta function. From (15), (20), and (48), the displacement field is therefore

u(x,t) = e(iko—a)xe—ico(k0-kice)t (49)

where w (ko + ia) is computed from (26) and is in general complex valued. Comparing time-
dependent terms in the ansatz (47) with (49), the former is satisfied provided that

in which case we can set

Im{w(ko + ia)} = 0, (50)

wo = w(ko + ia). (51)

(50) implicitly provides the dependence of wo on a. Combining (26) and (50), for a given wavenum-
ber ko, an attenuated wave exists only if there exists a > 0 such that

Im{ — ir(ko + ia) + VQ(ko + ia) — r2(ko + ia)} = 0 (52)

where r and Q are defined by (25). (Of the two complex square roots in (52), the one on the right
half of the complex plane is used.)

For a given ko, the nonlinear algebraic equation (52) can be solved numerically for a if such
a solution exists. (Recall from the discussion in Section 3 that there are many combinations of
wavenumber and damping that to not correspond to propagating waves.)

By convention, the attenuation coefficient is plotted as a function of frequency in an attenuation
curve. Attenuation curves for the material model (12) are shown in Figure 4 for three different
values of Dmax. The solid lines are solutions of (52), and the dots are computed from direct
numerical simulation (DNS) using the numerical method described in Appendix A. As would be
expected, more damping results in a higher attenuation coefficient. For all three choices of the
damping modulus, the material cannot sustain attenuated waves from a source with frequency
higher than some cutoff.

18
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Figure 4. Attenuation curves for the example material with
three values of Dmas. Solid lines are from the analytical method,
and dots are computed from DNS (see Appendix A).
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6 Effect of group velocity on attenuation

Figure 5 shows the attenuation coefficient and dispersion curves as functions of wavenumber for
the case Dn.. = 0.01. Comparison of these curves suggests that for a given material model, the
attenuation coefficient tends to increase for waves whose wavenumber is close to a local maximum
or local minimum in the dispersion curve. The following analysis helps to explain why this happens.

Consider an undamped wave (D = 0) with wavenumber ku propagating to the right. From (26),
the frequency of the wave wu is given by

wu = wo(ku) = w(ku) = VC2(ku). (53)

For the undamped wave, (25) implies

ru = r(ku) = 0. (54)

Now add a small amount of damping AD while holding the real part of the wavenumber constant,
resulting in a small nonzero value of Ar given by (25). The damping results in a small attenuation
coefficient Aa which we will now estimate. The complex wavenumber is given by

k = ku + iAce. (55)

The change in the value of r due to the damping is approximated from the first two terms of a
Taylor series by

Ar iAaru' (56)

where ru' = 1 dk(ku) for the undamped wave and where Ai- is real-valued. Similarly define
Set, = dS21 dk(ku). From (25), for a wave moving to the right,

Au; = —iAr 0(VS2 — r2). (57)

Using (53)-(56), a first-order approximation to (57) is given by

By (53),

Au; = —iAr 
1 Al2 — 0(r2)

2 02,, _

+ iAar
,
u) 

iAaffu — 2i0aruru'
2wu

, iAael u
+ iAar„)  

2cou

= 2wucg, c =
g dk

dwu

(58)

(59)

where cg is the group velocity. As in the previous section, we require the frequency to be real.
Hence, from (58) and (59), since ru' and Sl'u are real,

0 = = Aacg. (60)

The conclusion is that

Aa
Or

l Cs

20
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Figure 5. Attenuation and dispersion curves for the example ma-
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bers at which the group velocity is zero.
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where the absolute value of c9 appears because the choice of ± in (60) is taken so that a > 0 for
waves moving to the right. The result (61) helps to explain why the attenuation curves tend to
increase at frequencies that are close to a maximum or a minimum in the dispersion curve (where
c9 = 0).
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7 Long waves

The results in Figure 4 illustrate that regardless of the amount of damping in the material model,
for long wavelengths (small k), the curves all approach straight lines with slope 2. To explain why
this happens, we will now derive an approximation for a when a and k are both small.

The symmetries (6) imply that C and D are real and that

C(—k) = C(k), D(—k) = D(k). (62)

It therefore follows that for small k,

C(k) = fIcos(k0C(0 ck R-.: f 
CX) 

.( 
k e 2 

0 ck1 2  ) C( (63)

where the first two terms of a Taylor series for cosine have been used. Using (10), (18), (25), and
(63),

P — C(k) Ek2 
Q(k) = (64)

p p

where E is Young's modulus. In terms of the classical wave speed co for undamped waves defined
by

Co =

(64) may be rewritten as

E
,

p

1-1(k) c--z.-,' c8k2.

For an undamped wave moving to the right, (29) implies that wo = \T-2, hence, from (66),

wo(k) c=-,' c0k

Similarly expanding the integrand in the Fourier transform D leads to

(k2
r(k):--' .

2p

where ( is the viscosity. Combining (61) and (68) yields

r (k2 (4 (4 a r-:-.: r-:-.:   -- --
cg 2pcg 2p4cg 2pc03

(65)

(66)

(67)

(68)

(69)

where the relation cg .--:--1 co has been used, which is accurate for long waves. The approximation
(69) is known as Stokes' law of sound attenuation and can be obtained from the classical theory
of acoustics [3]. Because of the quadratic dependence of a on coo, (69) explains why the curves in
Figure 4 all approach a slope of 2 at the left of the plot.
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8 Small horizon

The derivation of (69) assumed that 6 is constant and that k is small. However, the same result
is obtained holding k constant but assuming 6 is small. To see this, consider the following class of
material models with 6 as a variable parameter:

cu, 8) = 6-3c0(7), T := - . (70)

where Co is a function on [-1,1] such that Co( -T) = Co(r) for all T. Observe that according to
(10), this scaled micromodulus results in a Young's modulus E that is independent of 6:

E = f
00 1
e2C(, (5) < = f (6'02 (6-3 Co(r))(6 dr) = f 7-2Co(r)dr. (71)

Similarly, is independent of 6 if D is scaled according to

_D(, 6) = 6 3 Do(r), (72)

with
1

= 7-2Do(r)dr. (73)
0

With the scaling relation (70), for fixed k and small 6, we can still use the first two terms of a
Taylor expansion as in (63), with the result

C(k, 6) cos(k0C(0 <

lc.° (1 — q) C <
- P(k, 6) — 

22  
2C ck

- P(k, 6) k2 f (67)2 (6-3C0(7))(6c17)
0

- P(k, 6) — k2 J 72Co(r) dr0

P(k, 6) — E k2 (74)

where (71) has been used in the last step. From (25), (65), and (74), it follows that (66) continues
to hold under the present assumptions:

SZ(k, 6) c4k2 (75)

Similarly, using (73), (68) still holds:

r (k , 6) 
(2 

(76)
2p

The rest of the derivation in Section 7 is unchanged. The conclusion is that in the limit of small 6,
Stokes' law of sound attenuation is still obtained:

4
2 pc

a(k , 6) 3 (77)
0
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in which the right hand side is seen to be independent of S. Of course, this result hinges on the
scaling of C and D such that E and ( are independent of 6, as given in (70) and (72). Thus, the
well-known behavior of waves in the local theory is obtained from the peridynamic formulation in
the limit of small nonlocal length scale.
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9 Discussion

The results in this paper demonstrate the interaction between nonlocality and rate dependence in
determining the evolution of waves from a source on a boundary. The attenuation coefficient a
depends strongly on the frequency of the source. As in the local theory, a varies quadratically
with frequency for small wavenumber k. Propagating waves may or may not exist at a given
frequency for different choices of the functions C and D in the material model. The attenuation
coefficient depends strongly on the group velocity at the applied frequency and tends to increase
near frequencies at which cg = O. In the limit of long waves, the dispersion and attenuation
properties of waves in the nonlocal model approach those of waves in the local theory. The same is
true in the limit of small horizon, demonstrating the expected convergence of the nonlocal theory
to the local theory as the nonlocal length scale becomes small.

As noted in Appendix B, within the local theory, a viscoelastic material has an inherent length
scale Am,2„. The local viscoelastic model is therefore "weakly nonlocal," meaning that the charac-
teristics of the model depend on the geometrical length scale of the region and loading conditions.
In this sense, the local and peridynamic models are more similar to each other with viscoelastic
materials than with elastic materials. With an elastic material, the local theory has no such length
scale, while the peridynamic theory does. The similarity between local and peridynamic viscoelastic
response is illustrated in Figure 6, which compares the general form of the dispersion curves. The
curves have notable similarities, including a cutoff frequency.

It may be possible to fit a damping modulus function D to measured attenuation curves in a
real material, analogously to the fitting of the micromodulus function C to measured dispersion
curves [15]. Conceptually, it seems possible to relate spatial nonlocality to molecular relaxation
times in a real material, which are widely believed to affect wave attenuation [3]. This relation may
be provided, for example, by associating a bond length with a characteristic time scale IWco,
where co is the wave velocity.
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Peridynamic

Wavenumber k

Figure 6. Local and peridynamic dispersion curves in a vis-
coelastic material.
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A Direct numerical simulation (DNS)

The numerical method presented in [9] provides a simple way to simulate the propagation of waves.
The region is discretized into nodes i with equal spacing Ax. It is assumed that Ax is chosen such
that (5 = mAx for some integer m. The reference position and displacement of node i at time
step n are denoted xi and 7/7: respectively. The time step size At is assumed to be constant (it is
limited by the stability condition discussed in [9]). In this method, the equation of motion (8) is
approximated by

i+m
P
At2 z 

— 2u7 + uin-1) = E C(xj - xi) (urii - Ax
j=i-m

i+m
1/2 - vrii-1/2 AxE D(xj — xi) (q—

where

(78)

n-1/2 1 n -1)
vi = — (U• - Ui

n (79)
At

The material property functions C and D have the same meaning and values as in the previous
discussion.

In applying this numerical method to wave attenuation, the grid occupies the region [-8, L],
where L is chosen large enough so that the waves from the source at x = 0 never reach the right
hand boundary during the simulation time of interest. The displacements in the m nodes to the
left of x = 0 are prescribed:

ui = sin(wt), t = nAt, —m < i < 0, 0 < n (80)

where w is a constant frequency. The wave amplitude as a function of position follows a decaying
exponential shape, as predicted by the theory. The DNS attenuation coefficient is evaluated by
plotting a curve of log u vs. x as shown in the figure. The coefficient a is minus the slope of the
line.
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Figure A.1. Example of DNS of wave attenuation. The atten-
uation coefficient is found from the slope of the envelope of the
waves plotted on a log-linear scale, as shown on the right.
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B Results from the local theory

For purposes of comparison with the results in the preceding sections for peridynamic materials,
some properties of waves in viscoelastic media in the local theory are presented here. The material
model is given by

a = Eux (itx (81)

where ux = Ou/Ox. The equation of motion with zero body force is

(Yu = 0-x• (82)

For a wave of the form

u = ei(kx—wt) (83)

evaluation of a using (81) yields

= k(iE (w)ei(kx—wt) (84)

hence (82) becomes
pw2e4 = k(iE + kx—wt) (w)(ioei(kx—wo (85)

This leads to
(k2 2

CA.J2 2irew — 52e = 0, rt = Q 
Ek

f = (86)
2p

which is the same as (24) but with different coefficients. As in the nonlocal case, (86) can be solved
for w:

w = —irt±wt, = \ISZt — (87)

The second of (87) implies that a propagating wave exists only if SZE — r.2e > 0, that is, if

k <
4pE
(2 •

The maximum in the dispersion curve wt(k) occurs at

k = kmax :=
2pE
(2

at which the cutoff frequency is found from (87) and (89) to be

Wmax
E= we(kmax) = — •

(88)

(89)

(90)

The existence of a limiting wavenumber kmax provides a length scale for the material given by the
wavelength Amin corresponding to this wavenumber:

Amtn =   = 71(
Nmax

2

pE•
(91)

The dispersion curve has the general shape shown in Figure 6. The local material cannot sustain
propagating waves with wavelength less than Amzn•
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From (84) and (87), for a wave propagating to the right,

o- = i [(E — (re)k — i(wek]ez(kx—wt)

which simplifies to

a- = iSe(k)ei(kx—wt—M , St(k) = Ek, Ot = sin-1 ((we 
E) '

(92)

(93)

This expression for cr may be compared with (44), keeping in mind that the latter represents the
nonlocal stress rather than the stress in the sense of the local theory. In making this comparison,
note that since 12(k) varies quadratically with k near k = 0 (see (66)), S(k) and St(k) both vary
linearly with k near the origin.

To approximate the attenuation coefficient in the local theory for small k, observe that (65)-(68)
still hold, so Stokes' law of sound attenuation (69) is still obtained in the local model.
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