SANDIA REPORT

SAND2018-11010 Sandia
Printed September 2018 National
Laboratories

Diversity for Microelectronics
Lifecycle Security

Jason R. Hamlet, Jackson R. Mayo, Mitchell T. Martin, David Torres, and Jonathan W.
Cruz

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico
87185 and Livermore,
California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any
of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any
legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of
their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

SAND2018-11010
Printed September 2018

Diversity for Microelectronics Lifecycle Security

Jason R. Hamlet, Mitchell T. Martin, and David Torres
Systems Security Research
Sandia National Laboratories
P. O. Box 5800
Albuquerque, New Mexico 87185-MS0671

Jackson R. Mayo
Scalable Modeling and Analysis Systems
Sandia National Laboratories
P. O. Box 969
MS9158
Livermore, California 94551-0969

Jonathan W. Cruz
Center for Cyber Defenders
Sandia National Laboratories
P. O. Box 5800
Albuquerque, New Mexico 87185-MS0927

Abstract

In this work we examine approaches for using implementation diversity to disrupt or disable
hardware trojans. We explore a variety of general frameworks for building diverse variants of
circuits in voting architectures, and examine the impact of these on attackers and defenders
mathematically and empirically. This work is augmented by analysis of a new majority voting
technique. We also describe several automated approaches for generating diverse variants of a
circuit and empirically study the overheads associated with these. We then describe a general
technique for targeting functional circuit modifications to hardware trojans, present several
specific implementations of this technique, and study the impact that they have on trojanized
benchmark circuits.

This page left blank

TABLE OF CONTENTS

1.
2.

INEEOAUCTION ...ttt ettt ettt st st e nas 13
Hardware TTOJaNS.ccuiiiiieiieie ettt ettt et et e s e e beessbeenseesnaeenne 15
2.1. Hardware Trojan TaXOnOMIESc..cevvureerieeeiieeeiiieeeiieeeieeesreeeereeesneeesseeessaeeens 15
2.2, BenChmarks.......ooiiiiiiiiiiiiiicic e 16
2.2.1. Standard BetiChMarkEmwss s o @rmmiin s 16
2.2.2, Hardware Trojan Benchmarksccccooviiiiiiniiiiiiniiciecee 16
2.3. Trojan Mitigation APProaches..........cccueeriieiiiieiiiie et e 18
2.3.1. Trojans Introduced into Design Files.........cccccoevieviieiiiniiiinieniieeeee, 18
2.3.2. Trojans Introduced after Design is Completecccceeveveeeecieeenveeennnen. 19
Antomated Diversification of Digital CIrouits. s massmssnsissssmanssiss o sssnssiss aomns 21
3.1, Gate AddItIONeoueiiieiiiieieeteete ettt e 22
3.2, Gate Replacementccoouiiiiiiieiie et e et aeenes 24
3.3, Dynamic Output INVEISION.cccuieriiiiiieiieeieeiieeie ettt saeebee e 26
34, Column EXChange.........ccocuiiiiiiiiiiieicieecee ettt 28
33 Approimas ClrCOIlE «ssmsmmsssnossmmmsmsssmmnmsmenmnssmsm s s nss s s 30
3.6, POlyMOIPRIC GALES....cuiiieiiieeiiieeiie ettt ettt eesaaeeesveeesaeeesaeeenaaeenns 32
Modeling and Analysis of the Impact of Diversity on Attackerscccceveevereeneennene 35
4.1. Theoretical Security Effectiveness of Diverse Voting and Moving Targets in
Component ATCRITECLUIESeeuiruiirieeienieieiie ettt s 36
4.1.1. Assumptions about Component Vulnerabilitiescccceeevveerieennennee. 36
4.1.2. Routing Modelcoooouiiiiniiiiiiiitceee e 37
4.1.3. Effect 0f DIVErse VOINGc.coovieiiiiiieeiieiieciteeee et 42
4.1.4. Effect of MovINg Targetccceveenieiieniiniiienieseeiceecsece e 48
4.2. Hardware ConSiderations.........ccceerueerueruierieriieriienieeiesieenteseesieesteeeesieenseseesseensesnes 54
4.3, Conclusions and RecomMEAd SIS qusmmmunsinimmnmmssmimmsmmms s s s s 55
HEAIING VOTETS ...tieiiieeiiieee ettt ettt ettt ettt e et e st e enteesaaeenbeesnaeensaesneeenne 59
5.1. Analysis of Voting Systems Under an Error Model with Correlations Among
OULPUL BIES ..ttt et ettt e et e st e e beesabeenbeanneas 59
5.1.1. Notation and ASSUMPLIONSccuveeeruvrerrireeeiieeeiieesieeeeirreesreeesreeessreeens 59
5.1.2, Surrple Najority VOUEE o s anmsse s rmsse mrsmmmmssssn s 60
5.1.3. BAWASE: MIGTOFIEY VOREE w0500 vnain 5o oiias s oo b s s s 61
5.1.4. HeEaliNg VOTETeoeiieiiieiieeeee et 62
5.1.5. Trad@OTES ..o 63
5.2, Empirical RESUILSccoiiiiiiiiiiiiniecec s 65
Targeted Cireult ModiTiEating . cemmsmmms s s s mmmon s s 69
6.1. Use Cases for Targeted Randomization............cccceeeeeurieecieeecieesceeesee e 70
6.2. Trojan Targeting with Machine Learning...........c.cceceeeuievieniieniienieenieenie e 71

6.2.1. Efficiency of Neural Network Targeting Compared to Random
Selection 73

6.2,2. 25 OO —— 74
6.2.3. IDVSTCTNRIOIE i s i 6055 365 5094 58 A5 A G R R 75
6.3. Trojan Targeting through Identification of Common Trojan Structures 76
6.3.1. Register Transfer Level.........coocoeiiiiiiiiiiiicceee 77
6.3.2. NEtlist LeVEL....oiiiiiiiiie e 78

6.4. Trojan Targeting with Genetic Programming.............cceceeveeriienseenieenieenieessiennne 84

6.4.1. INTTETROROIY s im i w5555 5055 B3 4 A B A 5,58 58055 84

6.4.2. RESUILS .. 85

6.5. Targeting Dangling NOAEScc.cevieriieiieiiieiiecie ettt 89

6.5.1. APPTOACKH ... e 89

6.5.2. [S S ——— 91

Bottial MIRTROUE. . covessmumsssnmmanimusasmmsessis isesiosss e i s esssisimsisas st s 95

8. Additional Trojan Protection CONCEPLSeeeeveeeiiieiiiieeiieeeiieeeireesieeesreeeseeeesraeesaaeeenns 99
8.1. State Machine Tag@INgccocuieiiiiiiiiiieiieeieee ettt 99

8.2. Decouple Side Channels from the Information of Interest...........c.cceeveveeeenennnne. 100

9, U OIS UM NIV i s oo i 8095 56 5 5 103
0.1, FULUIE WOTK ..ttt et 103

References 107

FIGURES

Figure 1. A modified version of the hardware trojan taxonomy from [23]c..ccccuee.. 15
Figure 2. Gate addition involves adding a randomly selected gate to a logic cone. Then,
a reconvergence circuit is added at the output of the cone to recover the

cone's original functionality.cccooieiiiiiiiceceee e 22
Figure 3. Area overhead from gate additioncccooviiiiiiiiiciccceee e, 23
Figure 4. Performance overhead from gate addition................cccccooeieiiiiiiiiciicicecee 23

Figure 5. Gate replacement involves replacing a gate within a logic cone with a
randomly selected gate. Then, a reconvergence circuit is added at the

output of the cone to recover the cone's original functionality. 24
Figure 6. Area overhead from gate replacement...........c.cccooieiiiieniciiciecececeee e 25
Figure 7. Performance overhead from gate replacement..............c.ccccovevvevieveniienececeenee, 25

Figure 8. In dynamic output inversion the output of a gate within a logic cone is
selectively inverted as a function of the inputs to the logic cone. Then, a
reconvergence circuit is added at the output of the cone to recover the

cone's original functionality.cccoooieieiieiiiieeeeee 26
Figure 9. Area overhead from dynamic output inversion.............c.cccoceeeeviecieciececieeeee 27
Figure 10. Performance overhead from dynamic output inversion.............cccccoeveieeeenen. 27
Figure 11. In the column exchange approach output bits are selectively swapped......... 28
Figure 12. Area overhead from column exchangecccccoovieeeieieicieieeeee e, 29
Figure 13. Performance overhead from column exchange............c..cccooveveeiiiiiccieciccneene, 29
Figure 14. Area overhead from approximate CirCUitScccoceviiiieciiiiciecececeeeeee 31
Figure 15. Performance overhead from approximate CirCuits............cccccceevevvivcieviecieceennens 31
Figure 16. Area overhead from polymorphic gatesccccoevviiiiiieciceeeceeeeeeee 33
Figure 17. Performance overhead from polymorphic gates...........cccccooeeeiieiciciiciecee, 33

Figure 18. Diagram of message routing model. Nodes in each tier are numbered 0
through 9. Three example routes are shown by arrows. A node subverted
by an attacker is shown in red; in this instance, attack tier = 2 and
attack node = 3. Of the routes shown, only the green route suffers

6

Figure 19.

Figure 20.
Figure 21.

Figure 22.

Figure 23.

Figure 24.

Figure 25.

Figure 26.

Figure 27.

Figure 28.
Figure 29.

Figure 30.

Figure 31.
Figure 32.
Figure 33.

Figure 34.

Figure 35.
Figure 36.

Figure 37.

message corruption in this instance due to passing through the subverted
DT . o s o 56, 5 555 AE .55 8 G 555 AR 5.5 38
Attacker probability of success in the routing model for various numbers of
tiers and nodes per tier, and with routing either known or unknown to the
AHACKET. ..ot e 40
One realization of the routing model in hardware
Area overhead for the routing model structure as measured by increase in
the number of logic elements required to implement the circuit in a Cyclone
[V EPACESSF23C0 FPGA. ...ttt 41
Performance overhead for the routing model structure as measured by
increase in the number of logic elements required to implement the circuit in
a Cyclong IV EPACEBBF23CHE FPGA: s wmssisiniss sossmsnsssinis sissssnssvssssn inanss 41
Probability of compromise for a voter of compositions system with varying
numbers of components and for different key lengths.ccccoeieini 42
Hardware architecture for a voter of compositions
Area overhead for the "voter of compositions" structure as measured by
increase in the number of logic elements required to implement the circuit in
a Cyclone IV EP4CES5F23C6 FPGA. ..o, 44
Operating frequency overhead for the "voter of compositions" structure as
measured by decrease in the maximum operating frequency of the circuit in
a Cyclone IV EP4CES55F23C6 FPGA

Probability of compromise in the composition of voters structure for various
numbers of components, key lengths, and fractions of diversified
COMPONENES ..ottt e et e e e et e e e e e ta e e e e etbeaeeeeaasaeeeesnaeeeaan 45

Hardware architecture for a “composition of voters™cccooeeeieiiiecieenne 46

Area overhead for the " composition of voters" structure as measured by
increase in the number of logic elements required to implement the circuit in
a Cyclone IV EP4CESS5F23C6 FPGA.ooeieeeeeeeeeeeeeeeeee e 47

Operating frequency overhead for the "composition of voters" structure as
measured by decrease in the maximum operating frequency of the circuit in

a Cyclone IV EP4CESSF23C6 FPGAooieeeeeeeeee e 47
e =W et l = (BN (F3) SO T————————————— 48
Hardware architecture for a dynamic "voter of compositions".......................... 50

Area overhead for the dynamic "voter of compositions" structure as
measured by increase in the number of logic elements required to
implement the circuit in a Cyclone IV EP4CE55F23C6 FPGA. 51

Operating frequency overhead for the dynamic "voter of compositions"
structure as measured by as measured by decrease in the maximum
operating frequency of the circuit in a Cyclone IV EP4CE55F23C6 FPGA .51

Hardware architecture for a dynamic "composition of voters"

Area overhead for the dynamic "composition of voters" structure as
measured by increase in the number of logic elements required to
implement the circuit in a Cyclone IV EP4CE55F23C6 FPGA. 53

Operating frequency overhead for the dynamic "composition of voters"
structure as measured by as measured by decrease in the maximum
operating frequency of the circuit in a Cyclone IV EP4CE55F23C6 FPGA .54

Figure 38.
Figure 39.

Figure 40.
Figure 41.
Figure 42.

Figure 43.

Figure 44.

Figure 45.

Figure 46.

Figure 47.

Figure 48.
Figure 49.
Figure 50.

Figure 51.
Figure 52.
Figure 53.
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58.

Figure 59.

Figure 60.
Figure 61.

Attacker probability of success as a function of the number of components in

various diversity arChiteCturescccoocveoveiciiccececeeece e 57
Comparison of simple majority, bitwise majority, and healing voters as a

function of the independence between output bits............ccocoveiiiiiiiieeinnie. 65
Bit error distributions for variants of trojanized AES benchmark circuits......... 66
Our overall approach to identify and selectively randomize trojan nets.......... 73

We convert circuit netlists to graphs by creating a vertex for each net in the
netlist, with edges connecting vertices i and j if j is the output of a gate and i
is an inputto the same gate...........ccoooiiiiiiciiceee e 74

We define the efficiency of the neural network targeting as the number of
suspicious nodes identified by the neural network divided by the number of
nodes we have to randomly select to identify the same number of trojan
nodes as the neural network

Selective deletion and selective randomization of circuit nodes both disable
17/21 trojans. Selective randomization impacts an additional 2/4 remaining
trojans, while both approaches failed to impact 2/4 trojans...........cccccucune.. 75

Comparison of the number of simulation failures from encrypting 100,000
random AES-128 (plaintext, key) pairs when using 2,000 and 10,000
simulation vectors during the circuit modification step and with and without
MAJOIIEY VOUING. .ottt sttt et saeeaeesnenas 76

Masking circuit structures, such as comparators, with a key prevents the
circuit from functioning correctly for users without knowledge of the correct

K Y ettt et et e e aa e e be e tbe e beeetae e beeesteebeeerteabeesseeeraean 77
Graph representation of sample 4-bit counter with comparator and 2-bit

OULPUL. ettt e et e e et e e s b e e e sbeeesssaeesaseeesnseeennseeans 79
S-Graph representation of sample 4-bit counter with comparator................... 80
Final reduced graph of sample 4-bit counter with comparator. 81

Sample circuit with toggle rate for each wire. The red nets is unrelated to the
comparator structure of interest. If it is included in a bit slice, then that slice

WIll DE UNCIEAN. ..o 81
Template "==" comparator StruCtures.ccccocueeviiriieiiecieeeeece e, 82
Exanmpte Civer S TIEIEI L s sn s omos om0 b0 5 5005565 s 83
A tree representing the XOR of inputs X4 @and Xa......cccoeevevieveeiieeienieiecieseeee 85
XOR Fitness (stop condition at generation 87)ccccoovevveciiiiececcieeieee, 86
Tree Representalion ... 87
Accuracy VS. COMPIEXITY.......c.coieirieiiiieiieieeeee et 88
GENELIC OPEIALOrS.......ceviveeeeeeeeeeee ettt enas 88
Dangling nodes are gates that do not appear on any path between the

CIrcUit's PIS @nd POS.c.ooiiiiieee e 90
Example leakage Trojan in which the Trojan trigger and Trojan circuit consist

entirely of dangling NOAESccoooiiiiieiiceeececeeee e 90
Simulation of a Trojanized AES CirCUitc..coovieiiieiieeeeeeee e 91
Simulation of a Trojanized AES circuit after randomizing the fan-out cones of

daNGliNG NOUES ..ot 92

Figure 62. Area overhead from randomizing the logic cones of various percentages of
the dangling nodes in a collection of AES Trojan benchmark circuits. Some
of the Trojans are of the leakage type, while others are not. 93

Figure 63. Operating frequency overhead from randomizing the logic cones of various
percentages of the dangling nodes in a collection of AES Trojan benchmark
circuits. Some of the Trojans are of the leakage type, while others are not.

.. 93
Figure 64. Comparative redundancy is an alternative to majority voting that can correct

SOME AOUDIE EITOIS ... 95
Figure 65. A state machine with three defined states and five undefined states 100
Figure 66. A state machine with enforced control flowc.cccoevviiiiiiiiiici, 100

Figure 67. (a) A temperature side channel is created by rapidly charging and
discharging the parasitic capacitances of an ICs I/O pins as a function of
some secret data [51,52]. (b) The circuit can be modified to remove the
dependence on the secret data............cccooeeiiiiiiiiiicicc e, 101

Figure 68. (a) A pseudo random number generator is used to encode secret data ko,
K1...kn.1 in the power consumption of a group of capacitors [22]. (b) The
capacitor’'s power consumption can be decoupled from the secret data. ..102

Figure 69. Additional trojan structures that can be targeted............c.cccoviieieiiiennn 104

Figure 70. Combinational (a) and sequential (b) variations of a trigger structure 105

Figure 71. Rare trigger conditions can be decomposed into smaller chunks so that no
individual combinational block has a control value so rare as to raise
suspicion [48]. Here, an n-bit trigger is decomposed into a cascade of
combinational blocks, each having four inputs. Eventually, a four bit trigger

IS PrOAUCE. ...ttt et et s e e s e s s e eseesasaenseennnas 105
TABLES
Table 1. Overview of Trojan BenChmarks...........ccccooiiiiiiiiiiiiieececceeceeeee e 17
Table 2. Relative comparison of overhead from various circuit diversification
APPIOACKNES ...ttt ettt e et e et e e e et e eaneesaaeenreennes 34
Table 3. Average area and performance overheads for various diversity architectures at
T00% COVEIAQE ..ottt ettt ettt ae et se e sae s esessesseeseeneeneens 55
Table 4. Simple Majority Voter Output Possibilities.............ccooevieiiiiiiiceceeeee, 60
Table 5. Simple Majority Voter Output Probabilities............c.ccccooeeviiiiiieieee, 60
Table 6. Simple Majority Voter Results and Probabilities..............c.ccoovievieiiciiiieiee, 61
Table 7. Bitwise Majority Voter Output Possibilitiescccooveoieiiiiiiieeeec, 61
Table 8. Bitwise Majority Voter Output Probabilitiesccccoovevieiiiiciicieeeeeeeee, 62
Table 9. Simple Majority Voter Results and Probabilities..............cccoovieiiiieniciicii 62
Table 10. Healing Voter Output POSSIbIlItIESc.cooviiiiiiieeieeeeeeeeeeee e, 62
Table 11. Healing Voter Output Probabilities ..o, 63
Table 12. Healing Voter Results and Probabilitiescccocevieiieiiiicieeeeceeceee, 63
Table 13. Performance of majority voter implementations on selectively randomized
AES benchmarks circuits generated using 2,000 training vectors................ 66

Table 14. Performance of majority voter implementations on selectively randomized
AES benchmarks circuits generated using 10,000 training vectors.............

Table 15. Trojan structure identification

10

EXECUTIVE SUMMARY

The use of untrusted design tools, components, and designers, coupled with untrusted device
fabrication, introduces the possibility of malicious modifications being made to integrated
circuits (ICs) during their design and fabrication. These modifications are known as hardware
trojans. The widespread use of commercially purchased circuit designs, known as 3rd party
intellectual property (3PIP) and commercial design tools extends even into trusted design flows.
Unfortunately, due to the complexity of modern digital circuits, one cannot prove that a design is
free of trojans or exhaustively test it to ensure that no trojans are present. Furthermore, there is
no guarantee that trojan detection approaches will succeed at finding trojans. Consequently, we
desire methods for mitigating or eliminating the impact of hardware trojans as an additional,
complementary protection measure.

We investigate the use of implementation diversity to disrupt hardware trojans in ICs or FPGAs.
We draw our inspiration for using diversity from the existing literature on system reliability,
which has established that diversity in implementation, particularly when used in combination
with majority voting, can be effective at mitigating the impacts of common-mode faults.
Introducing implementation diversity can eliminate the presence of some of these common-mode
faults, increasing system reliability. If we take the view that any deviation from the desired
system behavior is a fault, then the source of these faults, be they natural, accidental, or
malicious, is irrelevant. Hardware trojans have some similarity to common mode failures since a
trojan introduced in a design file, whether at the register transfer or gate level, will be present in
all copies of the circuit produced from that design file. It follows that implementation diversity
should be effective at mitigating some malicious fault behavior, such as arises from hardware
trojans.

We present several architectures for introducing diversity into digital circuits, and provide
models and mathematical analysis of the expected impact of these architectures on attackers. We
then empirically evaluate the cost associated with implementing these architectures by finding
the area and performance overhead that results from applying them to a collection of benchmark
circuits. We also provide several approaches for automatically diversifying or randomizing
circuits at the netlist level, and also provide overhead results for these. Many of the diversity
architectures require some method of combining the results from several variants of a circuit into
a final output. We investigate tradeoffs between two traditional majority voter approaches, and
describe a new approach that preserves the benefits of the traditional approaches while reducing
their drawbacks. We also provide a general framework for selectively identifying and targeting
portions of a design suspected of containing trojans for diversification. We describe three
specific implementations of this framework. The first of these uses machine learning, the second
uses template matching in netlists, and the third identifies structures in hardware description
level representations of circuits. We describe implementations of these approaches and
demonstrations of the last two approaches to a benchmark circuit. We also apply the machine
learning approach to a collection of more than twenty benchmarks, and show that it is able to
eliminate or disrupt trojans over 80% of the time.

11

ACRONYMS AND DEFINITIONS

Abbreviation

Definition

3PIP

Third Party Intellectual Property

FPGA Field Programmable Gate Array

IC Integrated Circuit

LSB Least Significant Bit

PI Primary Input

PO Primary Output

PRNG Pseudo Random Number Generator
RTL Register Transfer Level

12

INTRODUCTION

The use of untrusted design tools, components, and designers, coupled with untrusted
device fabrication, introduces the possibility of malicious modifications being made to
integrated circuits (ICs) during their design and fabrication. These modifications are
known as hardware trojans. The widespread use of commercially purchased circuit
designs, known as 3™ party intellectual property (3PIP) and commercial design tools
extends even into trusted design flows. Unfortunately, due to the complexity of
modern digital circuits, one cannot prove that a design is free of trojans or
exhaustively test it to ensure that no trojans are present. Furthermore, there is no
guarantee that trojan detection approaches will succeed at finding trojans [32, 33, 34].
Consequently, we desire methods for mitigating or eliminating the impact of hardware
trojans as an additional, complementary protection measure.

In this work we investigate the use of implementation diversity to disrupt hardware
trojans in ICs or FPGAs. We draw our inspiration for using diversity from the existing
literature on system reliability, which has established that diversity in implementation,
particularly when used in combination with majority voting, can be effective at
mitigating the impacts of common-mode faults. Introducing implementation diversity
can eliminate the impacts of some of these common-mode faults, increasing system
reliability [29, 30, 31]. If we take the view that any deviation from the desired system
behavior is a fault, then the source of these faults, be they natural, accidental, or
malicious, is irrelevant. Hardware trojans have some similarity to common mode
failures since a trojan introduced in a design file, whether at the register transfer or
gate level, will be present in all copies of the circuit produced from that design file. It
follows that implementation diversity should be effective at mitigating some malicious
fault behavior, such as arises from hardware trojans.

In this report we will first introduce hardware trojans and then provide a brief
overview of the broad mitigation approaches we have investigated. Then, in Section 3,
we present several approaches for automatically diversifying digital circuits. Section 4
presents results from abstract modeling and analysis of the impact of diversity
attackers, as well as hardware structures capable of fulfilling the assumptions of those
models and experimentally determine overheads for implementing the resulting
structures in hardware. Many diversity techniques make use of majority voters, so in
section 5 we present an analysis of different majority voter structures, including a new
one developed by this project. Section 6 describes several approaches for selectively
targeting and randomizing or diversifying portions of a circuit likely to contain
hardware trojans. We evaluate the voters both probabilistically and empirically using
data from our diversified circuits. Section 7 presents results from formal analysis of
majority voter, comparative redundancy, and comparator circuits. Finally, Section 8
describes some additional thoughts on protecting circuits from hardware trojans. These
ideas were developed during the course of the project, but were not fully evaluated.
They are potential avenues for future work in this area.

13

This page left blank

14

2.1,

HARDWARE TROJANS

Hardware trojans typically consist of two components: some activation mechanism,
usually called a trigger, and a payload that modifies the behavior of the circuit in
some way. Triggers activate the trojan in response to some input to the circuit or
internal circuit condition. Triggers can be combinational or sequential. They can also
be time-based, sometimes referred to as a time bomb, in which case they activate after
the circuit has operated for some specified duration of time. Trojans that are not
triggered are said to be al/ways on. The trojan payload may change some functional
characteristics of the circuit, such as by inverting a signal in the original design. They
may also consist of new circuitry, such as a mechanism for leaking information
through a side-channel. Hardware trojans can have implementations as simple as
changes in the dopant of existing transistors or in the geometry of wires within an IC
[35]. These trojans do not require the introduction of any additional circuitry. In this
work, we are primarily concerned with trojans that modify the behavior of a design or
that introduce new behavior. These trojans will typically exist in register transfer level
(RTL) descriptions of circuits or in circuit netlists, and could be introduced by
malicious designers or design tools.

Hardware Trojan Taxonomies

Several hardware trojan taxonomies have been proposed [24,25]. These taxonomies
typically differentiate trojans on the basis of their physical characteristics, activation
or triggering conditions, and characteristics of their payload. Some further classify
trojans on the basis of where in the lifecycle the trojan is inserted into the design and
at what level of abstraction the trojan is implemented [23]. We find that the
effectiveness of trojan mitigations are often constrained by when in the lifecycle the
trojan is inserted and at what level of abstraction this occurs, so we prefer a taxonomy
that includes these characteristics. Ideally, designers could achieve “coverage” of
hardware trojans by applying one (or more) mitigations for each type of trojan within
a comprehensive taxonomy. To this end, we map our mitigations onto the taxonomy
illustrated in Figure 1.

hardware trojans

. Spe_Cification system level + always on change function
. desgn ‘ + development * triggered « change specifications
« fabrication environment * internally * leak information
* test « RTL * time based * denial of service
* assembly and - gate level » physical
package * transistor level condition
* physical level * externally
* user

* component

Figure 1. A modified version of the hardware trojan taxonomy from [23]

b

2.2,
2.2.1.

222,

Benchmarks

Standard Benchmarks

In Section 4 we study architectures for introducing diversity to arbitrary digital
circuits. The approaches presented there preserve the logical behavior of the circuit,
but may reduce an attacker’s ability to successfully introduce or take advantage of a
vulnerability in the circuit. They may also disrupt trojan payloads that operate on
analog characteristics of the circuit, such as by leaking secret information through a
side channel. For these diversity architectures we evaluate the overhead of adding
diversity to the circuit. We measure overhead by the increase in the number of
combinational functions required to implement the circuit in an Altera Cyclone IV
FPGA and by the reduction in maximum operating frequency of the diversified circuit
when compared to the original circuit. For these evaluations we use standard
combinational and sequential ISCAS benchmarks [27, 28].

Hardware Trojan Benchmarks

There are few open sources of hardware trojan benchmarks available to the research
community. The results presented in this work make exclusive use of a small set of
benchmarks available from [26]. Of these benchmarks, we have primarily made use
of the 21 AES-128 benchmark circuits and 10 of the RS-232 benchmarks. These
benchmarks and their characteristics are listed in Table 1. All of these benchmarks are
provided as Verilog RTL. We use the AES-128 benchmarks for testing our
mitigations, and the RS-232 benchmarks are used as training data for building
machine learning models to target trojan nets in the AES-128 circuits for the
mitigation described in Section 6.2.

Some of our mitigations operate at the RTL level, but the majority of them operate on
gate level netlists. For the netlist-based mitigations, we synthesize and map the RTL to
a small gate library consisting of 2-input NOR, NAND, OR, AND, XOR, and XNOR
gates, an inverter, a buffer, and a latch. We selected this simple gate library for ease of
implementation, but note that the mitigations could be implemented to target any gate
library of interest. Additionally, our netlist-level mitigations can be applied to trojans
inserted at the RTL or gate level. We were unable to test our mitigations on
benchmarks provided by [26] as netlists since we do not have access to the gate library
used in the benchmarks. Due to this, we test our netlist-level mitigations on RTL
benchmarks mapped to netlists.

Table 1. Overview of Trojan Benchmarks

Benchmark Design Abstraction Activation Effects

16

Phase

AES-T100 Design RTL always on leak information
AES-T200 Design RTL always on leak information
AES-T300 Design RTL always on leak information
AES-T400 Design RTL conditional leak information
AES-T500 Design RTL conditional (sequential) | denial of service
AES-T600 design RTL conditional leak information
AES-T700 design RTL conditional leak information
AES-T800 design RTL conditional (sequential) | leak information
AES-T900 design RTL time based leak information
AES-T1000 | design RTL conditional leak information
AES-T1100 | design RTL conditional (sequential) | leak information
AES-T1200 | design RTL time based leak information
AES-T1300 | design RTL conditional leak information
AES-T1400 | design RTL conditional (sequential) | leak information
AES-T1500 | design RTL time based leak information
AES-T1600 | design RTL conditional (sequential) | leak information
AES-T1700 | design RTL time based leak information
AES-T1800 | design RTL conditional denial of service
AES-T1900 | design RTL time based denial of service
AES-T2000 | design RTL conditional leak information
AES-T2100 | design RTL conditional (sequential) | leak information
RS232-T100 | design RTL time based denial of service
RS232-T200 | design RTL conditional reduce reliability
RS232-T300 | design RTL time based leak information
RS232-T400 | design RTL conditional leak information
RS232-T500 | design RTL time based denial of service
RS232-T600 | design RTL conditional leak information,
denial of service
Benchmark | Design Abstraction | Activation Effects
Phase

L7

2.3.

2.3.1.

RS232-T700 | design RTL conditional denial of service
RS232-T800 | design RTL conditional denial of service
RS232-T900 | design RTL conditional denial of service
RS232-T901 | design RTL conditional denial of service

Trojan Mitigation Approaches

In this report we consider security solutions that can be used to mitigate trust problems
that arise from the use of untrusted design tools, 3" party IP or untrusted designers,
and untrusted fabrication. We investigate two general approaches that apply to trojans
inserted at different times during the development process. Here, we briefly introduce
those approaches before entering a more detailed discussion in the following sections.
Additionally, we also map these methods to the hardware trojan taxonomy of Figure 1
to provide an understanding of which threats may be addressed by these techniques,
and which require mitigation by other means. This should help designers identify
suites of security controls appropriate for addressing the concerns within their
programs.

Trojans Introduced into Design Files

Trojans can be introduced into RTL circuit descriptions or netlists. This can be done
by malicious designers, whether they are outsiders providing 3PIP or insiders, or by
the design tools used to translate the RTL into netlists. Although more challenging,
trojans can also be inserted directly into netlists by malicious parties.

Identifying and correcting undesirable behavior in a circuit at a particular level of
abstraction requires access to a correct description of that circuit at some other,
typically higher, level of abstraction. For example, it is in principle possible to use a
(correct) specification document to verify an RTL implementation, or a correct RTL
implementation to verify a netlist. This is known as formal equivalence checking [36].
However, equivalence checking is not always possible. A common situation is to
purchase 3PIP as a netlist. In this scenario there is no suitable alternative description
of the circuit to perform equivalence checking against.

To address trojans of this nature we propose several approaches for targeting circuit
modifications to portions of a design likely to contain trojans. After each modification
the circuit undergoes a comprehensive simulation to ensure that the desired circuit
functionality has not been impacted. If the simulated behavior is acceptable, then the
circuit modification is retained. Otherwise, the modification is reverted and the next
suspect portion of the circuit is modified. The modifications themselves involve
selectively deleting or randomizing the implementation of some nets within a design.
This approach does require access to a suitable simulation testbench for the circuit. If
such a testbench is not available it may be possible to generate one by fuzzing the
original design [37]. Note that we assume that the testbench only exercises the desired
behavior of the circuit, and that it does not exercise any trojan behavior. This is

18

2.3.2.

reasonable since trojans are assumed to be hard to trigger or identify, and those that
are triggered by a simulation would presumably be detected and mitigated by other
means. Our targeted circuit modification based mitigations are described in detail in
Section 6. They are appropriate for addressing the following portions of the trojan
taxonomy from Figure 1:

Design phase: design
Abstraction level: development environment, RTL, gate level
Activation: always on, triggered (all types)

Effects: change function, leak information, denial of service

Trojans Introduced after Design is Complete

It is also possible for circuits to be trojanized after the design process has completed.
These modifications could be made to netlists or configuration files for FPGAs, or
could be introduced during the IC fabrication process. Since these trojans are inserted
after the circuit designer has completed the design, there is no further opportunity to
modify or randomize the circuit to disable or disrupt trojans. However, there are
structures that can be built into a design to make it more difficult for a malicious actor
to successfully insert or make use of trojans. Circuit obfuscation and approaches for
“locking” circuits may be useful for these purposes [38-45]. We consider the
introduction of diverse, redundant structures in a design to introduce redundancy,
complexity, and uncertainty for attackers. These mitigations do not change the
behavior of the circuit (from inputs to outputs) in any way, and so they cannot directly
disrupt trojans embedded in RTL or netlists that modify the circuit functionality.
However, it is possible for them to disrupt trojans that leak information through side
channels because, while these approaches do preserve the logical behavior of the
circuit, they do not preserve incidental analog characteristics such as timing or power
consumption. Additionally, by providing a diversity of components to select from at
run time these techniques can make it more difficult for attackers to ensure that a
compromised subset of the components will be selected. These mitigations are
described and analyzed in detail in Section 4. They are appropriate for addressing the
following portions of the trojan taxonomy from Figure 1:

Design phase: design, fabrication, test
Abstraction level: development environment, RTL, gate level
Activation: always on, triggered (all types)

Effects: change function, leak information, denial of service

19

This page left blank

20

AUTOMATED DIVERSIFICATION OF DIGITAL CIRCUITS

Here, we describe several approaches for automatically diversifying gate level netlists.
In this work, we use these diversification approaches in two separate ways. First, these
techniques can be used to generate functionally equivalent, but physically distinct,
variants of a circuit. These variants have the same logical behavior, but differ in the
way that behavior is implemented. This implies that the variants also have differing
analog characteristics, such as timing and power consumption, and that their fault
behavior will also be distinct. This further provides the possibility of changing
vulnerabilities or trojan behavior related to the specific implementation of the circuit,
although it cannot impact the logical function of a trojan at the output of the circuit
since logical behavior is preserved. Using these techniques to generate functionally
equivalent circuits is appropriate for implementing the diversity architectures studied
in Section 4. Second, these techniques can be used to modify the logical behavior of a
circuit. In this approach the functional behavior of the circuit is changed, and so it
becomes possible to alter not only the analog characteristics of the circuit, and any
trojans within it, but also the functional behavior of the circuit and its trojans. Many,
and perhaps even most, functional changes to a circuit’s behavior will result in
modifications to the intended behavior of the circuit and will prevent the circuit from
performing its desired function. Since we desire to preserve the intended circuit
functionality while selectively disrupting the functionality of trojans or other portions
of the circuit that are extraneous to the desired functionality, such as might arise when
not all portions of a complex IP core are needed in a particular implementation,
modifying the logical behavior of the circuit is more appropriate when used in
conjunction with one of the targeting techniques described in Section 6.

With these diversification approaches we first select a small logic cone within the
circuit, and then apply the modification approach to the small sub-circuit defined by
this logic cone. These diversification approaches all result in some change to the
functionality of the logic cone as defined from its primary inputs to its primary
outputs. Consequently, when we are creating functionally equivalent variants we need
to determine the truth table for the original cone before any modification is made.
Then, after the modification has been made we identify a reconvergence circuit, which
has as its inputs the primary inputs from the original logic cone and the primary
outputs from the modified cone, and produces as its output the expected behavior from
the original logic cone. We add this reconvergence circuit to the logic cone to undo
any functional modifications to the primary outputs of the original logic cone,
recovering the intended behavior. After these modifications are made the updated
logic cone is reincorporated into the circuit and we check for combinational and
sequential equivalence between the original and modified circuits. If either of these
fail, then the modification is reverted. If we are not creating functionally equivalent
variants then the reconvergence circuit is not needed.

For ease of implementation, in this work we always map circuits to a reduced gate
library consisting only of an inverter and two input AND, NAND, OR, NOR, XOR
and XNOR gates, as well as a buffer and a latch.

21

3.1.

Gate Addition

For gate addition we randomly select a two input logic gate and incorporate it into a
logic cone, as illustrated in Figure 2 [17]. We randomly select an existing gate within
the logic cone and use its output as one of the inputs to the new gate. The second input
to the new gate is a randomly selected node from the circuit that is not already in the
logic cone. If we are preserving the original behavior of the logic cone, then an
appropriate reconvergence circuit is added as well.

We experimentally determine the area and performance overhead for gate addition by
applying the technique to a collection of ISCAS benchmark circuits”. We measure area
overhead by the change in the number of logic elements required to implement the
circuit in an Altera Cyclone IV FPGA, and the performance overhead by the change in
maximum operating frequency (f,.x) of the circuit. To implement the gate addition we
first select a random node in the circuit and trace its transitive fanout for three levels
of logic. If the fanout exceeds 20 gates then a new random node is selected. If the
fanout cone has fewer than 20 gates, then we add a new gate to the logic cone. Then
we find an appropriate reconvergence circuit and incorporate it and the modified logic
cone back into the circuit. We repeat this process ten times, so that ten gates are added
to the circuit. The overhead results are presented in Figure 3 and Figure 4. From these
figures we see that adding 10 gates and corresponding reconvergence circuits to these
benchmarks increases area by an average of about 5% and has negligible impact on
fimax, With the average circuit seeing about a 3% reduction in f,,,, after gate addition.

h
e | G3
G2 ¢ — G2
¢c— G1 ir c—1 1 E I h— reconvergence
S 4= ?"" circuit B
(] —
Figure 2. Gate addition involves adding a randomly selected gate to a logic cone. Then,

a reconvergence circuit is added at the output of the cone to recover the cone's original

functionality.

*b01, b03, b04, b06, b07, b08, b09, b10, b1 1, b12, b13,bl14 1,b15 1,b17 1,520 1,b21 1,522 1, c432, c499,
¢880, 1355, c1908, ¢3540, c5315, 6288, 5208, 5298, 5344, s349, s382, s386, $386a, 5400, s420, s444, s510, s526,

s526a, s641,

s713, 5820, s832, s953, s1196, s1196a, s1196b, s1238, s1238a, s1423, s1488, s1494, s5378, s9234,

513207, s15850, 35932, s38417, s38584

22

A area (LEs) from gateaddition

—percent change
——mean

- 0.8 H = mean +/- std. dev
L
=
g 0.6 -
®©
)
204
©
L
(&]
C02=-p==—= - === el A i --
3
h;’ A 2 | g s

o’ YV NV U/ — W AN

_0.2 | | |
0 10 20 30 40 50 60
circuit
Figure 3. Area overhead from gate addition
A f _ from gate addition
max
0.2~
0.1

§ /\
“— 0
o 1
o)
- \ vy
< -0.1
(&)
-OE . — - — — — — — B - e - - - - B & L
8
= -0.2
o
03 —percent change
—mean
= mean +/- std. dev
_04 | | | 1 | |
0 5 10 15 20 25 30 35 40 45 50

circuit

Figure 4. Performance overhead from gate addition

23

3.2.

Gate Replacement

For gate replacement we randomly select a two-input gate within the logic cone and
replace it with a different randomly selected two-input gate [17]. If we are preserving
the behavior of the original logic cone then we also find an appropriate reconvergence
circuit to append to the logic cone. This approach is shown in Figure 5.

To implement gate replacement we choose a random node in the circuit and then trace
its transitive fanout cone for three levels of logic. If this transitive fanout cone exceeds
20 gates, then a new initial node is randomly selected. After extracting the logic cone,
we then randomly select three two-input gates from it and replace each of them with a
different two-input gate. If there are three or fewer two-input gates in the logic cone
then we replace all of the input gates. After making these replacements we find an
appropriate reconvergence circuit and add it to the logic cone. Then this modified cone
is reincorporated into the original circuit. We repeat this process ten times, so up to
thirty gates are replaced.

We experimentally determine the area and performance overhead for gate addition by
applying the technique to the same collection of ISCAS benchmark circuits as used in
Section 3.1. Overhead results are shown in Figure 6 and Figure 7. From these figures
we see that gate replacement has similar area overheads as gate addition, with an
average increase of about 3%, and also has negligible impact on f,,,, with the average
circuit showing about a 3% decrease in f,,,, after gate replacement.

b—7] G0 [2 63
G2 ¢ m— G2 —
5 il_ il_ Q — reconvergence (-
c G1 c G1 — circuit &
d_

Figure 5. Gate replacement involves replacing a gate within a logic cone with a

randomly selected gate. Then, a reconvergence circuit is added at the output of the

cone to recover the cone's original functionality.

24

A area (LEs) from gate replacement

0.6
—percent change
—mean
= 03 = mean +/- std. dev
L
= 0.4
©
Q
[}
(o)}
c
202
[&]
“E T ey — -
8 0.1
8_ m . A A A
o \,J\A/\,\/ V\JV\/ \
-0.1 :
0 30 40 50 60 70
circuit
Figure 6. Area overhead from gate replacement
A f___ from gate replacement
0.15 max

percent change f

Ry e Y B AV —percent change
—mean
-0.15 ~ mean +/- std. dev
-0
-0.2 I ! I I I
0 10 20 30 40 50 60

circuit

Figure 7. Performance overhead from gate replacement

25

3.3.

Dynamic Output Inversion

In the dynamic output inversion technique we randomly select a target gate within the
logic cone and attach its output to one input of an XOR gate [18]. The second input to
the XOR gate is a random function of 2 to 4 of the primary inputs to the logic cone.
For this random function we select an appropriate number of random two-input logic
gates to implement a function of the 2 to 4 inputs to one output. This results in the
original output of target gate being inverted whenever the output of the randomly
selected function is ‘1°. If we choose to preserve the original behavior of the logic
cone then an appropriate reconvergence circuit is added. This technique is illustrated
in Figure 8.

To implement dynamic output inversion we pick a random node in the circuit and
trace its transitive fanout cone for three levels of logic. If the resulting logic cone has
more than 20 gates then we discard it and choose a different starting node. After
finding a suitable logic cone we then partition it into two disjoint subcircuits. We then
find an output from the first subcircuit that is an input to the second. This is the signal
that we will selectively invert. We also find which inputs to the original logic cone are
also inputs to the first subcircuit. If there is only one such input then we start over by
picking a new random node in the circuit and then finding its transitive fanout cone. If
there are two such inputs, then we create a random function of them by combining
them with a random two-input gate. If there are three such inputs, then we choose
random gates. Two of the inputs are attached to the first random gate, and then the
output from this gate and the third input are combined with the second gate. If there
are four or more such inputs then we combine the first four of these with three
randomly selected gates. The first two inputs are combined with the first gate, and the
second two with the second gate. Then the outputs from these are combined with the
third gate. In any case, we XOR the output of this random circuit with the previously
signal that is an output from the first subcircuit and an input to the second. We then
find an appropriate reconvergence circuit and add it to the modified logic cone.
Finally, we reincorporate the modified cone and reconvergence circuit into the original
circuit. We repeat this entire process ten times.

GO

a GO e

G2 —¢ m—)

e
L
—fa [o2 |=

61 K F
a reconvergence o
b —

Qo

circuit

—] G3 d—

Figure 8. In dynamic output inversion the output of a gate within a logic cone is
selectively inverted as a function of the inputs to the logic cone. Then, a reconvergence
circuit is added at the output of the cone to recover the cone's original functionality.

26

We experimentally determine the area and performance overhead for dynamic output
inversion by applying the technique to the same collection of ISCAS benchmark
circuits as used in Section 3.1. Overhead results are shown in Figure 9 and Figure 10.
From these figures we see that this approach has larger area overheads than gate
addition and gate replacement, with an average increase of about 100%. This
technique also has a larger impact on f,,,x than gate addition and gate replacement,
with the average circuit’s f,,x decreasing by more than 30%.

" A area (LEs) from dynamic component obfuscation

—percent change
—mean
=~ mean +/- std. dev

o

w
|

______ m
AN

percent change area (LEs)
N

0 10 20 30 40 50 60
circuit

Figure 9. Area overhead from dynamic output inversion

A fmax from dynamic component obfuscation

max

(-
)
(@)
[=
®©
L
(&)
b=
©
2
)
o I N -
-0.6
—percent change
07 —mean
= mean +/- std. dev
-0.8 ‘ :
0 5 10 15 20 25 30 35 40 45 50

circuit
Figure 10. Performance overhead from dynamic output inversion

27

3.4.

Column Exchange

The column exchange technique is effectively a bus permutation [18]. It is
implemented by selectively swapping one output for another under some input
conditions, as shown in Figure 11. The technique can be implemented with controlled
crossbar switches that swap the output bits when the control condition is met.

To implement column exchange we pick a random node in the circuit and trace its
transitive fanout cone for three levels of logic. If the resulting logic cone has more
than 20 gates or fewer than 8 then we discard it and choose a different starting node.
After finding a suitable logic cone we partition it into two subcircuits by placing the
first half of the gates in one subcircuit and the second half of the gates in the second.
Then, we verify that there are at least two gates in the first circuit whose outputs are
inputs to the second circuit. If this is not the case, then we abandon this cone and
choose a new random starting node. If there are at least two such gates, then we
introduce a crossbar switch that swaps the outputs of these gates as a function
(randomly chosen XOR or XNOR) of two of the primary inputs to the logic cone that
are also inputs to the first subcircuit. We then find a suitable reconvergence circuit to
append to the cone, and incorporate the modified cone back into the original circuit.
We repeat this process ten times, so that ten logic cones in the original circuit are
modified by the column exchange technique.

We found the area and performance overhead for column exchange by applying it to
the same collection of ISCAS benchmark circuits as used in Section 3.1. Overhead
results are shown in Figure 12 and Figure 13. From these figures we see that this
approach has larger area overheads than gate addition and gate replacement, with an
average increase of about 60%. This technique also has a larger impact on f,,x than
gate addition and gate replacement, with the average circuit’s f,, decreasing by
almost 30%. These results are similar to those for dynamic output inversion.

dl |d0 |q0 |[ql dl |d0 [q0 (g1l
o |o |o Jo o |o [o |o
o |1 |A SLE (o\ T
1 (o [o/ No 1 o @j 0
1 (1 |1 |12 1 |1 |1 |1

Figure 11. In the column exchange approach output bits are selectively swapped

28

A area (LEs) from column exchange

4
—percent change
35 —mean
— = mean +/- std. dev
[72] 3k
L
5
® 2.5
o
®©
o 20
(@)]
=
_815—-— ——————— S R A e A__- - -
T 1
S /\ f\ AN A /-
SN AR RAAT N IBTANA I
0

-0.5 |
0 10 20 30 40 50 60
circuit
Figure 12. Area overhead from column exchange
A f__ from column exchange
max
0.4 -
—percent change
—mean
0.2 = mean +/- std. dev
s
£

percent change f
S
N
.
—
i
<}
—
—
-
I

_0'8 | | |
0 5 10 15 20 25 30 35 40 45 50

circuit

Figure 13. Performance overhead from column exchange

29

3.5.

Approximate Circuits

In the approximate circuits approach a circuit with intended function F is implemented
by creating a collection of circuits F;, F,...Fy.;, each of which deviates from the
functionality of F for a small number of input conditions. Since these functions
deviate from the intended behavior for some portion of their inputs we say that they
approximate F. We constrain the F;, F,...Fy.; by requiring that a majority vote on
their outputs results in the intended function F. This approach was previously studied
as a mechanism for enhancing circuit reliability [15].

To implement the approximate circuits approach we choose a random node in the
circuit and trace its transitive fanout cone for three levels of logic. If the resulting logic
cone has more than 40 gates then we discard it and choose a different starting node.
Similarly, we also discard the cone if it has fewer than 5 gates or more than 12 inputs.
After extracting a suitable logic cone we find its truth table and create three copies of
the cone. We then create the approximate circuits by inverting the outputs of the first
copy of the cone for the first third of the rows in the truth table. Similarly, the second
copy of the cone has its outputs flipped for the second third of the rows in the truth
table, and the third copy has its outputs flipped for the final third of the rows of the
truth table. These variants of the cone are then combined by introducing a majority-3
voter for each output bit of the logic cone. Since for every row in the truth table the
outputs are modified in a single copy of the cone, this approach ensures that the output
of the majority-3 voter will be the intended function. We repeat this entire process ten
times, so that ten logic cones in the original circuit are replaced by approximate
circuits implementations.

We found the area and performance overhead for the approximate circuits approach by
applying it to the same collection of ISCAS benchmark circuits as used in Section 3.1.
Overhead results are shown in Figure 14 and Figure 15. From these figures we see that
this approach has much larger area overhead than the other techniques, with the
average diversified circuit requiring almost 9X as many logic elements as the original
circuit. This technique also has significant impact on f,,, with the average circuit’s
fimax decreasing by almost 40%. This reduction in f;,,« is similar to those for dynamic
output inversion and column exchange. We note that generating the approximate
circuits in this way will usually result in sub-optimal implementations, and that more
sophisticated approaches for determining which outputs to invert might result in
considerably less overhead.

30

100 -

80 -

60 -

40

20

percent change area (LEs)

A area (LEs) from 3 approximate circuits with majority voter

—percent change
~—mean
H = mean +/- std. dev

0.2

max

percent change f

10 20 30 40 50 60
circuit

Figure 14. Area overhead from approximate circuits

A fmX from 3 approximate circuits with majority voter

—percent change

—mean
- mean +/- std. dev ﬂ A H

5 10 15 20 25 30 35 40 45 50
circuit

Figure 15. Performance overhead from approximate circuits

31

3.6.

Polymorphic Gates

A polymorphic logic gate is a gate that can change its functions in response to some
external condition. We consider functionally polymorphic gates, which are simply
logic gates whose behavior is determined by a set of configuration bits [39]. While
there are many implementations of a functionally polymorphic gate, it is easiest to
think of a simple 4:1 MUX structure, which can implement any logical function of two
variables by assigning the input variables to the two select bits of the MUX and then
defining the desired function at the four data inputs. In practice we use a more
complicated implementation that defines the polymorphic gates with a truth table. To
do this we define the polymorphic gate we create a function with five inputs and one
output. Two of the inputs are the inputs to the original logic gate. The remaining three
inputs are key bits that can are randomly assigned, and are the same for each row in
the truth table. The value of the output is determined by the logic gate that we wish to
implement. After defining this truth table we then implement the polymorphic gate by
finding a circuit that implements the truth table. An example truth table for a
polymorphic AND gate with key bits ko, k;, kp, input bits dy and d;, and output bit q,
is:

ko ki ko di do 9o

k, ki kg O O 0

ko ki kg O 1 0

ko k1 kg 1 O 0

k, ki kg 1 1 1

To implement the polymorphic gates we pick a random two-input gate from the
circuit. We then define a random polymorphic implementation for that gate as
described above by randomly choosing the key bits and generating the corresponding
truth table. We then replace the selected gate with the polymorphic implementation.
The key bits can be added as new primary inputs to the circuit or hardcoded. We
choose to hardcode them in our implementation. We repeat this process ten times, so
that ten gates are replaced with keyed polymorphic implementations.

We found the area and performance overhead for the polymorphic approach by
applying it to the same collection of ISCAS benchmark circuits as used in Section 3.1.
Overhead results are shown in Figure 16 and Figure 17. From these figures we see that
this approach has only a small area overhead, averaging about 2%. This technique also
has a negligible impact on f.,,x, with the average circuit’s f.,,x changing by less than
0.5%. This approach has the smallest area overhead of the diversification approaches
we considered, and essentially no impact on performance.

32

0.2

A area (LEs) from polymorphic gates

percent change area (LEs)
o

0.25

percent change fmax
o ©
o © 4. ©
o (6] - [6)] N
[

=
HE
\

—mean

—percent change

= mean +/- std. dev

10 20 30 40 50

\

60
circuit
Figure 16. Area overhead from polymorphic gates
A fmax from polymorphic gates

—percent change
——mean
= mean +/- std. dev|

A A /

5 10 15 20 25 30 35 40
circuit

Figure 17. Performance overhead from polymorphic gates

33

45

50

Table 2 provides a relative comparison of the area and performance overheads for
these six diversification approaches. Gate addition, gate replacement, and polymorphic
gates have the lowest overall overheads. Dynamic output inversion and column
exchange have moderately larger overheads than gate addition and gate replacement.
The approximate circuits approach has performance overhead comparable to that of
dynamic output inversion and column exchange, but the area overhead in our current
simplistic implementation is an order of magnitude larger than that from dynamic
output inversion or column exchange.

Table 2. Relative comparison of overhead from various circuit diversification
approaches

Gate Gate Dynamic | Column | Approximate | Polymorphic
Addition | Replacement | Output | Exchange Circuits Gates
Inversion
Area | low low medium medium very high low
fiiax low low medium medium medium low

34

MODELING AND ANALYSIS OF THE IMPACT OF DIVERSITY ON
ATTACKERS

Diversity and redundancy in hardware and software systems have previously been
studied as a means of enhancing the security of systems by limiting the impact of
vulnerabilities in those systems. Diversity in implementation can eliminate some
vulnerabilities and make it uncertain whether a given implementation will have a
particular vulnerability [1]. We consider the more general scenario of an attacker
purposefully inserting trojans or other malicious artifices. Diversity is of interest
because, while some properties of a system’s design can be proved exhaustively [2],
other “incidental” vulnerabilities still exist due to the particular way the system is
implemented, and possibly subverted, at a lower level [3]. A general technique to
quantifiably mitigate such remaining, a priori unknown vulnerabilities is to disrupt
adversaries’ ability to analyze and attack a specific implementation at their leisure, by
introducing design elements that are random or otherwise cannot be anticipated by the
attacker. This is known as a moving target. The case we focus on here is voting
several diverse implementations of the same function, so that a majority must be
compromised simultaneously to successfully attack the system. There is broad
evidence from previous work that moving targets, including diverse voting systems,
can increase the difficulty of attacks [4].

Our focus is on practical aspects of using diversity to reduce the utility of hardware
trojans. We place our emphasis on design-time constructs. Such approaches can be
repeated from design to design and are relatively easily implemented and studied
when compared to incorporating diversity during other portions of the lifecycle, such
as fabrication. We also have broad control over our own design processes. It is also
likely that design-time diversity can be automated, reducing the impact of diversity on
system designers. To incorporate design-time diversity we need to identify
frameworks for incorporating diversity into our systems and methods for creating that
diversity. In this section we present and analyze several such frameworks, and
evaluate the area and timing overheads that result when they are applied to a collection
of benchmark circuits.

We have developed models for abstractly studying the impact of various methods of
incorporating diversity into circuit designs, and have used these to craft probabilistic
expressions for studying the utility of the diversity frameworks over a range of
conditions. We begin with a routing model in which data is processed from the input
to the output of a circuit through several “tiers” of subcircuits. For example, tiers may
represent pipeline stages or distinct processing units. If we permit several diverse
implementations of each tier then we obtain a diversity of potential processing paths.
A single path is realized by selecting one unit from each tier. The attack succeeds if
any unit in the selected path has been subverted. Data can be processed along more
than one path in parallel to create a diverse voting system. By taking a majority vote
on the output of the distinct paths we can ensure that the output of the voter is correct
as long as fewer than half of the paths contain a subverted unit. This initial analysis
assumes that only one node in the system is compromised. If two or more distinct
processing paths pass through the same vulnerable node, then we interpret this as a
common-mode failure in which insufficient diversity was applied to restrict the

35

41.

4.1.1.

subversion to a single implementation. We present a probability relation that models
this scenario.

We next present a model in which the circuit is again divided into a number of
components, each of which can be diversified. We consider the scenario in which
three diverse implementations of the circuit are constructed and the output of the
circuit is voted on, which is conceptually similar to the previous model, in addition to
the scenario in which individual subcircuits are diversified and the subcircuit outputs
are voted on locally. We then generalize the second scenario to one in which only a
subset of the subcircuits is diversified. We present probability relations for these
models as well.

Finally, we consider a moving target model in which the attacker must be successful at
least m times within n tries for the attack to succeed, and in which the system is
modified after each of the attacker’s attempts. We present a broadly applicable
probability relation to model this scenario.

For each of these models, we also provide abstract hardware architectures that realize
the framework. We then apply these architectures to a collection of benchmark circuits
to augment our probabilistic understanding of the frameworks’ benefits with an
experimental understanding of the cost and performance overheads required to
implement them.

Theoretical Security Effectiveness of Diverse Voting and Moving Targets
in Component Architectures

Assumptions about Component Vulnerabilities

A digital system is intended to implement a specific mapping of inputs to outputs.
Incorrect function of the system for a particular input is interpreted as a vulnerability.
The system is made up of m components, and correct function of the system requires
correct function of all the components. Each component responds deterministically to
the system's input, and functions incorrectly for a fraction f of the possible inputs due
to implementation defects. We assume that implementations of the component can be
generated that are vulnerable to the same extent but on different, random subsets of
inputs.

Thus, for any chosen input, a fraction f of random implementations (variants) of the
component, sampled uniformly, will be vulnerable. This is the key condition we rely
on, and as long as it is satisfied, we can relax the assumption that each variant is
vulnerable on exactly a fraction f of inputs. Instead, the vulnerability fraction could be
greater for some variants of the component and less for others, provided that it
averages to fand is equally distributed over all inputs.

As an example of a more specific scenario with these properties, we can suppose: f =
2%, a component vulnerability is triggered by a particular k-bit segment of the input
matching a particular k-bit pattern, and this pattern is uniformly randomized among
variants. We call £ the key length.

36

4.1.2.

Given these assumptions, we wish to compute the probability that an attacker succeeds
in compromising the system, i.e., the system produces an incorrect output for the
attacker's input. The most basic relation is the following: For an attacker trying one
input, on a system constructed using a random (unknown to the attacker) variant of
each component, the probability of attacker success is the probability that at least one
component functions incorrectly for the chosen input, which is

p=1-(1-2%" (1)
For 2-*m <« 1, this reduces to
p=2%m (2)

The most basic security benefit of randomized implementations is seen because, if
instead the attacker did know the particular component implementations used, the
attacker could choose an input to which one component is vulnerable and succeed with
certainty (p = 1).

Routing Model

Diversity is of interest because, while some properties of a system’s design can be
proved exhaustively [12], other “incidental” vulnerabilities still exist due to the
particular way the system is implemented, and possibly subverted, at a lower level
[13]. The only existing general technique to quantifiably mitigate such remaining, a
priori unknown vulnerabilities is to disrupt adversaries’ ability to analyze and attack a
specific implementation at their leisure, by introducing design elements that are
random or otherwise cannot be anticipated by the attacker. This is known as moving
target defense. The case we focus on here is voting several diverse implementations of
the same function, so that a majority must be compromised simultaneously to
successfully attack the system. There is broad evidence from previous work that
moving target, including diverse voting systems, can increase the difficulty of attacks
[14, 15].

Diversity can be applied in a digital system design process in a variety of ways, and
correspondingly the specific modeling of that diversity can take many forms. We
initially sought a simple and tractable example. Our model is described and analyzed
below in terms of a design for routing of messages in a communications fabric, with
diversity implemented as randomized routes between nodes to mitigate the
consequences of subverting any particular node. However, we view this routing model
of diversity as a pattern that could be relevant at various stages in system lifecycles
involving chained dependencies that can be satisfied, either at design time or at run
time, by different combinations of partially redundant, possibly subverted resources —
e.g., multiple servers, compilers, or testers.

The structure of our notional communications fabric is shown in Figure 18. The
concept is that a message being transmitted from Origin to Destination passes through
each “tier” of nodes in between. A specific route is a choice of which node in each tier
receives and passes along the message. The number of possible routes for the example
in Figure 18 is 10°, because any of 10 nodes can be used in each of the 6 tiers. We

37

assume that the message will be corrupted, as desired by the attacker, if any of the
nodes it passes through has been subverted.

Tier O Tier 5

¥

0000000000

A,

CNONCNONCONONONONONC)

Origin | Destination

oXeX XeXeXe

LS

o)
4

‘000000000

O
O
Q
S ‘

OO00D0Q000O0O0

OO0CQ
4&)

Figure 18. Diagram of message routing model. Nodes in each tier are numbered 0
through 9. Three example routes are shown by arrows. A node subverted by an attacker
is shown in red; in this instance, attack tier = 2 and attack node = 3. Ofthe
routes shown, only the green route suffers message corruption in this instance due to
passing through the subverted node.

A given message could also be transmitted along more than one route in parallel; this
is how we instantiate a diverse voting system. Our simple approach for mitigating the
possible corruption due to a subverted node is to take a majority vote of the contents
of the message as received at Destination from the multiple routes. Thus, such a
multiply routed message is considered as being successfully attacked if at least half of
the routes used pass through a subverted node.

Our analysis assumes an attack model in which only a single node (in a single tier) can
be subverted. This is motivated by the idea that, given differences in the
implementation or provenance of each individual node, simultaneously subverting
more than one node is substantially more difficult and less likely than subverting just
one. For example, if the attack involves identifying a specific message or
environmental condition that triggers a latent vulnerability in a node, differently
implemented (and well-tested) nodes are unlikely to have a trigger in common. Or, if
the attack involves a deliberately inserted, rarely manifested flaw in a node
implementation, sourcing the nodes from independent suppliers makes it unlikely that
more than one of them would exhibit the rare flaw simultaneously.

Ultimately, any application of diversity is exposed to the potential for “unknown
unknown” common-mode vulnerabilities. When the entire system cannot be formally

38

proved, we must resort to some argument that diversity has been applied at the
relevant semantic levels to mitigate vulnerabilities of concern. Our analysis here
targets a specific increment of design: We quantify the effect of diversity in message
routing, given the requisite diversity in the underlying nodes. A more comprehensive
diversity approach would apply these concepts iteratively through multiple semantic
levels.

We start with a model intended to measure the benefit of diverse voting in the simplest
possible terms. We grant the attacker advance knowledge of our choice of routing, and
ask whether the attacker can compromise the design by subverting any one node.
Clearly, if we rely on any single route, the attacker can accomplish this by subverting
any one of the nodes this route passes through. For example, if we used the green
route in Figure 4.1, the attacker could succeed by subverting the node shown in red.

On the other hand, if we use redundant routing, the attacker can succeed against the
voting system only if there is a single node through which at least half of the routes
pass. There are many ways to choose three diverse routes, for example, such that no
two have a node in common, thereby ensuring that the attacker cannot succeed in our
model. Note that the blue, green, and gold routes in Figure 4.1 illustrate a case that
does not satisfy this condition (both the green and gold routes use node 6 in tier 4).
The number of nonoverlapping triple routes can be computed as follows: At each of
the 6 tiers, there are 10 choices for the first route, 9 choices (avoiding the node already
used) for the second route, and 8 choices for the third route. Thus the total number is
(10x 9 x 8)% ~ 1.4 x 10'7. This model was initially developed by a prior LDRD project
[16].

If the attacker knows the routing, the probability of attacker success, P(s), for a single

route is 1 and for three routes is
2 n n n (3)

when there are m tiers and n nodes per tier. If routes are unknown to the
attacker then P(s) for one route is 1/n and for three routes is

o= @G -2) G o

We plot these probabilities for various values of the parameters in Figure 19.

P(s)=1—(1—n

In digital circuits we can implement the routing model by finding a disjoint
decomposition of the circuit, creating diverse versions of each of the resulting
components, and then choosing a subset of these to implement the function. This
implementation is illustrated in Figure 20.

To evaluate the area and performance overhead of this implementation we applied it to
a collection of ISCAS benchmarks in an Altera Cyclone IV EP4CES5F23C6 FPGA.
We used the same set of benchmarks as in Section 3.1. We measure area by the
number of logic elements required to implement the circuit and performance overhead

39

by the change in maximum operating frequency (fyax). To implement the routing
model we first attempt to partition the benchmark circuit into 1024 disjoint
components. To do this we first choose a random node in the benchmark and then
trace its transitive fanout cone for 5 levels of logic. If the fanout at any point the
transitive fanout cone exceeds 200 gates then we randomly choose a new initial node.
We want to study the overhead

Attacker Success Probability, Three Parallel Routes

routing known to attacker,
10 nodes per tier,
vary number of tiers

1

0.8
routing known to
attacker, 6 tiers,
0.6
vary number of
nodes per tier
0.4
routing unknown to
0.2 attacker, 6 tiers
vary number of
nodes per tier
0
0 5 10 15 20 25 30 35 40

Figure 19. Attacker probability of success in the routing model for various numbers of
tiers and nodes per tier, and with routing either known or unknown to the attacker.

as a function of the percentage of circuit components for which redundant
implementations are produced. To do this we generate diversely redundant
implementations of 0-100% of the components in steps of 10%. The diversely
redundant implementations are generated by randomly selecting a component with
fewer than 8 primary inputs and then generating four diversified implementations of it.
Each of these four implementations is created by randomly choosing amongst the gate
replacement, gate addition, and dynamic output inversion techniques. We then
introduce one 4:1 MUX for each primary output from the component so that we can
dynamically choose which implementation to employ.

In Figure 21 and Figure 22 we present the area overhead, as measured by the number
of logic elements required to implement the circuit in an Altera Cyclone IV
EP4CE55F23C6 FPGA, and performance overhead, as measured by the change in

40

ro (= TR] ;10 poelfn >
4

w)l P
PPl | [b

fos 12 |5 fims >

F()

—
iy

3

Figure 20. One realization of the routing model in hardware

ISCAS I?i%%hmarks, Routing Model, Impact on Logic Elements

@
o ©
_. 800"
X ® *
() o
> 600 =
g ®
400 °
2 py * ., °
[#]
o i
S 200{ @ ° ® @
a ® . l (5]
0| o= =g "y | |
0 20 40 60 80 100

Coverage (%)

Figure 21. Area overhead for the routing model structure as measured by increase in
the number of logic elements required to implement the circuit in a Cyclone IV
EP4CE55F23C6 FPGA.

maximum operating frequency (f.x) When targeting the same FPGA, after applying
the routing model to the same set of ISCAS benchmarks as used in Section 3.1. As
expected, we see that the area overhead tends to increase with coverage, with the
average area overhead reaching about 100% at 100% coverage. There is wide variance
in the results, with most circuits showing overheads between 0 and 200% for coverage
ranging from 30-100%. A few circuits have overheads in excess of 300% for
overheads of 20% or more. We also find that f,,, decreases with increasing coverage,
although the loss in performance tends to level out after coverage exceeds 50%. The
average reduction in f;,,, is about 25% when coverage exceeds 50%. We observe wide
variation in the results for all coverage values, with some circuits showing an increase
in fi,.x even at 100% coverage and others showing reductions of 40% or more at only
10% coverage.

41

ISCAZSOBenchmarks, Routing Model, Impact on Fmax

o ©
® @
° g
~ 06y '! o
) x L.
2 ~20; o ‘ '
g . . ‘T | s o)
+ —40 = s '] I | [|
2 8 s § !
[} b ' .
o -60 ® g ¢ ° : .
o ©
® o
-80- ®

0 20 40 60 80 100
Coverage (%)

Figure 22. Performance overhead for the routing model structure as measured by
increase in the number of logic elements required to implement the circuit in a Cyclone

4.1.3.

4.1.31.

IV EPACES55F23C6 FPGA.

Effect of Diverse Voting

We consider a general template that places three random implementations in a voting
system whose output is the majority of the individual outputs. If there are two or more
incorrect outputs and there is no majority, we treat this as an incorrect behavior. This
represents a security analogue of the reliability technique of triple modular
redundancy, and follows a well-known formula: if the probability of incorrect output
from any one implementation is ¢, then the probability of incorrect output from the
voting system is 3¢° - 2¢°.

Voter of Compositions

For a “voter of compositions”, we use three random implementations of the entire
component-based system. Thus, we take ¢ as the probability from Eq. (1), and the new
probability of compromise is

p=3(1—(1=29"7=2(1—(1-25"))

We have constructed a concrete formal model of a voting system of this kind, and
computed the probability of compromise directly using the probabilistic model
checker PRISM [9]. The result p = 0.00111 for k = 8 and m = 5 agrees numerically
with Eq. (5). We plot Eq. (5) for various key lengths £ and number of components m
in Figure 23.

A potential hardware implementation of the voter of compositions is presented in
Figure 24. We begin with a circuit that implements some function /() and decompose
it into m disjoint components f; f; ... fn.;. We can then generate diverse
implementations of each of these m components to build diverse implementations of
the desired function F(). In Figure 24 we show three such implementations of F{().
These implementations are combined with a majority voter to implement the diversely
redundant voter of compositions architecture. In this implementation each of the three
variants of F()

42

Voter of Compositions Probability of Compromise

0.
10 key length 8
10° i key length 16
10710
10715 key length 32
102" ! ‘
0 10 20 30 40 50 60 70 80 90 100

Number of Components

Figure 23. Probability of compromise for a voter of compositions system with varying
numbers of components and for different key lengths.

43

utilizes the same decomposition into components. An alternative architecture is to
allow the component-wise decomposition to vary between the implementations. This
alternative architecture permits more diversity between the components and individual
implementations of F() by allowing the component boundaries to vary.

In Figure 25 and Figure 26 we present the area overhead, as measured by the number
of logic elements required to implement the circuit in an Altera Cyclone IV
EP4CES5F23C6 FPGA, and performance overhead, as measured by the change in
maximum operating frequency (fi.x) when targeting the same FPGA, for applying the
voter of compositions to the same set of ISCAS benchmarks as used in Section 3.1.
For these results, we consider the alternative implementation for which the component
definitions vary between the three implementations of F(). We evaluate the overhead
as a function of the percentage of the circuit “covered” by the diversification, where
coverage is measured as the fraction of components fy, f; ... f,..; for which we produce
diverse implementations. We consider coverage in steps of 10% from 0% to 100% of
the components. To generate the diverse implementations we first attempt to partition
the circuit into 1024 disjoint components. To accomplish this, we choose a random
node within the circuit and trace its transitive fanout for five levels of logic. If at any
point the number of gates in the transitive fanout cone exceeds 200 gates then we
select a new initial node. Then, for 0-100% of the components, in steps of 10%, we
randomly choose a component with fewer than 8 primary inputs. Next we diversify the
implementation of this component with randomly choosing amongst gate replacement,
gate addition, and dynamic output inversion. We repeat this process for the desired
fraction of components from the decomposition, and then proceed to the next copy of
F(). The outputs of the three variants of F() are combined by introducing one majority-
3 voter for each primary output of ().

fo,o —>) fl,O .80 fm»l,O —>)

for P fi1 |®®®| .1 || voter |>

fo,z —> f1,2 e fm-l,z —>

F()

Figure 24. Hardware architecture for a voter of compositions

44

ISCAS Benchmarks, Voter of Compositions, Impact on Logic Elements

10 e
—] [J
8 et ege $
Q . o @
o
E 0 r k i |
J
a ® ¢
5—10 ®
o °

®

® []

0O 20 40 60 80 100
Coverage (%)
Figure 25. Area overhead for the "voter of compositions" structure as measured by
increase in the number of logic elements required to implement the circuit in a Cyclone
IV EP4CES5F23C6 FPGA.

For these results we constrain the synthesis tool to preserve all of the latches in the
composition structure to prevent it from collapsing the three implementations of F()
into a single implementation. However, this constraint does not prevent the synthesis
tool from finding, and optimizing, redundancies in the diverse implementations of
individual components. Due to these optimizations we find that, on average, the voter
of compositions structure does not cause the number of logic elements to increase.
However, there is wide variance between benchmarks, with overheads ranging from
about -20% to about 12%.

The impact of the voter of compositions structure on fmax is also in dependent on
coverage, with there being no change on average. As with the area overhead, there is
considerable variance in fmax, with most circuits having anywhere from a 20%
reduction in fmax to a 20% increase. This suggests that diversifying individual

ISCAS Benchmarks, Voter of Compositions, Impact on Fmax

20 1 @
2 o il
=]
o 10 & ' - ! ®
[=]
=
e
U 0_ | + h
E
S -10- 4 ® ¢
< ° ° ®
a o ®
. .
-20 —

0 20 40 60 80 100
Coverage (%)
Figure 26. Operating frequency overhead for the "voter of compositions" structure as
measured by decrease in the maximum operating frequency of the circuit in a Cyclone
IV EP4CES5F23C6 FPGA

45

4.1.3.2.

components does not appreciably impact critical paths within the circuits or overly
burden placement and routing for these benchmarks.

Composition of Voters

For a “composition of voters”, we instead create a system in which each component is
individually diversified by voting three variants. More generally, a “composition with
some voters” is a system in which some components may be threefold voters while
others may be single random variants as before. Let d be the fraction of components
that are diversified as voters. Then dm components are diversified and (7 - d)m are not.
Applying the same basic voting formula, the probability of incorrect behavior for a
diversified component is 3f% - 2f3 = 3x2-?k — 2x2-3. Thus, the probability that at least
one component produces incorrect behavior is

p=1-(1-3x2%+2x23k)dm(] — 2-k)(1-d)m (6)

The probability computed from a corresponding PRISM model agrees numerically
with Eq. (6) for k=8, m =5,and d €{0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. When d = 0, Eq. (6)
reduces to Eq. (1) as it should. We plot Eq. (6) for various values of k, m, and d in
Figure 27. Particularly when £ is large, we see a strong benefit from diversifying all
components, but much less benefit when even one component is left undiversified, as
it becomes the weakest link.

We can even consider a higher-overhead “voter of compositions of voters” or “voter
of compositions with some voters”, in which the system with individually diversified
components is itself instantiated randomly three times in a higher-level voting system.
The probability of compromise is 3p? - 2p’ where p is given by Eq. (6).

A hardware architecture for implementing a composition of voters is shown in Figure
28. As with the voter of compositions, we first decompose function () into m disjoint
components fy, f; ... f.;. For this decomposition we attempt to partition the circuit into
1024 components by iteratively selecting a random node within the design and tracing

Probability of Compromise for a Composition of Voters

10°
108
10°10
10-15]
r 100 Components <8 bit key
=16 bit key
| 9432 bit key
10720 | ‘
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of Components Diversified

Figure 27. Probability of compromise in the composition of voters structure for various
numbers of components, key lengths, and fractions of diversified components

46

voter "' voter >

voter

F()

Figure 28. Hardware architecture for a “composition of voters”

its transitive fanout cone for five levels of logic. If the resulting component has fewer
than 200 gates then it becomes a component in our decomposition, otherwise we
randomly select a new starting node and repeat the process. Recall that in the voter of
compositions we could choose either to use the same decomposition for each
redundant copy of F(), or we could use different decompositions for the various
copies. In the composition of voters structure we use the same decomposition for each
of the redundant copies of the circuit so that we can vote on the outputs of the
redundant copies of the components.

We again consider covering from 0-100% of the components by randomly selecting a
fraction of the components from the decomposition fy, f; ... f,..; to diversify and vote.
For the diversification, for 0-100% of the components in steps of 10% we first choose
a random component with fewer than 8 inputs to diversify. Then, we generate three
diverse implementations of this component by randomly choosing between gate
replacement, gate addition, and dynamic output inversion for each of the diverse
implementations. The outputs from these three variants are combined with a majority
voter by introducing one majority-3 voter for each primary output of the component.

We found the area and performance overheads for a collection of the ISCAS
benchmarks as a function of the fraction of diversified components. For these
experiments we used the same ISCAS benchmarks as in Section 3.1. Results from
these experiments appear in Figure 29 and Figure 30. As before, we constrain the
synthesis tool to preserve all of the latches within the design to ensure that the diverse
implementations of the circuit are not collapsed into a single implementation. We find
that the area overhead from the composition of voters is on average more than that
from the voter of compositions, with an average overhead of only 65% even at 100%
coverage. This likely results from the necessity of using the same circuit
decomposition for each of the diverse implementations providing greater opportunities
for the synthesis tool to identify and optimize redundancies within the design. We still
observe a large variance in the area overhead, with overheads typically ranging from
0-200% for this set of benchmarks. For one of the benchmarks the overhead exceeds
800% for

47

ISCAS Benchmarks, Composition of Voters, Impact on Logic Elements
o ® @

-]
=
o

400 - e

adbrid]

Coverage (%)

Percent Change (%)

Figure 29. Area overhead for the " composition of voters" structure as measured by
increase in the number of logic elements required to implement the circuit in a Cyclone
IV EP4CES5F23C6 FPGA.

component coverages of 70-100%. We find that the area overhead increases steadily
with increasing coverage.

The performance overhead from the composition of voters structure also tends to
increase with coverage. Average reductions in fmax are about 0-5% for coverage from
0-20%, and about 10-20% for coverage from 20-100%. The variance in results is again

large, with fmax increases of almost 20% observed for some circuits, and decreases of
60-70% for others.

ISCAS Benchmarks, Composition of Voters, Impact on Fmax
20]

Percent Change (%)
58 o
*
.‘E.
*
v gl
eEmB e Nm e

0 20 40 60 80 100
Coverage (%)
Figure 30. Operating frequency overhead for the "composition of voters" structure as

measured by decrease in the maximum operating frequency of the circuit in a Cyclone
IV EP4CES55F23C6 FPGA

48

4.1.4.

Effect of Moving Target

All the results above apply to the probability of success for an attacker trying a single
input. If the attacker can make multiple tries, the probability of success increases. In
this case, if the component implementations are random but static, then once a system
vulnerability is found, it can be exploited repeatedly with certainty. On the other hand,
if the component implementations are re-randomized between attacker tries — a
“moving target" approach - then each attempt to compromise the system is
independent of previous attempts and equally difficult. This is particularly helpful to
security if the attacker's goals require compromising the system more than once, e.g.,
for exploration, testing, and deployment stages, and returning to the system repeatedly
over time to gain further benefits from the exploit.

In the moving target approach, if the attacker tries N inputs, each with independent
probability p of compromising the system, then the number of successes follows the
binomial distribution B(N, p). Because in a well-designed system p is very small, and
correspondingly the attacker likely needs a large number N of tries, the binomial
distribution can be approximated by a Poisson distribution with the parameter 4 = Np
(the mean number of successes) as N = o and p = 0. The probability of at least &
successes according to the Poisson distribution is

-1 Pl
P.(O=1-Y==1-Q¢A
i=otle 7
where Q is the regularized gamma function [10]. If & > A, then this probability is
small and is dominated by exactly ¢ successes:
26

Pa@~——
&le (8)

It has been noted that moving target does not have a strong effect on the difficulty of
compromising the system once, compared to static random implementations [11]. For
example, if the probability p = I/M is due to a single vulnerability in a large input
space of size M, then in the static case, an exhaustive search will find the vulnerability
with

49

Probability of > q Successes
Valid When Probability of Success Per Try is Small

10°° small decreases in attacker probability
[of success or number of tries, or
increasing the number of required
attacker successes, can greatly reduce

- [overall attacker probability of success
10°

| | | | 1 | |
0 0.5 1 1.5 2 2.5 3 35 4 4.5 5
Probability of Success Per Try x Number of Tries

Figure 31. Plots of Eq. (7)

certainty within N = M tries. The moving target result (Eq. 7) for the same number of
tries (A = Np = 1) indicates that the probability of at least one success (¢ = [) is I- I/e
~ (.63, which is still high. The advantage of moving target becomes apparent when
requiring multiple successes (£=2,3,...), since in the static case subsequent
compromises are immediate once the first is achieved, whereas the moving target
probability (Eq. 7) decreases rapidly with ¢, especially when 4 < 1. We plot Eq. (7) in
Figure 31, where the horizontal axis represents the parameter A.

We introduce dynamic, moving target aspects to our “voter of compositions” and
“composition of voters” structures by creating additional diverse implementations of
the circuit components and then using multiplexors to select specific implementations
to use during circuit operation. Although we do not specify how the select inputs to
these multiplexors are generated, there are many possibilities. The select inputs can be
chosen, and varied, individually or in groups. They can be defined once when the
circuit is fabricated, or its bitstream generated, or they can be changed over time. For
example, they can be updated each time the circuit powers on or on some schedule
during circuit operation. If they are varied during circuit operation then it may be
necessary to define the components along latch boundaries to ensure proper operation
of the circuit. The select inputs can be provided by a user, or calculated as some
function of the primary inputs and internal signals of the circuit.

First, we discuss the dynamic voter of compositions structure depicted in Figure 32.
As with the regular voter of compositions, we can either use the same decomposition
of function F() for each of the distinct implementations of F(), as shown in Figure 32,
or we can choose different decompositions for different variants. In either case, for
each variant of F() we first decompose the circuit into m disjoint components f, f; ...
fm-1- For each copy of F() we then generate a diverse collection of variants of each of
the m components. The outputs of these variants are input to a multiplexor that
chooses which of them to deploy. In Figure 32 we illustrate n variants for each of the
components, although it is not necessary that the same number of variants be
generated for each of the components, or that the same number of variants be used
from one implementation of F() to another. In either case, we use this approach to

50

generate a several distinct implementations of function F(), and the outputs of these
implementations are combined with a majority voter.

In these experiments we use the same collection of ISCAS benchmarks as in Section
3.1. For the results shown in Figure 33 and Figure 34 we use different decompositions
of F() for each of the three variants. We consider only 4:1 multiplexors in these
experiments. For each of the three copies of the circuit we first attempt to partition F()

\
v

f, }oo fo1
F()

4

F) |=

i B
» i
o (3 °
: : :
g EP o
oter B
[] [[]
[d o [J
[] [] []
> PN P o
[] [J []
[] [] []

F()

Figure 32. Hardware architecture for a dynamic "voter of compositions"

into 1024 disjoint components. To do this, we choose a random node in the design and
trace its transitive fanout for five levels of logic. If at any point the fanout exceeds 200
gates, then we reject this node and randomly select a new initial node for the
component. As before, we consider the impact of applying the dynamic voter of
compositions architecture to between 0% and 100% of the resulting components in
steps of 10%. To generate the components variants themselves we randomly choose a
component with fewer than eight primary inputs. We then generate four diversified
implementations of that component. The diverse variants are created by randomly
selecting amongst the gate replacement, gate addition, and dynamic output inversion
diversification approaches. We then add a 4:1 MUX to select between these four

51

diverse variants. This process is repeated until we have diversified the desired fraction
of the components. We then repeat this process to generate the remaining two variants
of F(), and finally combine the results of the three variants with a majority voter. For
this, we create one majority-3 voter for each primary output of F().

ISCAS Benchmarks,
Dynamic Voter of Compositions,
Impact on Combinational Functions

1500 ®
.] @
< 1250 o

¢ 1000 ® o o
s @ ® Qe
[1%]
5 7501 s § =
o g $
| ==

g 500 -
[«0]
o 250 '.-

o~/

0 20 40 60 80 100
Coverage (%)

Figure 33. Area overhead for the dynamic "voter of compositions" structure as
measured by increase in the number of logic elements required to implement the circuit
in a Cyclone IV EP4CE55F23C6 FPGA.

52

ISCAS Benchmarks,

Dynamic Voter of Compositions,
Impact on Fmax

-

0§ G s
> -20 i o ¢
C- g‘g‘éﬁ
£ 0 »
< -40 s 0 l
o Y7 o 2
¢ e}
s o *

0 20

Coverage (%)

Figure 34. Operating frequency overhead for the dynamic "voter of compositions"
structure as measured by as measured by decrease in the maximum operating
frequency of the circuit in a Cyclone IV EP4CE55F23C6 FPGA

The area overhead for the dynamic voter of compositions architectures is presented in
Figure 33. We see that the area overhead increases steadily with circuit coverage. The
overhead in this architecture is also much larger than in the static case, increasing to
almost 100% at 80% coverage. There is considerable variance across benchmarks,
with overheads typically ranging from 0-200% at 100% coverage. At 100% coverage
we expect approximately 1200% increase in circuit area (four redundant
implementations of each component in each of 3 redundant implementations of the
circuit), so these results are less than expected. We attribute this reduction to
optimizations performed by the synthesis tool, and to an inability to generate
redundant copies of all of the components due to our restriction that transitive fanout
cones have fewer than 200 gates. This restriction can prevent our tool from achieving
100% coverage.

In Figure 34 we see that reductions in fmax also increase more consistently with
increasing circuit coverage than in the static case. Here, we find that fmax initially
decreases steadily, reaching nearly a 40% reduction at 50% coverage. After this we
see relatively modest decreases in fmax, with the average hovering around 40% for
coverage from 50-100%. There is wide variation across circuits, with fmax reductions
ranging from 0-60% across all coverage levels, and extending to 0-80% when
coverage exceeds 50%.

Now, we discuss the dynamic composition of voters structure shown in Figure 35. As
with the static composition of voters, we begin by attempting to partition F() into
disjoint components fy, f; ... f.;. We generate several distinct implementations of
each of these m components. Then, the output from a subset of these implementations

53

is selected to be input to a majority voter. While Figure 35 illustrates n diverse
implementations of each of the components, in practice the number of distinct
implementations can vary from one component to the next.

> f, P f, pee|f >
F) | = . 1 :

voter voter voter >

F()

Figure 35. Hardware architecture for a dynamic "composition of voters"

ISCAS Benchmarks, Dynamic Composition of Voters, Impact on Logic Elements
1500 1

1000

[]
500

'Y o0

H
L+ HE
OC’--) | |
40 60 80 10

0 20 0

Percent Change (%)
»
®
L

Coverage (%)

Figure 36. Area overhead for the dynamic "composition of voters" structure as
measured by increase in the number of logic elements required to implement the circuit
in a Cyclone IV EP4CE55F23C6 FPGA.

For our experiments we first attempt to partition the circuit into 1024 components. For
this we randomly select a node in the circuit and trace its transitive fanout for 5 levels
of logic. If at any time we have more than 200 gates in the fanout then we reject this
initial node and select a new one to be the root of the logic cone. As with the other
architectures, we consider the impact of applying the dynamic composition of voters
architecture to between 0% and 100% of the resulting components, incrementing in
steps of 10%. To generate the component variants themselves we randomly choose a
component with fewer than eight primary inputs and generate four diversified
implementations of that component. The diverse variants are created by randomly

54

selecting amongst the gate replacement, gate addition, and dynamic output inversion
diversification approaches. We then introduce three 4:1 MUXs and one majority-3
voter for each output bit of the logic cone. This MUX structure allows any
combination of the four implementations of the component, including repetitions of a
single implementation, to be input to the majority voter.

We found the area and performance overheads for the same collection of the ISCAS
benchmarks used in Section 3.1 as a function of the fraction of diversified
components. Results from these experiments appear in Figure 36 and Figure 37. As in
the previous implementations, we constrain the synthesis tool to preserve all of the
latches within the design to ensure that optimization does not collapse the diverse
implementations of the components into a single implementation. We find that the
area overhead from the dynamic composition of voters is on average more than that
from the static composition of voters, which is to be expected. The average overhead
is about 120% at 100% coverage, with variation from 0-500% across circuits. This is
less than we would expect, and likely results from our requirement to use the same
circuit decomposition for each of the diverse implementations, which provides the
synthesis tool with opportunities to identify and optimize redundancies in the design.
While the overhead increases steadily with coverage, we see large variance across
benchmarks at all coverage levels. Area overhead typically varies from 0% to about
200% for 10-50% coverage, with maximum overhead increasing to about 500% for
coverage ranging from 60-100%.

ISCAS Benchmarks, Dynamic Composition of Voters, Impact on Fmax

¢ @
— 20
S ..'
S 0O l' "
=
£ % i'
-20
£ il +
o -40 = -
g ML
—60 "o
0 20 40 o

Coverage {%)

Figure 37. Operating frequency overhead for the dynamic "composition of voters"
structure as measured by as measured by decrease in the maximum operating
frequency of the circuit in a Cyclone IV EP4CE55F23C6 FPGA

The timing overhead from the composition of voters structure also increases with
coverage. Average reductions in f,,,x are always less than 40%, but with wide
variance. At all coverage levels we find that some circuits have reductions in fi
approaching 60%, while others have increased f,,,c. No circuit experiences more than
a 70% reduction in f,x at any level of coverage.

Both area and timing overheads are larger in the dynamic architecture than in the static
architecture, which is expected due to increasing the number of diverse

55

4.2,

implementations from three to four and from the incorporation of multiplexors in the
dynamic composition of voters.

Hardware Considerations

The models we have presented assume that the diverse implementations of the circuit
components have independent vulnerabilities. There are several ways that this
independence may be achieved in practice:

1. If each of the diversified components is restricted to preserve the intended
functional behavior of the component, then vulnerabilities that exist at a
semantic level other than the functional level can be impacted by mitigations
that preserve the input-to-output behavior of the components but that diversify
the internal behavior. Examples of such vulnerabilities are trojans that exist in
side channel analog behavior.

2. The logical behavior of the components can be changed, subject to the
constraint that the modifications do not prevent the circuit from performing its
intended function.

When combined with the hardware architectures presented in this section, the
diversification methods described in Section 3 are sufficient to address item 1. Other
simple modifications to circuit implementations could also be employed. For example,
a chain consisting of an even number of inverters can be replaced by a wire to change
the timing and power consumption characteristics of a circuit without modifying its
logical behavior.

For the second approach, one possibility for achieving these modifications is to
implement the components as collections of approximate circuits [15]. In this
approach a component’s functionality is implemented by three (or more) circuits, each
of which approximates the intended behavior of the component, and for which the
majority vote of the approximate circuit implements the intended behavior. In such an
implementation each of the approximate circuits implements different functions, and
so their vulnerabilities may also be different. Generating several distinct approximate
circuit based implementations of a component is also possible, allowing the approach
to be used in the “voter of compositions” architectures. A second possibility is to form
components consisting only or mostly of trojan nets, dangling nodes, or other circuit
structures that are unnecessary for proper functioning of the circuit as measured by a
comprehensive suite of simulations. Since these structures do not impact the intended
functionality of the circuit they can be modified freely without impacting the desired
functionality. However, under the assumption that trojan nets are only a small fraction
of the all of the nets in the design, there will be very few components that can be
diversified in this way.

Finally, we reiterate that the circuit variants considered in this section have the same
logical behavior as the original circuit from the primary inputs to the primary outputs,
but differ in the way that this behavior is implemented. This implies that the variants
also have differing analog characteristics, such as timing and power consumption, and
that their fault behavior will also be distinct. This provides the possibility of changing

56

4.3.

vulnerabilities or trojan behavior related to the specific implementation of the circuit,
although it cannot impact the logical function of a trojan at the output of the circuit
since logical behavior is preserved.

Conclusions and Recommendations

In Table 3 we compare the average area and f,,x costs for implementing the various
diversity architectures, and in Figure 38 we show the attacker’s expected probability
of success as a function of the number of components in the design over a range of
parameters for the various architectures.

Table 3. Average area and performance overheads for various diversity architectures at
100% coverage

% change area (average) % change f,,.x (average)
routing model 100% -25%
static voter of compositions 0% 0%
static composition of voters 65% -20%
dynamic voter of compositions 100% -40%
dynamic composition of voters 120% -30%

The routing model generally offers less protection than the other architectures, but at
comparable cost to the static voter of compositions and static composition of voters.

Comparing the static voter of compositions and static composition of voters, we find
that the composition of voters has on average much less overhead than the voter of
compositions, however, we also note that the variances are large and that the average
results from the voter of compositions are 0% because the results are distributed
approximately equally between increases and decreases in both fmax and logic
elements. Even so, the maximum overheads for the voter of compositions are less than
the averages for the composition of voters. However, assuming a perfect composition
in which the system functions correctly when each of the components functions
correctly, the composition of voters provides more protection against attacks than the
voter of compositions. Consequently, the choice between these static voting
architectures will depend on whether low overheads or attack resilience are more
desirable. Additionally, due to the symmetric variance in the voter of compositions,
we recommend finding the overheads for a specific circuit prior to choosing between
the architectures.

When we consider the dynamic moving target architectures we find that the dynamic
voter of compositions has somewhat less area overhead than the dynamic composition
of voters, but somewhat more fmax overhead. Since the attack resilience provided by
the dynamic architectures is related to the protection offered by the static architectures,
as described in Section 4.1.4, and the static composition of voters usually provides

57

10°¢

Attacker Probability of Success
o

1072

better attack resilience than the static voter of compositions, we find that the
composition of voters will usually be the preferred dynamic architecture.

Recall from Section 4.1.4 that the most dramatic decreases in attacker probability of
success from moving target architectures result from forcing the attacker to
successfully attack the system multiple times, with a more modest 37% reduction in
attacker probability of success when only a single successful attack is required. If we
cannot force the attacker to require multiple successes then the increased costs of the
dynamic voter of compositions over the static voter of compositions will usually not
be worthwhile. As such, we usually prefer the static voter of compositions to the
dynamic voter of compositions. On the other hand, if the performance reduction of the
dynamic composition of voters is acceptable, then the 37% reduction in attacker
probability of success when compared to the static composition of voters is appealing.
If the attacker can be forced into requiring multiple successful attacks, the dynamic
composition of voters provides the strongest protections for about twice the area
overhead and only modestly larger fmax overhead than the static composition of
voters. For these reasons, we recommend the dynamic composition of voters if the
impact on area is acceptable, and the static composition of voters when the area impact
from the dynamic composition of voters is unacceptable. When little area or fmax
overhead is tolerable, then the static voter of compositions is preferred.

1097 - k=4
f k=g
107 k=8
n= :
10
k=16
10®
n=8
k=16
== routing known to attacker, 3 routes 10-8 I
. routing unknown to attacker, 3 routes
/ == voter of compositions
n=16 ‘ composition of voters
0% | ‘
50 100 0 50 100
Number of Components Number of Components

Figure 38. Attacker probability of success as a function of the number of components in

various diversity architectures

58

This page left blank

59

5.1.

5.1.1.

HEALING VOTERS

In this section we analyze different majority voting structures and propose a new
majority voter structure, which we call a healing voter, that has better characteristics
than standard voter structures under many circumstances. There are several ways to
build a majority voter that determines what the output from a collection of diverse
variants should be. Consider the case of three diverse variants. If two or more of these
variants produce the same output, then the majority should be selected as the output.
More interesting is the case in which the outputs from the three variants are all
different, which implies that two or more of them are incorrect. The simple majority
voter, which compares the full output vectors from the variants, can detect this
scenario and choose to fail safe, rather than outputting an incorrect value, because
there is low confidence in the output. The bitwise majority voter, which compares the
output vectors bit by bit, cannot detect this scenario. However, it always produces an
output, and as long as the output variants have errors in nonoverlapping bits will
produce the correct output even when all of the variants differ. The simple majority
voter prefers integrity of the output, while the bitwise majority voter favors
availability. There are advantages to each of these. In particular, a failsafe output
would be preferred over the bitwise majority voters output when there are overlapping
errors in the variant’s output, but the simple majority voter may be too conservative
and choose the failsafe option too often. We propose a third option, the healing voter,
which using the bitwise majority output if it exactly matches the output of any of the
variants, and otherwise fails safe. This voter produces the correct output whenever two
of the variants have nonoverlapping errors, and fails safe most of the time when there
are overlapping errors. In this section we provide an analysis of these voting
approaches, and then validate our analysis by comparing the performance of the
various voter structures on the empirical data generated in Section 6.2.

Analysis of Voting Systems Under an Error Model with Correlations
Among Output Bits

Notation and Assumptions

The number of output bits is b. For each variant, at least on average, the fraction of
possible inputs that are “hard” (potentially yield errors) is 2. We assume that for each
possible input and a randomly chosen variant, with probability / - 4 there are
definitely no errors in the variant's output, and otherwise, i.e., when the input is hard,
each output bit may be incorrect with independent probability ». For 4 < I, this
introduces correlations among the output bits. The overall probability that a particular
output bit of a variant is incorrect is Ar. In a reliability scenario, 4 can be interpreted as
the probability of an intermittent event such as a particle strike within a circuit that has
the potential to corrupt any of the output bits, thereby making it “hard” to produce the
correct output. Given an input that is hard with respect to the variant(s) concerned:

e The probability that a variant's output is incorrect (w for “wrong") is
w=1-(1- r)b .

60

e The probability that two variants' outputs both have a common incorrect bit (d
for “doubly wrong”) is d=1-(1-7%)",

e The probability that two variants' outputs are different (u for “unequal”) is
uEl—(1—2r+2r2)b_

e The probability that one variant's output has an incorrect bit not present in a
. . = 2\b
second variant's output (a for “additional error”) is@ =1~ (1-7+7%)",
5.1.2. Simple Majority Voter

Table 4. Simple Majority Voter Output Possibilities

Correct Description Number of output Voter result
Variants possibilities
3 All correct 1 Correct
2 Two correct 3(2°-1) Correct
1 Two incorrect, no majority 3(2b- 1)(2b-2) Don’t care / fail-safe
1 Two identical incorrect 3(2b-1) Incorrect
0 All incorrect, no majority | (20- 1)(2b-2)(2Y-3) | Don’t care / fail-safe
0 All incorrect, two identical 3(2b- 1)(2b-2) Incorrect
0 All identical incorrect 2b-1 Incorrect
Total 2%

Table 5. Simple Majority Voter Output Probabilities

Description Probability
All correct (1 - hw)?
Two correct 3hw(1 - hw)?

Two incorrect, no majority

3h2(1 - hw)(-2w + 2w? + u)

Two identical incorrect

3h%(1 - hw)(2w - w2 - u)

All incorrect, no majority

h3(-2 +3w(2 - 4w + 2w? + u) + 2(1 - 3r + 3r?)®)

All incorrect, two identical

h3(3 + 3w(-3 + 5w - 2w2-u) - 3(1 - 3r + 3r?))

All identical incorrect

W3((1 - w)3+ (1 - 3r + 3r2)b)

Total

1

5.1.3.

Table 6. Simple Majority Voter Results and Probabilities

Voter result Probability
Correct 1 - 3h®w? + 2h’w?
Don’t care / fail-safe 3h2(-2w + 2w2 + u) + 2h3(-1 + 3w -3w?+ (1 -3r + 3r2)")
Incorrect 3h2(2w - w2 -u) + 2h3((1 - w)? - (1 -3r + 3r2)b)
Total 1

When # = I (all bits are independent and have error probability 7), the simple majority
voter corresponds to a “voter of compositions” with b components, each of which
produces one of the output bits. The previously derived “probability of compromise”
for such a system matches the probability of an other-than-correct result from above,
3w? - 2w?, with r = 2-¥ in terms of the previously used “key length” £.

Bitwise Majority Voter
Table 7. Bitwise Majority Voter Output Possibilities
Correct Description Number of Voter result
Variants output
possibilities
3 All correct 1 Correct
2 Two correct 3(2b-1) Correct
1 Two incorrect, all bits okay | 3(3°-2b*1+1 Correct
1 Two incorrect, some bit bad 3(22%b - 3b) Incorrect
0 All incorrect, all bits okay | 2%0-3(3b-2b) -1 Correct
0 All incorrect, some bit bad | 23b-22b+24 3b+1 Incorrect
Total 256

When & = [(all bits are independent and have error probability r), the bitwise
majority voter corresponds to a fully diversified “composition of voters” with b
components, each of which produces one of the output bits. The previously derived
“probability of compromise” for such a system matches the probability of an other-
than-correct result from above, I — (I — 32 + 2/°)?, with r = 27 in terms of the
previously used “key length” k.

62

5.1.4.

Table 8. Bitwise Majority Voter Output Probabilities

Description Probability
All correct (1-hw)?
Two correct 3hw(1 - hw)?

Two incorrect, all bits okay

3h2(1 - hw)(w?- d)

Two incorrect, some bit bad

3h%(1 - hw)d

All incorrect, all bits okay

h3(-1 + w3+ 3(1 -w)d + (1 - 3r2+ 2r3)b)

All incorrect, some bit bad

h3(1 - 3(1 - w)d - (1 - 32+ 213)P)

Total

1

Table 9. Simple Majority Voter Results and Probabilities

Voter result

Probability

Correct

1 —3h2(1 - h)d — h3(1 — (1 — 312 + 263))

Don’t care / fail-safe

0

Incorrect

3h2(1 - h)d + h3(1 — (1 — 312 + 213)P)

Total

1

Healing Voter

Table 10 - Table 12 present results for the healing voter.

Table 10. Healing Voter Output Possibilities

Correct Description Number of output Voter result
Variants possibilities
3 All correct 1 Correct
;) Two correct 3(2b-1) Correct
1 Two incorrect, all bits 3(3b-201+1) Correct
okay
1 Two incorrect, errors 32 -3(3>-2%-1) Don’t care / fail-
partly overlapping safe
0-1 At least two incorrect, (2b- 1)(B(3P-2%) + 1) Incorrect
errors conspiring
0 All incorrect, errors | (2°-3)(22*-3(3*-2b%)-1) | Don’t care / fail-
scattered safe
Total 23b

63

5.1.5.

Table 11. Healing Voter Output Probabilities

Description Probability
All correct (1 - hw)?
Two correct 3hw(1 - hw)?

Two incorrect, all bits okay

3h%(1 - hw)(w?- d)

Two incorrect, errors partly
overlapping

3h%(1 - hw)(d + 2a — w? —u)

At least two incorrect, errors
conspiring

3h2(w? +u—2a) +h3(-1 — w23 -w) +3(1 —w)d +
3a+(1-3r+3r2)b)

All incorrect, errors scattered

h3(1 +3w(w —w? —u) —3(1l —w)d - 3(1 —2w)a —
(1 —3r + 3r2)b)

Total

1

Table 12. Healing Voter Results and Probabilities

Voter result

Probability

Correct

1 —3h2(1 — hw)d — h3w?

Don’t care / fail-safe 3h3(d+2a—w?2—u)+h¥1+3w2-3d-3a—(1-3r+

3r2)b)
Incorrect 3h2(w? +u—2a) +h3(-1 - w23 —w) +3(1 —w)d +3a+ (1
—3r + 3r?)b)
Total 1
Tradeoffs

First, let us assume that only the simple majority and bitwise majority voting systems
are available, and consider the choice between them. Whenever the simple majority

voter gives a correct result, so does the bitwise majority voter. This is because, if at

least two of the three variant outputs are correct, then every bit has a majority correct.
Whenever the simple majority voter gives an incorrect result, so does the bitwise
majority voter. This is because, if at least two of the three variant outputs are identical
and incorrect, then some bit has a majority incorrect. The effect of using the simple
majority voter is that the fail-safe is output in some cases, where the bitwise majority
voter may be correct or incorrect. Whether this fail-safe is beneficial depends on how
likely it is for the bitwise majority voter to be incorrect in these cases, and how costly

the fail-safe is.

64

We model the “error cost” in the sense of a penalty incurred by the system owner for
each response that is other-than-correct. We normalize the cost of an incorrect system
output to 1, and denote the cost of a failsafe output by s. (The cost of a correct output
is 0.) A small value of s prioritizes integrity whereas a large value prioritizes
availability.

The interesting range is 0 < s < [.: If's < 0, then we should create a trivial system that
always outputs the failsafe because it is as good as a correct output; and if s > 7, we
should use the bitwise majority voter and never output the failsafe because it is as bad
as an incorrect output. The expectation value of the cost for a given voting system is

sPr(failsafe) + Privi(incorrect) 9)

The bitwise majority voter is thus preferred (has lower expected cost) if s exceeds a
breakeven value, namely

Pryitwise(incorrect) — Pr (incorrect)

simple

Prsimple(failsafe) (10)

s>

with the probabilities read from above; note that Pry;,,is.(failsafe) = 0.

We consider an example where the probability of error in each bit is fixed at hr =
1/256, while h varies from 1/256 (i.e., a variant has a 1/256 chance of having al/ its
output bits flipped) to 1 (i.e., each output bit of a variant has an independent 1/256
chance of being flipped). The breakeven value of s is plotted in Figure 39 for several
values of b. For b = I, there is no difference between the two voting systems. For
large values of 4, the bitwise majority voter is favored because it can correct errors in
multiple variants as long as they are in nonoverlapping bits, which is more likely when
the bits are independent or nearly so. For small values of 4, the simple majority voter
is favored because, when a variant output has errors, they are likely to be pervasive
rather than sparse; thus two erroneous variants are likely to have errors in overlapping
bits and the bitwise result is likely to be incorrect, making the fail-safe advantageous.
Similarly, increasing the number of output bits favors the simple majority voter
because it is more likely that some bit is incorrect in more than one variant.

Next, we incorporate the healing voter into the tradeoff. By analogy with Eq. (10), the
bitwise majority voter is preferred over the healing voter if

Pryise(incorrect) — Prhealmg(lncorrect)

s> -
Prhealing(fallsafe) (11)

For b <2, Eq. (11) is indeterminate because the bitwise majority voter and the healing
voter are identical because the bitwise majority result of three 1-bit or 2-bit outputs
always matches at least one output. For b > 2, the condition in Eq. (11) is stricter than
in Eq. (10): The bitwise majority voter is preferred over the healing voter in only a
subset of the cases in which it is preferred over the simple majority voter. That is, the

65

healing voter provides a useful fail-safe over a greater part of the parameter space than
the simple majority voter does.

However, the simple majority voter may still be preferred in some cases. The simple
majority voter is preferred over the healing voter if

PTpeqiing(incorrect) — Pr (incorrect)

simple

Prsimple(failsafe) - P‘f‘healing(failsafe) (12)

The condition in Eq. (12) is not satisfied in most cases because the right-hand side is
very close to zero if b is large and r < 72, which corresponds in the hr = 1/256 example
to h > 1/128. It is reasonable to expect that » < /% because, when errors occur, the
output should at worst behave like random coin flips, i.e., it seems unlikely, though
possible in principle, that a variant would systematically tend to output the negation of
the correct output.

The breakeven values of s for the tradeoffs among all three voting systems are plotted
in Figure 39.

Breakeven between voting systems, hr = 1/256

08} i
s, Bitwise majority ;
o
m voter preferred b (output bits)
T 06t - — 128
= Healing 1
(= : voter preferred 32
B 04k Slmple -
8 majority 8
o voter 2

0.2 rpreferred

00 \

0.005 0.010 0.050 0.100 0.500 1
h {(measure of independence between bits)

Figure 39. Comparison of simple majority, bitwise majority, and healing voters as a

5.2.

function of the independence between output bits

Empirical Results

Now, we evaluate simple majority, bitwise, and healing voters using the selectively
randomized AES benchmark circuits generated by the selective randomization process
described in Section 6.2. These selectively randomized circuits typically fail to
implement the desired encryption functionality on a small fraction of inputs. To
mitigate these failures, we propose using majority voting on a diverse set of
randomized circuits. Here, we evaluate the performance of three types of voters on
empirical data generated by simulating each of three randomized copies of each of the

66

benchmarks on 100,000 random (key, plaintext) pairs derived from NIST’s AES
Monte Carlo test vectors [7].

In Table 13 and Table 14 we show the performance of bitwise majority voters, simple
majority voters, and healing voters on empirically collected data from the trojanized
AES-128 circuits that we diversified in Section 6.2. Table 13 compares the
performance for data from circuits generated by using 2,000 known-answer test
vectors during generation of the circuit variants, and Table 14 shows results from
variants generated using 10,000 known-answer tests during the diversification process.
The tables show the number of incorrect simulation results when the collection of
diversified circuits, with their outputs combined by the specified voting scheme, is
used to encrypt 100,000 known-answer tests. We see that the simple majority voter
and healing voter have similar performance, and that this performance is better than
that of the bitwise majority voter. The total number of failsafe and incorrect outputs
from the simple majority voter is always as least as many as produced by the healing
voter, and is sometimes more. This is due to a reduction in the number of failsafe
outputs from the healing voter, but comes at the cost of slightly more incorrect
outputs.

L Error in some other Error in some
Unconditional bit of this variant other variant
0.8 0.010
0.6 0.008
0.006
T200 04 _—
0.004
0 0.002
T e e T | ol © 2 e T Lt 8 e T Sl S e Y et i< e A
20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120
0.8
0
T1000 0.4
. 0.(
5 e foate Ao, 0.2 . .. = rorens
o \’ b — L ' : L ~|-- - -
2(40 60 100 20 40) 0) 0 20 4 60 00 120

Figure 40. Bit error distributions for variants of trojanized AES benchmark circuits

67

In Figure 40 we study the bit error distributions across the three variants of the
trojanized AES circuits. These results are, again, from circuits generated while using
2,000 known-answer test simulation vectors during the diversification process. The
left column shows raw error rates in each bit, while the much higher rates in the
middle column show that given an error in some output bit of a variant, errors in other
output bits of that variant are quite likely. This high correlation is consistent with the
expected chaotic error propagation in AES. The right column shows, to a lesser extent,
that there is correlation across variants, that is, the same inputs that trigger errors in
one variant are more likely to do so in the others as well. This violates the idealized
assumption that the variant sampling spreads out the vulnerabilities uniformly over the
input space. Yet, we find that majority voting is effective nevertheless.

Table 13. Performance of majority voter implementations on selectively randomized
AES benchmarks circuits generated using 2,000 training vectors

Circuit Bitwise Majority Simple Majority Healing Voter
Voter Voter
Failsafe | Incorrect | Failsafe | Incorrect | Failsafe | Incorrect
T100 0 21 21 0 21 0
T200 0 3 5 0 2 1
T300 0 2 2 0 2 0
T400 0 10 10 0 10 0
T500 0 4 4 0 4 0
T600 0 6 7 0 6 0
Circuit Bitwise Majority Simple Majority Healing Voter
Voter Voter
T700 0 1 1 0 1 0
T800 0 7 7 1 S 2
T900 0 5 4 1 4 1
T1000 0 5 6 0 5 0
T1100 0 74 12 62 11 63
T1200 0 67 49 18 48 19
T1300 0 54 38 18 36 18
T1400 0 6 6 0 6 0

68

T1500 0 11 11 0 11 0
T1600 0 13 14 0 13 0
T1700 0 1 1 0 | 0
T1800 0 12 12 0 12 0
T1900 0 66 66 0 66 0
T2000 0 22 3 19 3 19
T2100 0 6 4 2 3 3

Table 14. Performance of majority voter implementations on selectively randomized

AES benchmarks circuits generated using 10,000 training vectors

Circuit Bitwise Majority Simple Majority Healing Voter
Voter Voter
Failsafe | Incorrect | Failsafe | Incorrect | Failsafe | Incorrect
T100 0 0 0 0 0 0
T200 0 0 0 0 0 0
T300 0 0 0 0 0 0
T400 0 2 2 0 2 0
T500 0 1 1 0 1 0
T600 0 0 1 0 0 0
T700 0 0 0 0 0 0
Circuit | Bitwise Majority Simple Majority Healing Voter
Voter Voter

T800 0 35 21 14 21 14
T900 0 7 7 0 7 0
T1000 0 0 0 0 0 0
T1100 0 0 0 0 0 0
T1200 0 13 13 0 13 0
T1300 0 1 0 1 0 1
T1400 0 0 0 0 0 0
T1500 0 0 0 0 0 0

69

T1600 0 0 0 0 0 0
T1700 0 0 0 0 0 0
T1800 0 0 0 0 0 0
T1900 0 28 8 20 8 20
T2000 0 5 P 3 2 3
T2100 0 1 1 0 1 0

70

TARGETED CIRCUIT MODIFICATIONS

Due to the theoretical result that there is no program that can decide whether any other
program will eventually halt we know that the properties of a program, or circuit,
cannot be known in advance of running it [5]. In particular, while we can design a
circuit to meet some functional specification and, assuming that this functionality is
testable, generate a simulation or test suite to obtain at least probabilistic confidence
that the circuit implements the intended functionality; we cannot test a circuit for
unintended functionality due to the combinatorially large state space.

Circuits are specified to produce certain outputs given certain inputs. The specification
itself is typically of low complexity and is, by definition, what the designer wants the
circuit to do. The particular circuit implementation that the designer creates is a single
implementation for a provably infinite number of potential designs. More concretely,
if we have a simulation suite completely defining the intended input to output behavior
for a circuit, then any circuit that passes this simulation suite is correct. If the
simulation does not completely specify the input to output behavior, then all circuits
that pass the simulation are in some sense equivalent. In this view, the specific circuit
created by the designer is only one of many equally valid implementations.

We take advantage of this realization to selectively modify gate level circuit netlists to
remove or modify circuitry to create new implementations that still meet the
specification. Our intention is to selectively remove or modify hardware Trojans that
may exist in the original netlist. To target nets for deletion or modification, we use a
neural network classifier to identify suspect nodes within a netlist. The neural network
is trained on labeled data from a set of trojanized RS-232 benchmark circuits that is
openly available [6]. We test the approach by applying it to trojanized AES-128
benchmarks available from the same source. The neural network generates a list of
suspected trojan nets. One by one, we then either remove the suspect net from the
circuit or modify its implementation. After this change, we evaluate the circuit by
simulating its performance against the AES known answer test vectors and a subset of
the AES Monte Carlo test vectors provided by NIST [7]. If the circuit passes each of
these tests then the modification is retained. If it fails any of them the modification is
removed and we continue to the next suspect node. After exhausting the list of suspect
nodes we evaluate the circuit against a set of the Monte Carlo test vectors that were
not used during the modification phase. If the circuit passes these tests then we have
some confidence that the new implementation is also correct. We then evaluate the
behavior of the trojan functionality to determine if it has been eliminated or disrupted.

We will present results showing the effectiveness of targeted deletion and
randomization of nets at selectively disrupting trojan functionality while maintain the
intended functionality of the AES core. We also present results showing the
computational efficiency gains of the neural network targeting approach when
compared to random sampling of nets for deletion or randomization.

There is behavior in circuits that we do not need to preserve. For instance, a large IP
core may have configurable functionality. After a circuit designer choose a particular
configuration for the core the portions of the IP core not needed for the selected
configuration become extraneous and can be modified. More generally, any portion of

71

6.1.

a circuit that does not directly influence the outputs of the circuit, where outputs are
defined as POs and inputs to memory elements. These can be targeted for
randomization. In some cases, we may not be able to identify these directly. Instead,
we can find targets for randomization, and then test what happens when we randomize
those. For finding targets, we can use metrics on the circuit, machine learning based
approaches to identify suspect nets, fan-in analysis to identify any portions of a circuit
that do not eventually lead to a PO or memory input, netlist reverse engineering RTL
re-writing approaches that identify common trojan structures, and genetic
programming approaches that seek to generate simpler, trojan-free variants of a
circuit.

Additionally, we can also consider the influence of side channels and side channel
trojans. We can think of a side channel as behavior that falls outside of some domain
of interest. For example, the power side channel exists separately from the logical
behavior of a circuit, which is our domain of interest. When we consider
randomization and diverse voting, we realize that diverse voting, which operates at a
logical level, may not have any meaningful impact on the side channel: if we make
three diverse copies of the circuit containing the side channel the power from them is
additive and, if the circuit behavior at the output of the voter is not changed then the
side channel still exists. Indeed, even if the output of the voter is changed by diversity,
the side channel may still exist. Instead, a “moving target” approach that varies the
power side channel over time might be more appropriate.

Use Cases for Targeted Randomization

Why would we randomize the implementation of suspect nets rather than deleting
these nets? Deleting nets does not result in a diversity of implementations of the
circuit; it produces a single new implementation with fewer nets. Since this approach
does not produce diverse implementations, it cannot take advantage of the impacts of
diversity and moving target (dynamic) diversity on attackers that we have quantified
in our models. There are also situations in which not all aspects of an intellectual
property block are needed for a design. For example, the block may have some
functionality enabled or disabled by licensing or software programming, or may have
outputs that are not needed for a particular design. In these cases the unused logic can
be randomized to render it, and any trojans that may be within it, benign.

The approaches presented in this section change the functional behavior of the input
circuit. They are most appropriate for mitigating trojans that are introduced at the RTL
or netlist level. Such trojans may exist in untrusted third party IP (3PIP), could be
inserted by untrusted design tools, or may be introduced by some other means.

The composition structures discussed in Section 4 are more appropriate for targeting
trojans introduced after a design is complete, for example, during fabrication. This is
because they add uncertainty to an attacker relating to the final structure of the circuit
and by permitting runtime modification of the circuit. The approaches described in this
section and Section 4 are complementary and can be used in concert. In such
implementations we recommend that the modifications in this section be made first,

72

6.2.

and that the resulting circuit is then implemented with one of the composition
structures.

Trojan Targeting with Machine Learning

An overview of an approach for using machine learning to target trojan nodes for
randomization or deletion is shown in Figure 41. We assume that we have access to a
netlist for the circuit and to a comprehensive suite of simulation vectors that evaluate
the netlists ability to implement the desired functionality. We also assume that we
have a classifier, illustrated in Figure 41 as a neural network, that has been trained to
differentiate between trojan and benign nets in a netlist. Given these inputs, we first
convert the netlist to a graph based representation, as shown in Figure 43. To do this,
we create a vertex for every primary input, primary output, gate output and latch
output in the design. We then connect two vertices with an edge if one of the vertices
appears at a gate or latch input and the other appears at the output. We consider both
directed and undirected graphs. For directed graphs, directionality is from gate or latch
inputs to gate or latch outputs. Next, we calculate a set of graph metrics for each
vertex in the graph for the classifier to use as features. These features are calculated
with the python library Networkx [49]:

e Clustering coefficient (undirected graph)

e Degree centrality (directed and undirected graphs)

e In degree centrality (directed graph)

e Out degree centrality (directed graph)

e Average neighbor degree (directed and undirected graphs)
e Number of triangles including this node (undirected graph)
e Square clustering coefficient (directed and undirected graphs)
e PageRank (directed and undirected graphs)

e In degree (directed graph)

e QOut degree (directed graph)

e Degree (directed graph)

Additionally, we also use the degree-2 polynomial features of these, which are
generated by multiplying each feature with each of the other features, including itself.

Next, we use the neural network to classify each of the nodes as either benign or
suspect. We collect the suspect nodes into a list to target for randomization or deletion.
We then work through this list iteratively. Beginning with the first suspect net, we
either remove it from the circuit or randomize its implementation. For randomization,
we find the transitive fanin cone for the net and then randomly choose to apply gate

T Development of the neural network was performed under a different project

73

replacement, gate addition, or dynamic output version to each gate in the transitive
fanin cone. After this randomization is complete we simulate the behavior of the
circuit with a subset of the simulation vectors. If the expected result is obtained for all
of these simulation vectors then the randomization is kept in the circuit. If any of the
simulations fail, then we revert the randomization. We then repeat this process for
each suspect net. At the end of this process we have a circuit that passes a subset of the
available simulation vectors, and, if it was possible to modify or delete any of the
suspect nodes, has a different implementation than the input netlist. We then simulate
this new netlist on the full suite of simulation vectors to ensure that it still implements
the intended functionality. Note that we could use the full suite of simulation vectors
during generation of the diversified circuit, but that this would increase computational
effort and would not allow us to determine whether the modifications are likely to
generalize to input conditions that are not covered by the simulation suite. Finally,
note that the process of identified a list of suspect circuit elements, iteratively
modifying the implementation of those suspect elements, and keeping only those
modifications that preserve intended behavior can be used with any approach for
identifying suspect circuit elements. We consider neural networks as the targeting
approach in the current work. Additional targeting approaches are described in Section
6.3 and Section 6.5.

To evaluate this approach we used scikit-learn [50] to train a neural network on
labeled data from a subset of the trojanized RS232 and wishbone benchmarks
available from trust-hub [26]. For these experiments we consider only the trojanized
benchmarks provided at the RTL level (RS232-T100 through RS232-T901,
wb_conmax-T200). The approach described in this section operate on gate level
netlists, not RTL descriptions, so we synthesize the benchmark circuits and map them
to a simple gate library consisting of an inverter and two-input AND, OR, XOR,
NAND, NOR, XNOR gates and a latch, prior to our experiments. We do not consider
the benchmarks provided at the netlist level because we do not have access to the gate
library used to map those netlists. We convert these netlists to graphs and extract
feature vectors for each node in each of the circuits. We then label these as benign or
trojan using our knowledge of the benchmarks. Finally, we modify the resulting
training data by using a dynamic weighting approach to ensure that we have
approximately equal amounts of benign and trojan nets in the training set. For this we
first remove any duplicated rows in the training data. Then, assuming that there are
Nyin samples in the minority class and N,,, samples in the majority class, we repeat
each sample from the minority class round(N, / Nyi,) times. We use the resulting
data to train a neural network.

After training the neural network we test our approach on some of the trojanized AES
benchmarks from trust-hub. As before, we consider only those benchmarks provided
at the RTL level (AES-T100 through AES-T2100). Since our method operates on
netlists, we first synthesize and map these circuits to our simple gate library. As with
the neural network training, we do not consider the trojanized AES benchmarks
provided at the netlist level because we do not have access to the gate library used to
map those netlists. After synthesizing and mapping the trojanized AES benchmark to a
netlist we convert the netlist to a graph and extract the graph metrics, and calculate the

74

interaction and polynomial features. Then we use the neural network to identify a list
of suspected trojan nodes. Then we iteratively remove or randomize each of these
nodes, running a simulation consisting of either 2,000 or 10,000 known-answer tests
from NIST after

=
. A o [

netlist = graph — neural —, susgucct — delete of — Gmulate — modified — agt

network nodes mogjif)\'-/ netlist

Figure 41. Our overall approach to identify and selectively randomize trojan nets

LN

each randomization [7]. These test vectors were randomly sampled from the Monte
Carlo encryption tests in the NIST suite. If any of these tests fail then the
randomization is reverted. Otherwise, the randomization is left in the circuit. In either
case, we then proceed to the next node. This process continues until we have
attempted to remove or randomize each of the nodes in the list of suspect nets. Note
that in our experiments we consider node removal and node randomization separately.
That is, we performed one set of experiments in which we removed suspect trojan
nodes, and an additional set of experiments in which we randomized them. After
evaluating the list of suspect nodes we then simulate the resulting circuit on 100,000
known-answer test vectors from NIST. This simulation suite consists of all 100,000
Monte Carlo decryption test vectors in the NIST suite. Since our circuit is an
encryptor, we first converted these decryption tests to the corresponding encryption
tests. All of these tests are different than those used during generation of the
diversified circuits. This simulation gives us additional evidence about the ability of
the diversified circuit to implement the desired AES functionality. Finally, since we
know the trigger conditions for the benchmarks, if there are any, and the behavior of
the payload, we then simulate the trojan behavior of the diversified circuit to see if the
trojan has been impacted.

6.2.1. Efficiency of Neural Network Targeting Compared to Random Selection

Rather than using a neural network to identify suspect nets, we could randomly select
nets for modification or deletion. To compare these options we define the efficiency of
the neural network approach as the number of suspicious nodes identified by the
neural network divided by the number of nodes we would have to randomly select to
identify the same number of trojan nodes as the neural network. This comparison is
shown in Figure 43 for the case where we allow primary inputs (PIs) and primary
outputs (POs) to be trojan nodes, as well as the case were we assume that PIs and POs
are not trojanized. We find that the neural network targeting approach requires
evaluation of only about 7-12% as many nodes as a random targeting technique, which
is a considerable reduction of computational effort. For many of the benchmarks the
neural network approach requires targeting 1% or fewer of the nodes as would be
required with a random targeting approach.

75

">

olo oo
- o
O
o]

[

SIPIGIO

©
‘313‘@

Figure 42. We convert circuit netlists to graphs by creating a vertex for each net in the
netlist, with edges connecting vertices i and j if j is the output of a gate and i is an input
to the same gate

F_ = ‘e with PIs and POs
> ‘e without PIs and POs
b S— * u=0.12
gﬂo ? ° S a0
'% ‘L] * @
10 °F ®
3 ‘ ‘ |
107
! 5 10 15 20

Benchmark

Figure 43. We define the efficiency of the neural network targeting as the number of
suspicious nodes identified by the neural network divided by the number of nodes we
have to randomly select to identify the same number of trojan nodes as the neural
network

6.2.2. Results

After identifying suspicious nodes, we either delete them or randomize them. When
using our selective node deletion approach, 17 of the 21 trojans were disabled. In two
of the remaining four cases, T200 and T1000, the node deletion approach was not able
to remove any nets from the design. In the other two circuits, T1100 and T1200, some
nodes are deleted, but the deletions fail to impact the trojan. In T1100 the trigger is
removed from the circuit, but the payload remains present, active, and unmodified. In
T1200 most of the trigger logic has been removed, but as with T1100 the payload
remains active and modified. In all cases, the diversified circuits pass all of the
simulations in the post-diversification test suite.

76

» 20r
.5 18 -
Q16
‘0 14
b 12 Btrojan disabled
S 10+ itrojan modified
2 8r but achieves goal
g Or trojan not impacted
S 41 '
e 2
0

modified nodes deleted nodes

Figure 44. Selective deletion and selective randomization of circuit nodes both disable
17/21 trojans. Selective randomization impacts an additional 2/4 remaining trojans,
while both approaches failed to impact 2/4 trojans.

Selectively randomizing nodes disables 17 of the 21 trojans. Of the remaining trojans
two are modified, but still achieve their goal. These specific trojans, T300 and T1800,
are designed to drain battery power from an embedded device by continuously rotating
a shift register. We find the diversified circuits have modified this payload, but that the
shift registers still update their values. Due to this, we assess that the trojan will still be
able to achieve its goal of prematurely draining the battery. In the final two circuits,
T200 and T1000, the trojans are not impacted. The diversified circuits usually fail on a
small percentage of the simulations in the post-diversification test suite. The number
of failures is a function of the number of simulation vectors used during the
modification step. When we use 2,000 simulation vectors during the generation of the
diversified circuits the average diversified circuit fails 330 of the 100,000 post-
diversification test vectors, while circuits generated with 10,000 simulation vectors
fail only 98 of the post-diversification simulations. This is a reduction of 70%.

We also find that majority voting of diverse modified copies is useful. To create a
diverse, redundant collection of circuits we repeat the entire diversification process,
from training of the neural networks through identification and diversification of
suspect nodes, three times. We then combine the outputs from these three circuits with
a simple majority voter. When using 2,000 simulation vectors during the
diversification process this results in an average of 19 simulation failures in the post-
diversification test suite, a reduction of 94% from the single circuit case. When using
majority voting and 10,000 simulation vectors during the diversification step we have
an average of 4 failures in the post-diversification simulations, a reduction of 95%
from the single circuit case. Using 10,000 simulation vectors during diversification
and majority voting results in a 77% reduction in post-diversification errors when
compared to using majority voting and 2,000 simulation vectors during the
diversification step. These results are summarized in Figure 45.

77

6.2.3.

Post-Diversification
Simulation Failure Rate

Discussion
Using machine learning to target suspecting trojan nodes for randomization or deletion
appears to be a useful approach for disrupting or eliminating trojan triggers and
payloads
1e-1 E) 2009 simAulationS A l.U,UL.)O si.mulatiou.s @variants 1-3 [llmajority vote
C for circuit geuemuou tor circust genemnon
‘ ® ®
1e-2 o ®
.,: : PY @ & . © 4] @ e 8
® ® o ®
1e-3- ® e o e s ?
@ u & - o]
@ =) . o
® o S ¢ o
|
o = m [| -
1e-4 i =3 = ° P .
. ®
|
1e-5¢ ® e =
O & | L - | o & - & - & o &
2 4 6 8 10 12 14 16 18 20

Benchmark

Figure 45. Comparison of the number of simulation failures from encrypting 100,000
random AES-128 (plaintext, key) pairs when using 2,000 and 10,000 simulation vectors
during the circuit modification step and with and without majority voting.

6.3.

from circuit netlists. Our initial experiments are promising, showing that the technique
is able to eliminate or disable trojans in 81% of the test cases. Future work should
further explore this technique by applying it to a broader set of benchmarks. It would
also be useful to explore refining the neural network targeting approach to be more
selective at targeting trojan nodes. Our current prototype implementation does a good
job of identifying trojan nodes, but it has a high false positive rate. These false
positives result in wasted computational effort for randomizing benign nodes,
simulating the resulting circuit, and ultimately reverting the randomization. Improving
the false positive rate would make the approach more attractive for use in practice, and
would allow it to be applied to larger circuits. It would also allow us to increase the
number of simulation vectors used during the circuit modification phase, which has a
dramatic improvement on the correctness of the diversified implementations,
particularly when they are used in majority voting architectures.

Trojan Targeting through Identification of Common Trojan Structures

Rather than attempting to identify suspicious nets with a circuit for targeted
randomization, we can instead identify structures within a circuit that commonly
appear in trojans. While these structures are likely to appear within benign portions of
the circuit as well, we can avoid disrupting the intended functionality of the circuit by
iteratively modifying a structure of interest, simulating the resulting circuit, and then

78

choosing to retain the modification if the circuit still functions as intended or to revert
the modification if the desired circuit functionality has been lost. We then advance to
the next structure of interest and repeat this process until all of the identified structures
have been randomized. For these experiments, we focus our efforts on two common
types of trojan trigger mechanisms: time bombs and comparisons to rare values.

chm cem

2O s f

5 X
(a) original (b) user, after diversity (c) attacker, after diversity

<

Figure 46. Masking circuit structures, such as comparators, with a key prevents the
circuit from functioning correctly for users without knowledge of the correct key

6.3.1.

6.3.1.1.

However, we note that additional common trojan structures, such as shift registers,
could also be targeted.

Register Transfer Level

Many trojans are triggered by a comparison circuit. Typically, these triggers involve
comparing an input or internal signals of the circuit to some rare, predetermined value
that is known to the trojan designer. The attacker can then supply the necessary inputs
to the circuit to satisfy the trigger condition and activate the payload. Time bomb
trojans are a variation of this and are triggered after a predetermined number of clock
or execution cycles. For example, a Time bomb in an encryption circuit may be
triggered after a specified number of encryptions have been performed.

An alternative approach is to identify the structure of interest and then randomize
some portion of it without providing a recovery path. In the comparator example, this
might involve randomizing the constant-valued input to the comparator, but not
adding an unmasking input. In many cases, this will break the intended functionality
of the circuit. However, by identifying all of the comparators in the design, we can
iteratively randomize each of them and then run the circuit’s simulation suite. If these
simulations pass, then it is safe to maintain the randomization. If they fail, then the
randomization can be reverted prior to moving on to the next circuit.

Approach

To implement this approach we prototyped software for modifying RTL descriptions
of circuits written in Verilog. For this, we initially parse the Verilog files and convert
them to a syntax tree using an open source tool [53]. We then scan the syntax tree to
find comparators.

We implemented two approaches for modifying comparators. The first approach
simply replaces one of the compared values with a random value. The second
approach implements the technique illustrated in Figure 46 by masking one of the

79

6.3.1.2.

6.3.2.

6.3.2.1.

6.3.2.2.

comparator inputs and adding a user-input unmasking value to the second input. The
unmasking value is propagated to the toplevel, where it becomes a primary input to the
circuit.

Results

This approach will impact any trojan triggered with a comparator, including 18 of the
21 trojanized AES-128 benchmarks available from [26]. In particular, it would disable
benchmarks T400-T2100. The remaining benchmarks, T100-T300, do not have
triggers. These trojans also do not include comparators, and so they cannot be
impacted by this specific approach.

Netlist Level

In this section we develop a technique to disable hardware trojans in gate-level netlists
through automated modification of common trojan structures. In particular, we
introduce diversity to suspect structures to alter trojan trigger conditions, rendering the
trojan unusable by the attacker. In this discussion we focus our attention on
identifying and modifying comparators, which are often found in trojan triggers, as a
proof of concept. Similar approaches can be used to target additional structures of
interest. The netlist reverse engineering approach used in this work was motivated by
[46].

Approach

We begin by synthesizing the circuit to our reduced gate library, which consists of an
inverter, buffer, latch, and 2-input AND, OR, XOR, NAND, NOR, and XNOR gates.
We then convert the resulting netlist to a graph. We operate on this graph
representation of the netlist to target and disable trojans in the design. There are five
processing steps required for the targeting and disablement:

1. graph reduction
2. functional simulation
3. bit slice enumeration
4. suspect slice identification
5. diversification and verification.
These are described in the following subsections.

Graph Reduction

Prior to operating on the graph we first ensure that it is a directed acyclic graph
(DAG). We ensure this by first converting the original graph to an S-Graph. An S-
Graph of graph G is a graph G’ which has a number of vertices equal to the number of
flip-flops in G. In G’ an edge exists from vertex V; to vertex V, if there exists a
combinational path from flip-flop 1 to flip-flop 2 in G. Figure 48 shows the graph
from Figure 47 after reducing it to an S-Graph.

80

Next, we detect and remove cycles in the graph by applying a depth-first search at
every node [47]. The complexity of this operation is O(V*(V+E)), where V and E are
vertices and edges in a graph, respectively. It may be possible to use heuristics to
improve the performance of this operation.

For all removed edges, we also remove the corresponding source flip-flop. The
remaining noncyclic flip-flops are ignored, so all of the fan-in vertices from the source
flip-flop are connected to fan-out vertices. We ignoring noncyclic flip-flops, rather
than greedily removing all flip-flops, to account for trigger structures specifically
designed

81

Figure 47. Graph representation of sample 4-bit counter with
comparator and 2-bit output.

82

st

LATC H_Z;)ﬁmn{(}l

— —

|

—
f count[0]

__‘-H"“—\—_____-_-‘
'HE;E lu_n[l]\ count[0]
‘ — ____‘-‘L—__""‘-m,_
| | \Nn[]
. Scount3] (mi[2] inl[1] 3]) \eoun2)

count[3] \‘-a.____c\glmt[i]

LATCH J})mm \"@TCH_O

Figure 48. S-Graph representation of sample 4-bit counter with comparator.

6.3.2.3.

to avoid detection [48]. Additionally, to simplify the bit slice enumeration step we also
remove all inverters under the assumption that the synthesis tool will tend to
incorporate inverters into gates, for example, by selecting an NAND gate rather than
an AND gate and an inverter. This option can be disabled to increase the rigor of the
analysis. Figure 49 shows the graph from Figure 47 in reduced DAG, no inverters
form.

Functional Simulation

After converting the circuit to a graph representation, as shown in Figure 47, the
circuit is simulated using 10,000 randomly generated input vectors. Note that fewer, or
more, input vectors could be used for this simulation. From these simulations we
estimate the probability of each node in the circuit having logic value 1 as the fraction
of inputs for which the node obtains value 1. The resulting signal probabilities 5,0, s,;
€ (0,1) are used to identify suspect nodes. To do this we choose a rare signal
threshold, 6. Any node with a signal probability s,) < & or s5,; < 6 1is considered rare.
We then consider only rare nodes in our search for potential trojan structures, greatly
reducing the search space.

83

mif1) count(1) nl[0) countf0) mi[2) countf2) ni[3) count(3)

(Nor2x1_0 (AND2X1_0)

6.3.2.4.

Cxvorxi 0) (CNoraxi2) (Nanpaxi0) (ANDXXLI) (Norax13) (C AND2XI3)

(NOR2X1_1)
S - / = s = —7_ -
B3 w2 \a27 \ /at6 Na¥6 a9 38~ 040_1 il
P Vg L e — e, ——s . P P
Corxit) (ORXIO0) \nss XNOR2XI_1) st (NOR2X16 4T Cvorxiz) (Corxis) (CoRXL4)
\a34 /n30_1 \ lns7 /nis N ‘ 859 /139 o2
“r . — - , S e AR e
Corxi2) (CNorxinn) (NORXIL12 Corax16) (NOR2X1_10 __(orx1s (XNOR2X1_2
~ <351 " T 0
' & . —— - & p———— |
230 35 outf0) / (NOR2X14) [ouf1) w5) (NOR2X1_14 nis
[o49 44 Na#
- ~e 7T A i '
CNor2x15) | C oR2X1_7) 040
Nt | as1 |
P ~ P
NOR2X1_7) (Nor2x18)
\as2
L ,

Figure 49. Final reduced graph of sample 4-bit counter with comparator.

Bit Slice Enumeration

From the list of suspect nodes, we then enumerate all k-bit slices where a k-bit slice is
defined as a set of nodes in the fan-in of a subgraph H of G such that H has no more
than & inputs. For this all k-bit slices, k € [ij] are recursively enumerated for each
suspect node. We note that it is possible for a k-bit slice to have an “unclean” fan-in,
with inputs unrelated to the suspect function. Such scenarios are possible due to
synthesizer optimizations, which can prevent correct identification of suspect
structures. Typical solutions to this problem involve providing the k-bit slice to a
Quantified Boolean Formula (QBF) solver. However, because we enumerate the bit
slices for all suspect nodes it is likely that a “clean” version is also included in the
enumerations. For example, consider the circuit shown in Figure 50. If we have a
rarity threshold of # = 0.05 then both clean and unclean versions of the comparator
will be considered.

@ﬂmss

Figure 50. Sample circuit with toggle rate for each wire. The red nets is unrelated to the
comparator structure of interest. If it is included in a bit slice, then that slice will be

unclean.

84

6:3.2.5.

6.3.2.6.

AND)— @ L — _l

AND

AND oo o> B>

Figure 51. Template "==" comparator structures.

Suspect Slice Identification

To identify suspect slices, we must be able to match structures within the circuit of
interest to known suspect structures. To do this we extract the reduced order binary
decision diagram (BDD), a canonical representation of the Boolean formula, for each
slice. Working at the BDD level is important for properly considering all possible
structures of interest at the netlist level. The extracted BDDs are compared to the
BDDs of template suspect structures with the same input order. In this work we target
comparators, which are often found in trojan triggers The template comparators that
we consider are shown in Figure 51. If a slice’s BDD matches the BDD of one of the
template comparator structures then that slice is marked as suspicious.

Diversification and Verification

After identifying suspect structures, we next diversify the implementations of those
structures. The goal of this diversification is to disrupt the trigger structure so that the
attacker is unable to activate the Trojan using the original trigger. This effectively
eliminates the attacker’s ability to make use of the trojan, rendering it benign. One
approach is random diversification, such as arbitrarily adding, removing, or changing
gates within the structure of interest as in Section 6.2. However, such a technique may
only change the rarity of activation in the trigger condition. For example, consider
Figure 52. If AND3 is converted to an OR gate, the Trojan activation probability goes
from 1/16 to 7/16, with the original trigger condition still valid. This may be
problematic during verification that the modification preserves the intended
functionality of the circuit, as a functional trojan effect will activate, potentially
change the output of the circuit, and ultimately fail the verification step. The
modification would then be reverted, which would restore the trojan functionality.
This was less problematic in Section 6.2 since in that approach we are able to target
arbitrary portions of the circuit and can modify trojan payloads in addition to triggers.
However, when targeting comparators with the current approach we are typically only
modifying trojan triggers and so we must be more precise in our diversifications.
Consequently, a more fine-tuned diversification technique is needed. We choose to
diversify the suspect structure by changing the type of comparator and adding
inverters to the inputs. This preserves rarity of the trigger condition, but randomizes
the triggering value, making the trigger unusable to the attacker.

Slices marked as suspect may be benign parts of the original circuit. To ensure that we
do not change these, which could disrupt the intended function of the circuit, we
perform a verification step after each diversification to determine the validity of circuit
modification. For every diversification applied, a comprehensive test bench is run to

85

6.3.2.7.

Figure 52. Example diversification.

ensure functionality is maintained. If at any point the test bench fails, the
diversification under test is reverted.

Results

To evaluate our approach, we ran the comparator identification on the RS232-T400,
RS232-T700, RS232-T800, and AES-T500 from Trust-Hub [26]. Table 15 shows the
identification results. We are able to successfully identify all Trojan structures in the
designs, along with several benign structures. For AES, while there are fewer than 91
comparators in the design, several identified comparators make up the structure of
larger comparators (128-bit).

We tested the diversification process on AES-T500. For this, all 91 of the identified
comparator structures are diversified as described in Section 6.3.2.6. After each
diversification we simulated the resulting circuit using some of the NIST known-
answer AES tests to ensure that the diversification maintains the intended AES
functionality. In this case, all 91 diversifications are kept in the final circuit, as they
each pass the NIST simulation suite. Next, we determined whether the diversification
impacted the trojan by running a second test bench with the correct trigger sequence
for the Trojan to identify which of the diversifications modified the Trojan trigger. We
found that 24 of the 91 diversifications mitigate the Trojan by disrupting all or part of
the 5-stage trigger. The remaining diversifications have no effect on the Trojan trigger,
but are kept in the circuit since they do not change the desired AES functionality.

Future work includes expanding the identification templates to include more known
common elements of trojan circuits such as combined ‘<’ and ‘>’ comparators, shift
registers, ring oscillators, linear-feedback shift registers (LFSR) and nonlinear
feedback shift registers (NLFSR). Other features, such as connectivity analysis, could
be incorporated to aid in identifying additional trojan nodes.

In enumerating the bit slices, we notice that oftentimes several suspect comparators
are part of a larger comparator structure. Due to this we can reduce the number of
suspect comparators by applying propagation analysis to merge similar neighboring
structures. We can apply Roth’s D-calculus for symbolic simulation on the design in
this situation. However, deciding to merge suspect comparators reintroduces the
problem of “unclean” slices, which will require the use of a QBF solver.

Verification of component diversification involves validating functional correctness
with diversification in place. However, as discussed earlier, there is the potential for
trojans to bypass our method if the diversification activates the trojan and the trojan
causes the circuit behavior to deviate from the intended behavior of the design. If the
trojan is activated during the test bench, either from the diversification decreasing

86

Table 15. Trojan structure identification

Benchmark No. 6 Bit slice No. Suspect | Fraction of suspect structures
Gates Bounds [i,j/ | Structures that are part of a trojan
RS232-T400 | 322 0.1 4,6 20 1/20
RS232-T700 | 363 0.1 4,6 26 3/26
RS232-T800 | 304 0.1 4,6 20 1/20
AES-T500 | 298323 | 0.001 4,6 91 24/91

6.4.

6.4.1.

activation rarity of the trojan or due to a lucky test pattern, the test bench will fail and
the diversification will be reverted. One possibility for mitigating this is to apply
multiple different diversifications to the same structure, and then use a majority voter
to combine the outputs from the various diversifications.

Trojan Targeting with Genetic Programming

We begin by postulating that an uncompromised circuit is by some measure “simpler”
than a compromised circuit because the compromised circuit implements both the
intended circuit functionality and the trojan functionality. If we accept this postulate
then, if we can identify an appropriate measure of simplicity, it may be possible to
automatically generate circuit variants that are simpler than the input circuit and in the
process eliminate the trojan functionality. We propose genetic programming as one
technique for generating these circuit variants.

Approach

We performed an initial exploration of the use of using genetic programming for
circuit modification. The objective was to identify a scheme that uses genetic
programming to generate diverse implementations of select Boolean functions.
Genetic programming addresses the problem of having computers learn to program
themselves by providing a framework to search the space of possible computer
programs for a program that solves a given problem most efficiently. To leverage this
for circuit modification, we instead want to use genetic programming to create diverse
implementations of a Boolean function.

Genetic programming is a highly parallel mathematical algorithm that transforms a set
(population) of individual mathematical objects (hierarchical tree structures), each
with an associated fitness value, into a new population using operators patterned after
the Darwinian principle of reproduction and survival of the fittest, and after naturally
occurring genetic operations such as reproduction and recombination. In genetic
programming, populations of many individuals are genetically bred using the
Darwinian principle of survival and reproduction of the fittest along with a genetic
recombination (crossover) operation appropriate for combining Boolean functions.

87

Figure 53. A tree representing the XOR of inputs x4 and x;

Genetic programming creates variants by executing the following steps:
1. Generate an initial population of random compositions of the functions and
terminals of the problem
2. Interactively perform the following sub steps until the termination criterion has
been satisfied:
a. Execute each Boolean function in the population and assign it a fitness
value according to how well it solves the problem
b. Create a new population of Boolean functions by applying the
following two primary operations. The operations are applied to
Boolean functions in the population with a probability based on fitness:
i. Copy existing functions to the new population
ii. Create new Boolean functions by genetically recombining
randomly chosen parts of two existing functions

To explore this concept, we studied the use of genetic programming for evolving the
‘XOR’ function. This can be represented by the tree structure T=[x1,x2], with
functions F=[OR,AND,NOT], as shown in Figure 53.

6.4.2. Results

We used the opensource MATLAB toolbox GPLab [54] for our experiments.
Additional useful references are found in [55-58]. There are three steps needed for
evolving the function:
1. SET VARS — This module initializes the parameters
2. GEN POP - Generates the initial population and calculates its fitness
a. Three initialization methods exist:
i. Full
ii. Grow
iii. Ramp Half and Half

88

log10(fitness)

b. By default, the fitness is the sum of the absolute difference between the
obtained and expected results
3. GENERATION — Generates a new population by applying genetic operators
(tree crossover, tree mutation)
a. Parents are selected from the pool through one of the following four
sampling methods:
i. Roulette
ii. Stochastic Universal Sampling
iii. Tournament
iv. Lexicographic Parsimony Pressure Tournament
b. Three methods to calculate the expected number of offspring are:

1. Absolute
ii. Rank85
iii. Rank89

c. Repeats itself until the stopping conditions are met or maximum
generation is reached

An example for 100 generations with a population of ten for the XOR gate is
presented in Figure 54 through Figure 57.

Fitness
04 ==max. =median ~~mean * * ‘mean - std. dev."* *mean + std. dev. ==best so far
0.3} ; :
i {] |
0.2 }§ f ‘f
0.1 'l)
j \V 1 k‘& \ ‘1’ s" 1 w ;“ II\
0 Lol 1 il | i
-0.1+
-0.2
_03 L 1 | | L |
0 10 20 30 40 50 60 70 80 90 100
generation

Figure 54: XOR Fitness (stop condition at generation 87)

&9

X2 X2 X1

Figure 55: Tree Representation

90

number

Accuracy versus Complexity

10

gl os _

] _

level
fithess
0 1 1 1 I -
0 10 20 30 40 50 60
generation
Figure 56: Accuracy vs. Complexity
Genetic operators
0.6r
==P(crossover)

5 ==P(mutation)

5 0.5 = cum. freq. crossover
g_ ==cum. freq. mutation
o ==# reproductions
04 == clones crossover
> # clones mutation
203 n

Qo

o

Q0.2 \

5 M

>IN | -Lj RN

NUAR) LLATIA LAl A L
0 20 40 60 80 100

generation
Figure 57: Genetic Operators

Overall, this approach seems promising, although stopping conditions will likely be a
challenge for more complex Boolean functions. We also have not explored how to
combine the generated trees to implement more complex functions. However, we
believe that genetic programming could be a powerful tool for diversity, in that each
Boolean function can have unique stopping conditions if the desired output is correct.
With this, each function could have its own unique tree representation.

91

6.5.

6.5.1.

Targeting Dangling Nodes

When we modify dangling nodes we are changing aspects of the circuit that do not
impact the logical function of the circuit. We say that these aspects exist at a semantic
level that is different from the functional or logical level that we are concerned about
during functional verification and testing. In particular, trojan payloads consisting of
dangling nodes typically modulate some analog behavior of the design, such as power
consumption, in a predictable (to the attacker) fashion. By randomizing the logic
associated with these nodes we can also randomize the analog characteristics
(unintentional semantics of the design) that are of interest to the attacker, while
preserving the functional behavior (the intentional semantics) of the design that are of
interest to us. This demonstrates that identifying and diversifying circuit behavior at
different semantic levels can mitigate trojans that exist at one semantic level while
preserving desired behavior at other semantic levels.

We present an approach for identifying nodes in a digital circuit that may belong to a
leakage Trojan that is intended to transmit important information, such as the secret
key for a cryptography algorithm, through a side channel. By randomizing the logic
associated with these cones we can modify the behavior of these Trojans, reducing or
nullifying the attacker’s knowledge of the Trojan’s functionality and consequently
reducing its utility to the attacker. The same approach can also change the triggering
mechanism for the Trojan, making it difficult for an attacker to activate and control the
Trojan’s behavior.

Approach

A generalized view of a digital circuit is presented in Figure 58. There, we see that a
circuit C has PIs, which are those signals that have no predecessors, and POs, which
are those signals that have no successors. The circuit performs some function on the
data presented at the PIs to transform it into the data outputs on the POs. We define
dangling nodes to be nodes that have no POs in their transitive fanout cones. Since
there is no path from the dangling nodes to the POs, then we can modify the logic
functions implemented by the dangling nodes without impacting the intended
functionality of C from the PIs to the POs. Amongst other possibilities, dangling
nodes can result from poor coding, from abandoned circuitry within a design, or from
circuits designed to leak information through side channels. Of these, we are
particularly concerned with leakage Trojans that use power, timing, electromagnetic,
or other types of side channels to leak important information, such as secret keys, from
a device.

A diagram of one such leakage Trojan is shown in Figure 59. There, we see that the
intended circuit functionality is an AES encryption. One of the PIs is the plaintext to
be encrypted. The hardware Trojan consists of a trigger, which in this case is a
comparison between the plaintext and a known constant. The attacker can provide the
known plaintext at any convenient time, which will then trigger the leakage circuit. In
this example, the leakage circuit consists of a shift register loaded with the AES secret
key.

92

After the shift register is enabled it shifts right by one bit every 128 clock cycles. The
least significant bit of the shift register is attached to a logic circuit that consumes
power as a function of the least significant bit. By monitoring this power consumption
the attacker can learn the value of the secret key.

circuit circuit
Pls —> POs Pls —> POs
C() C()
———
dangling dangling
nodes nodes
D0 D'()

Figure 58. Dangling nodes are gates that do not appear on any path between the
circuit's Pls and POs.

—————— —
- - - _——
- =~ -

Pls - S

plaintext ,* shift enable _ "
k \
v ‘\ trigger + :
\\ //
ke S L’
AES S / _
POs all of these nodes are secret key is leaked by selectively
dangling and can be increasing dynamic power as a
randomized function of the key

Figure 59. Example leakage Trojan in which the Trojan trigger and Trojan circuit consist
entirely of dangling nodes

However, the Trojan trigger and the leakage circuit itself consist entirely of dangling
nodes. There are no paths from any portion of these circuits to any of the POs in the
host AES circuit. Consequently, we can identify these dangling nodes and randomize
them to change the behavior of the Trojan and its trigger.

To identify the dangling nodes, we first collect a list of all of the nodes in the circuit.
Then, we find the transitive fan-in cones of each of the POs. We permit these cones to
be of any depth, allow them to cross latch boundaries, and follow them to the Pls.
Along the way, we remove any node that appears in one of these fan-in cones from our
complete list of nodes in the circuit. At the conclusion of this procedure we have a list
of dangling nodes. Next, we can randomize the fan-out cones of these nodes. In our
experiments we have considered three randomization approaches:

1. Gate addition [17]

93

2. Gate replacement [17]
3. Dynamic output inversion [18]

In gate addition we add one or more logic gates to a logic cone. These gates are then
wired to existing gates within the logic cone. This process is illustrated in Figure 2.
Gate replacement is a related technique in which we select one or more of the logic
gates within a cone and replace them with different logic gates. This is depicted in
Figure 5. In dynamic output inversion we selectively invert one or more of the outputs
from the logic cone as a function of some control signals. In Figure 8 these control
signals are the inputs to the logic cone. To see the impact of randomizing dangling
nodes on leakage Trojans we consider an example. Figure 60 presents a simulation of
an AES circuit that has been Trojanized according to the diagram in Figure 59. At the
beginning of the simulation the trigger condition is satisfied. This activates the Trojan
and afterwards a shift register holding the secret AES key shifts right by one bit every
128 clock cycles. The attacker can provide the trigger condition at will, and afterwards
has a power side

trigger secret key leaked
Figure 60. Simulation of a Trojanized AES circuit

channel that is a well-defined function of the secret key. Now consider Figure 61,
which a simulation of the same circuit after randomizing the logic cones of the
dangling nodes. We first notice that the trigger condition has changed, and so the
Trojan is never triggered. This means that the attacker has lost the ability to selectively
activate the Trojan with a known input plaintext. More importantly, the behavior of
the leakage circuit has also changed. Now, rather than shifting by one bit every 128
cycles the shift register updates on every cycle. Furthermore, it does this whether or
not the trigger condition has occurred. So, not only has the attacker lost the ability to
control the Trojan but, after applying what the attacker thinks is the trigger condition
the leakage circuit behaves the same as it did prior to the application of the trigger
condition and this behavior is different from that expected by the attacker.
Additionally, the shift register no longer holds the secret key, and rather than shifting
by one bit on each update it instead changes between a small set of fixed values.
Randomizing the logic cones of dangling nodes has broken the attacker’s assumptions
about how to trigger the Trojan and about the behavior of the Trojan after it is
triggered. Finally, notice by comparing the ‘out’ signals in Figure 60 and Figure 61
that the intended behavior of the AES circuit has not changed.

94

6.5.2.

Results

To study the overhead associated with this hardware Trojan mitigation we applied the
technique to 21 different AES hardware Trojan benchmarks [19, 20]. Some of these
benchmarks contain leakage Trojans, while others contain Trojans that modify the
circuit behavior at the POs. All of the benchmarks, however, contain dangling nodes.
This indicates that some of the dangling nodes exist within the AES implementation

Jtb_top/dk

000000..!)J00112233445566 778899aabbccddeeffi

[000000... J0... JJ__1)J00... J]00000000000000000000000000000001
OO 00000 JE6e94b... 6., 1) 1B4d.. .) J84d4c9c08b4f48286 1e 3396 35bcad9
RLERRRIREATRINORRRRRRRRRERRRLRRRRORRNRRDORRRRRRERRRRRRRRIPRORVRORRRNRRRORERRRIRRRRRDRRNRRIRRRY
\ J
||

trigger changed leakage circuit changed

Figure 61. Simulation of a Trojanized AES circuit after randomizing the fan-out
cones of dangling nodes

itself. For each of the benchmarks we identified all of the dangling nodes, and then
randomized the logic cones of a percentage of them. Then, we synthesized and placed
and routed the resulting circuits and compared their area and maximum operating
frequency to that of the trojanized, but not randomized circuit. The results are
presented as a function of the percentage of dangling nodes with randomized logic
cones in Figure 62 and Figure 63. Neither the area nor the operating frequency is
strongly impacted by the percentage of dangling nodes selected for randomization.
The area overhead is nominal, with an average of about 0.1% area increase. The
maximum operating frequency also increases by an average of about 2%, although
there is more variability in this metric. Overall, the approach has only a modest impact
on area and operating frequency. While we find that randomizing the logic cones of
only 10% of the nodes is sufficient to disrupt the Trojan functionality, since the
overhead is not a strong function of how many of the dangling nodes’ logic cones is
randomized it may be advisable to randomize the logic cones of all of the dangling
nodes in the circuit.

Finally, we note that in many cases dangling nodes can be considered a portion of the
“unintentional semantics” of a circuit in that they are not required for the circuit to
perform its intended function. This is a demonstration of how modifying those
unintentional semantics can impact undesirable portions of a circuit, such as hardware
Trojans, while leaving the functionality of the intended circuit behavior, or the
intentional semantics, intact. Other examples of incidental semantics include
unspecified portions of a digital circuit, such as those that arise when a state machine
is incompletely specified or when a logic function has some “don’t care” conditions.
Randomizing those unspecified portions of a circuit may also be an effective approach
for disrupting some types of hardware Trojans, although in practice it would be

95

difficult to target Trojans in this way since, if a Trojan is implemented in unspecified
portions of a design then those portions are no longer unspecified and cannot easily be
targeted for randomization.

Logic Elements

04 r-
°
[¢]
0.3 [E) : ® : 3
2 ° " H ' g H 4 b4
S 02 o P> o 5 s § ¢ °
) & o ¢ [
o o [] = '
5 0.1 0 __! - ' 1 0 o __ .
o ~§~ — - - = s
g 0 § 5 ° 4 ¢ & H $ b3 g
g g $ ° ° ' 5
& -0.1 2 [J . - ? ® . ‘
° 8 5 3
-0.2
°
0.3 | | 1 | | | J
0 10 20 30 40 50 60 70 80 90 100

Coverage (%)

Figure 62. Area overhead from randomizing the logic cones of various percentages of
the dangling nodes in a collection of AES Trojan benchmark circuits. Some of the
Trojans are of the leakage type, while others are not.

55, Maximum Operating Frequency

Percent Change (%)
(6]
T

|
o—loo-
| -
[
-*oooo
B
...-I..-
4 i 454
]
o oo mseme o
!

0 10 20 30 40 50 60 70 80 90 100
Coverage (%)

Figure 63. Operating frequency overhead from randomizing the logic cones of various
percentages of the dangling nodes in a collection of AES Trojan benchmark circuits.
Some of the Trojans are of the leakage type, while others are not.

96

97

This page left blank

98

7. FORMAL METHODS

While the complexity of many circuit designs prevents effective formal analysis of
their properties, it is possible to apply formal methods to portions of circuits or to
higher-level constructs, such as the diversity frameworks discussed and analyzed in
Section 4. Here, we briefly describe applying the NuSMV model checker [59] to prove
properties of a majority voter, a comparative redundancy circuit [60], and several
variants of a comparator. These techniques are useful for formally verifying properties
of security sensitive components, such as majority voters, or for analysis of select
portions of designs. For example, if a structure of interest, such as a comparator, is
located in a netlist then it can be targeted for formal verification. Recall that Section
6.3 introduced one approach for finding such structures.

We began by formally verifying the properties of a majority voter circuit. For this, we
created a BLIF file containing a simple majority-3 voter mapped to our reduced gate
library (NOT and two-input AND, OR, XOR, NAND, NOR, XNOR). We then
converted this BLIF representation to an SMV model using ABC and some other open
source tools [61,62]. For a majority voter with inputs x,, x;, X, and output q, NuSMV
verified the property

x0==z0 AND x1==z0 OR x0==z0 AND x2==z0 OR xl1l==z0 AND x2==z0
indicating that the output always matches some two of the inputs.

Comparative redundancy, illustrated in Figure 64, is similar to simple majority voting
except that it can potentially correct some multiple bit errors. Given inputs X, Xi, X,
and output z,, we set 7 to x; if X and x; are equal, and z, to x, otherwise. This circuit
can potentially tolerate any single failure, in addition to the double failure of x(and x;.
In the single bit case the behavior is the same as a simple majority voter, because a
simultaneous failure of both x, and x; will result in x, = x;. However, in the multiple
bit case if X, and x; fail differently the circuit can correct for this double error. As with
the majority-3 voter, we created a BLIF file containing a comparative redundancy
circuit

XO—,L
comparator
X1 1
Zg
X7 0

Figure 64. Comparative redundancy is an alternative to majority voting that can correct
some double errors

99

mapped to our simple gate library and converted it to an SMV model. We then used
NuSMYV to verify the property

x0==2z0 AND x1l==z0 OR x0==z0 AND x2==z0 OR xl==z0 AND x2==z0

which is the same as the simple majority-3 voter in the single bit case. Note that we
only performed the NuSMV analysis for the single-bit case in which the comparative
redundancy circuit is logically equivalent to the simple majority-3 voter.

We also applied model checking to several comparator circuits. The first of these has
two 128-bit inputs, named A and B, and three single bit outputs, AeqB, AgtB, and
AltB, which are asserted if A == B, A > B, and A < B, respectively. We
implemented this circuit in Verilog, and then converted it to BLIF format prior to
performing the model checking. We used NuSMYV to verify that the AeqB output is
true if and only if A ==

A second comparator circuit adds two additional 128-bit inputs, named key in and
key const. In this circuit the comparison A == B is replaced with (A XOR
key in) == (B XOR key const). This models the RTL level circuit
modification discussed in Section 6.3 and illustrated in Figure 46. We implemented
this circuit in Verilog, and then converted it to BLIF format prior to performing the
model checking. We then used NuSMV to prove that, given that key in ==
key const, then AeqB is true if and only if A == B. This property means that
correct behavior of the AeqB output is maintained under the diversity strategy.

Next, we used NuSMV to prove properties of one of the trojan triggers from the
trojanized AES benchmarks [26]. This particular trigger consists of a 128-bit
comparison between input vector “state” and the 128-bit constant value
x00112233445566778899AABBCCDDEEFF. If these two values are equal, then
output “Tj Trig” is true, and otherwise it is false. We converted the Verilog source for
this circuit to BLIF format prior to the model checking. We then used NuSMV to find
a counterexample to the assertion that Tj Trig is always false. NuSMV found the
counterexample state == x00112233445566778899AABBCCDDEEFF. In
this case, NuSMV was able to find the single counterexample in a space of size 2!28.

Finally, we modified the trojan trigger circuit by adding additional 128-bit inputs
key in and key const, and modified the trigger condition to (state ~ key in)
== (x00112233445566778899%aabbccddeeff ~ key const). This is the
same modification that we previously applied to the 128-bit comparator circuit. We
converted the Verilog source for this circuit to BLIF format prior to the model
checking. We then used NuSMV to prove that, if

state ==x00112233445566778899%aabbccddeeff

100

then Tj_Trig is true if and only if key in == key const. This property means
that the triggering input designed by the attacker can activate the Trojan if key in
== key const butcanneverdoso if key in != key const.

101

This page left blank

102

8.1.

ADDITIONAL TROJAN PROTECTION CONCEPTS

In this section we briefly describe some additional approaches that may be useful for
disrupting hardware trojans. While these techniques were identified during the course
of the project, we prioritized further evaluation of the approaches described in the
previous sections of these. Deeper exploration of these approaches is left to future
work.

State Machine Tagging

Typically, control flow in state machines is not protected. This creates the possibility
of faults causing state machines to transition between states in an unintended fashion,
or, if there are fewer states than the total number that can be encoded by the state
registers, for the machine to transition into an undefined state. Once in an undefined
state the behavior of the circuit will also be undefined, and so state machines often
include a “default” transition from any undefined state to some defined state, such as
an initialization or reset state. State machines of this type are referred to as “safe” state
machines. However, safe state machines only provide a recovery path to a known state
from an undefined state. They do not prevent the state machine from improperly
transitioning between two defined states. Such transitions can occur as a result of
natural faults, or as a result of faults introduced by an attacker manipulating the
voltage, clock, or temperature of a device. These faults can cause the state machine to
incorrectly transition from one defined state to another defined state, from a defined
state to an undefined state, or, in a variation of the first option, an attacker can
introduce a new state with a transition to some important state and use the fault to
transition to this newly created state [8]. In turn, this allows the attacker to break the
control flow and transition into the important state without traversing the intended
control path. These concerns are illustrated in Figure 65. In this example, there are
three defined states, Sy, S;, and S,, with the intended control flow indicated by solid
lines. When input signal d = 1 the machine advances through the states, and when d =
0 the machine remains in its current state. If we assume one-hot state encoding then
there are three state registers. Since we can encode 23=8 states with three registers,
there are also 5 undefined states, which we illustrate as states Uy to Uy. In a safe state
machine implementation, any time the machine enters one of the state Uy...U, the
machine will transition back to an initial state, say S,. However, attackers can also
manipulate the state machine and its transitions. We illustrate two possibilities with
dashed lines. In the first manipulation the attacker introduces a new transition from
state Sy to state S, when d = 2. This allows the attacker to manipulate the intended
control flow by applying a specific input to the state machine. A second modification
is to add a transition from one of the undefined states, such as Uy, to one of the defined
states, such as S,. The attacker can then introduce a fault to cause the state machine to
transition to Uy, and then the machine will enter state S,.

103

8.2.

Figure 65. A state machine with three defined states and five undefined states

To address these vulnerabilities we can “tag” the transitions into states in some way so
that the state machine knows what the previous state was. Then, if the previous state is
not one of the expected states, the attacker transition is detected and it can be
prevented by, for example, returning to the reset state. This is illustrated in Figure 66,
where we have added additional transitions to state Sy from states S; and S,, and
where we have updated the transition conditions from state S, to S, S; to S,, and S; to
S; to require that the previous state was an expected previous state. This protects
against both of the unallowable transitions.

We can improve the protection by including checking other parameters in addition to
the previous state. For example, we might also verify that the expected transition
condition was satisfied. In the example of Figure 66 we would accomplish this by
augmenting the transitions from Sy, S;, and S, to S to also return to S if the value of
the d signal on the clock cycle immediately preceding the transition was not 1.
Implementation of these protections can be done by hand, automated as part of the
synthesis process, or automatically added to netlists.

Decouple Side Channels from the Information of Interest

Several published trojan designs use side channels to leak secret information
[22,51,52]. In the trojan depicted in Figure 67(a) some secret data, such as a
cryptographic key, is loaded into a shift rotate register. The least significant bit (LSB)
of this register is used

104

d=0 and d=0 and
prev. state = spors; prev. state=s; ors,

d=0or
prev. state != sy or s,

d=1and
prev. state = sy ors,
S

prev. state = sy ors;

prev. state=s; ors,

prev. state != s, or s,

Figure 66. A state machine with enforced control flow

O,

I- ring oscillator = o0
O
shift rotate register enable = go
I load
(a) secret data I/0 pins

shift rotate register

I load

ring oscillator

enable

1]
0000
[eX{eX®)

secret data

(b) 1/O pins

Figure 67. (a) A temperature side channel is created by rapidly charging and
discharging the parasitic capacitances of an ICs 1/O pins as a function of some secret
data [51,52]. (b) The circuit can be modified to remove the dependence on the secret

data

to enable a ring oscillator, which is then connected to I/O pins on the IC, which have
large parasitic capacitances. When the LSB of the shift rotate register is a asserted the
ring oscillator rapidly charges and discharges these capacitances, causing the IC’s
temperature to increase. When the least significant bit of the shift rotate register is
deasserted these charge-discharge cycles stop, and the IC’s temperature decreases. In
Figure 68(a) a pseudo random number generator (PRNG) is used to encode the value
of a secret data ko, ki...k,; in the power consumption of a set of capacitors. An
attacker than knows the initial value of the PRNG can measure the power consumption
of the capacitors to acquire the encoded signal, and then use knowledge of the PRNG
to decode the secret data. Other types of side channels can also be created. In all cases,
the trojan will encode some secret data in an analog emission from the IC that the
attacker can measure to retrieve the secret information. Decoupling the analog
emission from the value of the secret data may disrupt the attacker’s ability to extract
the secret data from these emissions. The techniques described in Section 6 may be
able to disrupt these types of trojans. For example, modifying the implementation of

105

the PRNG, which may prevent the attacker from knowing how the data is encoded, or
by randomizing the ring oscillator, which may change the temperature gradients of the
IC. Similarly, removing the shift rotate register, ring oscillator, or PRNG would
eliminate the trojan side channels. The techniques described here are complimentary
to those and seek to directly eliminate the side channel’s dependence on the
information of interest.

In Figure 67(b) we invert the LSB of the shift rotate register, and then enable the ring
oscillator with a signal generated by the logical AND of the original and inverted shift
rotate register LSBs. With the exception of transients the ring oscillator is always
disabled, and the temperature dependence on the secret data has been eliminated. A
logical OR could be used in place of the AND, but this would result in unnecessary
power consumption and heating. Similarly, in Figure 68(b) rather than driving the
capacitors with the XOR of the secret data and the PRNG output, we drive them with
the logical AND of the output of the XOR and an inverted version of the XOR output.
Other than transients this signal will always be low, so the power side channel will no
longer leak the secret information. These examples show disablement of the side
channels, although other implementations are possible. For example, in Figure 67 the
ring oscillator and I/O pins could be duplicated, with the second ring oscillator
enabled by the inverted LSB of the shift rotate register. The capacitors in Figure 68
could also be duplicated, with the newly added capacitances driven by the XOR of the
PRNG outputs and inverted versions of the secret data. These implementations
preserve the original circuit functionality, but modify the side channels by causing
them to have the same behavior regardless of the value of the secret data. The side
channels then become less useful to the attacker.

These approaches can preserve or change the functional behavior of the circuit, but
will always modify its analog characteristics. If an implementation that modifies the
functional behavior of the circuit, such as those illustrated in and , is chosen, then it is
necessary to verify that the modifications do not impact the intended functionality of
the circuit. Regardless of whether the functional behavior of the circuit is modified, if
the analog characteristics of the circuit are important to the design, then these
techniques must be used with care.

106

(a)

PRNG

PRNG

ko
o

< k, {;@%
+
T ‘e,

O Ko ®
v
(b) T

Figure 68. (a) A pseudo random number generator is used to encode secret data ko,
k1...Kn.1 in the power consumption of a group of capacitors [22]. (b) The capacitor's

power consumption can be decoupled from the secret data.

CONCLUSIONS

We have evaluated the theoretical effectiveness of diversity and moving target
techniques, and have developed architectures for implementing these techniques in
hardware. We have also identified and implemented techniques for automatically
generating circuit variants with identical input-to-output behavior but diverse internal
behavior. Diversity in the internal behavior results in diversity in analog
characteristics, such as timing and power consumption, which can impact trojans that
do not operate on the functional behavior of the circuit. For example, these approaches
can impact trojans that create power or timing side channels to leak information.
These approaches may also impact the ability of attackers to reverse engineer netlists,
masks, or other post-design artifacts to successfully insert trojans.

We have demonstrated the effectiveness of several approaches for targeted
modification of circuit designs to mitigate trojans in RTL and netlists. Such trojans
may exist in third party IP, or they could be inserted by a malicious insider or design
tools. These techniques address trojans inserted at different points in the lifecycle than
those addressed by the diversity architectures. As such, the diversity architectures and
targeted modifications approaches are complimentary and can be used together as part
of a robust secure and trustworthy hardware development process. When used
together, we recommend first applying the targeted modifications to increase

107

9.1.

confidence in the netlist, and then implementing the resulting circuit with one of the
diversity architectures.

Future Work

We prototyped several techniques for targeting trojans. Two of these target circuit
structures that appear to be common in trojan triggers. In our prototypes, we targeted
comparators, though we note that there are other structures that appear to be widely
used in hardware trojans. Amongst these are shift registers, which can be used to build
linear feedback shift registers and pseudo-random number generators that are then
employed in trojan payloads to leak information from the circuit [22]. An example is
illustrated in Figure 69(a). Another common structure is a wide AND (or wide NOR)
gate that looks for a rare combination of input or internal signals to trigger the trojan,
as shown in Figure 69(b). While it may not be feasible to selectively modify all of the
wide AND (or wide NOR) gates within a design, if there are too many such gates then
they can be prioritized by the probability of their outputs being asserted with lower
probabilities being higher priority. Similarly, a common payload structure is to XOR
some net in the circuit with the trigger so that the net is inverted when the trojan is
activated, as depicted in Figure 69(c). We can selectively target XOR gates that have
rare transitions on one of their inputs or those that are preceded by comparators, wide
AND gates, or other trigger structures. A related payload structure, shown in Figure
69(d), is a multiplexor with a trojan payload as one of its inputs and the trigger as its
select signal. Selectively targeting multiplexors with rare signal probabilities for at
least one of the select inputs may permit targeting this type of payload. Additionally,
both combinational and sequential variations of many trigger structures can be
formulated, as illustrated in Figure 70. Somewhat more sophisticated trigger structures
are shown in Figure 71 [48]. In this structure the trigger attempts to avoid detection by
decomposing the rare trigger condition into a collection of combinational blocks, none
of which has a control value that deviates significantly from the values seen in the
benign portion of the host circuit. In Figure 71 this is accomplished by breaking the
trigger into a cascade of combinational functions of 4 inputs.

108

(a) (b)

PRNG . .
[trigger
i @
ko
v

ky

. .
\v4 0.. : trigger

(c) (d)

payload
ben|gn benign
trigger trojany,

payload
benign,
®

benign, ;

trojany, , sel[log,n—1..0]

Figure 69. Additional trojan structures that can be targeted

109

trigger

eoe
\/ ©

\/ ©
Y%
oo

—D QF—D Qf—ee® —D Q

> | P D

)
.

(a) (b)
Figure 70. Combinational (a) and sequential (b) variations of a trigger structure

—]
—
:
—+4—
- b a D of——
>
D Qf

/
— E —1D Q —
— —
. —> : D>
: . :
+ — * [XN}
= L= >
D> 1”@ D Q
trigger[n-1..0] > >
D Q
D>

Figure 71. Rare trigger conditions can be decomposed into smaller chunks so that no
individual combinational block has a control value so rare as to raise suspicion [48].
Here, an n-bit trigger is decomposed into a cascade of combinational blocks, each
having four inputs. Eventually, a four bit trigger is produced.

110

This page left blank

111

REFERENCES

1.

10.

11.

12.
13.

14.

15.

Allan, Benjamin A., et al. "The Theory of Diversity and Redundancy in Information
System Security: LDRD Final Report." (2010). SAND2010-7055.

Jean-Francois Monin. Understanding Formal Methods. Springer, 2003.

Robert C. Armstrong and Jackson R. Mayo. Leveraging complexity in software for
cybersecurity. In Proc. 5th Cyber Security and Information Intelligence Research
Workshop, 2009.

Daniel Williams., et al. Security through diversity. IEEE Security & Privacy, 7(1):26—
33, 20009.

Turing, Alan Mathison. "On computable numbers, with an application to the
Entscheidungsproblem." Proceedings of the London mathematical society 2.1 (1937):
230-265.

H. Salmani, M. Tehranipoor, and R. Karri, "On Design vulnerability analysis and
trust benchmark development" IEEE Int. Conference on Computer Design (ICCD),
2013.

NIST, “Cryptographic Algorithm Validation Program CAVP Testing: Glock
Ciphers”. https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-
Program/Block-Ciphers. Accessed 06 July, 2018.

Nahiyan, Adib, et al. "AVFSM: a framework for identifying and mitigating
vulnerabilities in FSMs." Design Automation Conference (DAC), 2016 53nd
ACM/EDAC/IEEE. 1EEE, 2016.

M. Kwiatkowska, G. Norman, et al. PRISM 4.0: Verification of probabilistic real-
time systems. In Proc. 23rd International Conference on Computer Aided
Verification, pp. 585{591. 2011.

Poisson distribution. https://en.wikipedia.org/wiki/Poisson distribution. Accessed 6
November 2017.

H. Shacham, M. Page, et al. On the effectiveness of address-space randomization. In
Proc. 11th ACM Conference on Computer and Communications Security, pp.
298{307. 2004.

Jean-Fran cois Monin. Understanding Formal Methods. Springer, 2003.

Robert C. Armstrong and Jackson R. Mayo. Leveraging complexity in software for
cybersecurity. In Proc. 5th Cyber Security and Information Intelligence Research
Workshop, 2009.

Daniel Williams, Wei Hu, Jack W. Davidson, Jason D. Hiser, John C. Knight, and
Anh Nguyen-Tuong. Security through diversity. IEEE Security & Privacy, 7(1):26—
33, 2009.

Jackson R. Mayo, Benjamin A. Allan, Robert C. Armstrong, Geo<rey C. Hulette,
Todd M. Bauer, Jason R. Hamlet, Moses D. Schwartz, Jennifer Trasti, Benjamin G.

112

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

Davis, and Mitchell T. Martin. Leveraging complexity for unpredictable yet robust
cyber systems: LDRD final report. Sandia Report SAND2013-8701, October 2013.

Brandon K. Eames, Alexander V. Outkin, Sarah Walsh, Jackson R. Mayo, Jason R.
Hamlet, John M. Eldridge, Robert C. Armstrong, Mathew P. Napier, Gregory D.
Wyss, Eric D. Vugrin, Michael L. Holmes. Fundamental Trust Analysis. Sandia
Report, Sept. 2016

Porter, Roy, et al. "Dynamic Polymorphic Reconfiguration for anti-tamper circuits."
2009 International Conference on Field Programmable Logic and Applications. IEEE,
2009

Cady, Camdon R. Static and Dynamic Component Obfuscation on Reconfigurable
Devices. No. AFIT/GE/ENG/10-06. Air Force Institute of Technology Wright-
Patterson AFB OH School of Engineering and Management, 2010.

H. Salmani, M. Tehranipoor, and R. Karri, "On Design vulnerability analysis and
trust benchmark development" IEEE Int. Conference on Computer Design (ICCD),
2013.

B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, M. Tehranipoor, “Benchmarking
of Hardware Trojans and Maliciously Affected Circuits”, Journal of Hardware and
Systems Security (HaSS), April 2017.

H. Salmani, M. Tehranipoor, and R. Karri, "On Design vulnerability analysis and
trust benchmark development" IEEE Int. Conference on Computer Design (ICCD),
2013.

Lin, Lang, Wayne Burleson, and Christof Paar. "MOLES: malicious off-chip leakage
enabled by side-channels." Proceedings of the 2009 international conference on
computer-aided design. ACM, 2009.

Rajendran, Jeyavijayan, et al. "Towards a comprehensive and systematic
classification of hardware trojans." Circuits and Systems (ISCAS), Proceedings of
2010 IEEE International Symposium on. IEEE, 2010.

Chakraborty, Rajat Subhra, Seetharam Narasimhan, and Swarup Bhunia. "Hardware
Trojan: Threats and emerging solutions." High Level Design Validation and Test
Workshop, 2009. HLDVT 2009. IEEE International. IEEE, 2009.

Tehranipoor, Mohammad, and Farinaz Koushanfar. "A survey of hardware trojan
taxonomy and detection." IEEE design & test of computers 27.1 (2010).

Trust-Hub, http://trust-hub.org/benchmarks/trojan, accessed July 16, 2018.

Collection of Digital Design Benchmarks, http://ddd.fit.cvut.cz/prj/Benchmarks/
Accessed July 16, 2018.

Benchmark Circuits, http://www.pld.ttu.ee/~maksim/benchmarks/ Accessed July 16,
2018.

Mitra, Subhasish, Nirmal R. Saxena, and Edward J. McCluskey. "Common-mode
failures in redundant VLSI systems: A survey." IEEE transactions on reliability 49.3
(2000): 285-295.

113

30.

31.

32

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Avizienis, Algirdas, and J-C. Laprie. "Dependable computing: From concepts to
design diversity." Proceedings of the IEEE74.5 (1986): 629-638.

Littlewood, Bev. "The impact of diversity upon common mode failures." Reliability
Engineering & System Safety 51.1 (1996): 101-113.

Narasimhan, Seetharam, and Swarup Bhunia. "Hardware trojan
detection." Introduction to Hardware Security and Trust. Springer, New York, NY,
2012. 339-364.

Jin, Yier, and Yiorgos Makris. "Hardware Trojan detection using path delay
fingerprint." Hardware-Oriented Security and Trust, 2008. HOST 2008. IEEE
International Workshop on. IEEE, 2008.

Waksman, Adam, Matthew Suozzo, and Simha Sethumadhavan. "FANCI:
identification of stealthy malicious logic using boolean functional

analysis." Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013.

Becker, Georg T., et al. "Stealthy dopant-level hardware trojans." International
Workshop on Cryptographic Hardware and Embedded Systems. Springer, Berlin,
Heidelberg, 2013.

Huang, Shi-Yu, and Kwang-Ting Tim Cheng. Formal equivalence checking and
design debugging. Vol. 12. Springer Science & Business Media, 2012.

Godefroid, Patrice, Michael Y. Levin, and David Molnar. "SAGE: whitebox fuzzing
for security testing." Queue 10.1 (2012): 20.

Porter, Roy, et al. "Dynamic Polymorphic Reconfiguration for anti-tamper circuits."
2009 International Conference on Field Programmable Logic and Applications. IEEE,
2009.

McDonald, Jeffrey T., et al. "Functional polymorphism for intellectual property
protection." Hardware Oriented Security and Trust (HOST), 2016 IEEE International
Symposium on. IEEE, 2016

McDonald, J. Todd, Yong Kim, and Daniel Koranek. "Deterministic circuit variation
for anti-tamper applications." Proceedings of the Seventh Annual Workshop on Cyber
Security and Information Intelligence Research. ACM, 2011.

McDonald, Jeffrey T., et al. "Evaluating component hiding techniques in circuit
topologies." 2012 IEEE International Conference on Communications (ICC). IEEE,
2012.

Cady, Camdon R. Static and Dynamic Component Obfuscation on Reconfigurable
Devices. No. AFIT/GE/ENG/10-06. Air Force Institute of Technology, Wright-
Patterson AFB, OH, School of Engineering and Management, 2010.

Roy, Jarrod A., Farinaz Koushanfar, and Igor L. Markov. "EPIC: Ending piracy of
integrated circuits." Proceedings of the conference on Design, automation and test in
Europe. ACM, 2008.

114

44,

45.

46.

47.

48.

49.
50.
51.

52

53.
54.

23,

56.

57.
38.

59.
60.

Baumgarten, Alex, Akhilesh Tyagi, and Joseph Zambreno. "Preventing IC piracy
using reconfigurable logic barriers." IEEE Design & Test of Computers 27.1 (2010).

Chakraborty, Rajat Subhra, and Swarup Bhunia. "Security against hardware Trojan
attacks using key-based design obfuscation." Journal of Electronic Testing 27.6
(2011): 767-785.

P. Subramanyan, N. Tsiskaridze, W. Li, A. Gascon, W. Y. Tan, A. Tiwari, N.
Shankar, S. A. Seshia, and S. Malik, “Reverse Engineering Digital Circuits Using
Structural and Functional Analyses,” IEEE Transactions on Emerging Topics in
Computing, 2014.

S. Park and S.B. Akers, “An Efficient Method for Finding a Minimal Feedback Arc
Set in Directed Graphs,” ISCS, 1992.

J. Zhang, F. Yuan, and Q. Xu, “DeTrust: Defeating Hardware Trust Verification with
Stealthy Implicitly-Triggered Hardware Trojans,” CCS, 2014.

https://networkx.github.io/, accessed Aug. 8, 2018.
http://scikit-learn.org/stable/, accessed Aug. 8, 2018.

Karri, Ramesh, et al. "Trustworthy hardware: Identifying and classifying hardware
trojans." Computer 43.10 (2010): 39-46.

Baumgarten A, Clausman M, Lindemann B, Steffen M, Trotter B, Zambreno J
Embedded Systems Challenge. http://isis.poly.edu/vikram/iowa state.pdf

Pyverilog. https://pypi.org/project/pyverilog/. Accessed Aug. 30, 2018.

Silva, Sara, and Jonas Almeida. "GPLAB-a genetic programming toolbox for
MATLAB." Proceedings of the Nordic MATLAB conference. 2003.

Searson, Dominic P., David E. Leahy, and Mark J. Willis. "GPTIPS: an open source
genetic programming toolbox for multigene symbolic regression." Proceedings of the

International multiconference of engineers and computer scientists. Vol. 1. Hong
Kong: IMECS, 2010.

Almeida, M. A., Emerson Carlos Pedrino, and Maria C. Nicoletti. "A Genetically
Programmable Hybrid Virtual Reconfigurable Architecture for Image Filtering
Applications." Graphics, Patterns and Images (SIBGRAPI), 2016 29th SIBGRAPI
Conference on. IEEE, 2016.

Poli, Riccardo, et al. A field guide to genetic programming. Lulu. com, 2008.

Banzhaf, Wolfgang, et al. Genetic programming: an introduction. Vol. 1. San
Francisco: Morgan Kaufmann, 1998.

NuSMV. http://nusmv.fbk.eu/. Accessed Sept. 5, 2018

Philp, Kenneth W., and Norman D. Deans. "Comparative redundancy, an alternative
to triple modular redundant system design." Microelectronics Reliability 37.4 (1997):
581-585.

115

61.

62.

Berkeley Logic Synthesis and Verification Group, “ABC: A System for Sequential
Synthesis and Verification.” https://people.eecs.berkeley.edu/~alanmi/abc/ Accessed
Sept. 5, 2018.

Eén, Niklas. “Temporal Induction Prover.”
http://web.archive.org/web/20050526102314/http:/vlsicad.eecs.umich.edu/BK/Slots/c
ache/www.cs.chalmers.se/~een/Tip/ Accessed Sept. 5, 2018.

116

DISTRIBUTION

1 MSO0161 Legal Technology Transfer Center 11500

1 MS0359 D. Chavez, LDRD Office 1911

1 MS0620 Vivian Kammler 5845 (electronic copy)
1 MS0671 Jason Hamlet 5827 (electronic copy)
1 MS0671 Mitchell Martin 5827 (electronic copy)
1 MS0671 David Torres 5827 (electronic copy)
1 MS0899 Technical Library 9536 (electronic copy)
1 MS9158 Jackson Mayo 8753 (electronic copy)

117

@ Sandia National Laboratories

